X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavfilter%2Faf_astats.c;h=51a01aba2f9f1341a309b430793f9de8ff3916be;hb=a04ad248a05e7b613abe09b3bb067f555108d794;hp=2922da9f4486acec46df8ec18834bfb55795bee5;hpb=23ce57af3ad684363881cdd66d5724f40963a65c;p=ffmpeg diff --git a/libavfilter/af_astats.c b/libavfilter/af_astats.c index 2922da9f448..51a01aba2f9 100644 --- a/libavfilter/af_astats.c +++ b/libavfilter/af_astats.c @@ -20,14 +20,49 @@ */ #include +#include #include "libavutil/opt.h" #include "audio.h" #include "avfilter.h" #include "internal.h" +#define HISTOGRAM_SIZE 8192 +#define HISTOGRAM_MAX (HISTOGRAM_SIZE-1) + +#define MEASURE_ALL UINT_MAX +#define MEASURE_NONE 0 + +#define MEASURE_DC_OFFSET (1 << 0) +#define MEASURE_MIN_LEVEL (1 << 1) +#define MEASURE_MAX_LEVEL (1 << 2) +#define MEASURE_MIN_DIFFERENCE (1 << 3) +#define MEASURE_MAX_DIFFERENCE (1 << 4) +#define MEASURE_MEAN_DIFFERENCE (1 << 5) +#define MEASURE_RMS_DIFFERENCE (1 << 6) +#define MEASURE_PEAK_LEVEL (1 << 7) +#define MEASURE_RMS_LEVEL (1 << 8) +#define MEASURE_RMS_PEAK (1 << 9) +#define MEASURE_RMS_TROUGH (1 << 10) +#define MEASURE_CREST_FACTOR (1 << 11) +#define MEASURE_FLAT_FACTOR (1 << 12) +#define MEASURE_PEAK_COUNT (1 << 13) +#define MEASURE_BIT_DEPTH (1 << 14) +#define MEASURE_DYNAMIC_RANGE (1 << 15) +#define MEASURE_ZERO_CROSSINGS (1 << 16) +#define MEASURE_ZERO_CROSSINGS_RATE (1 << 17) +#define MEASURE_NUMBER_OF_SAMPLES (1 << 18) +#define MEASURE_NUMBER_OF_NANS (1 << 19) +#define MEASURE_NUMBER_OF_INFS (1 << 20) +#define MEASURE_NUMBER_OF_DENORMALS (1 << 21) +#define MEASURE_NOISE_FLOOR (1 << 22) +#define MEASURE_NOISE_FLOOR_COUNT (1 << 23) + +#define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL) + typedef struct ChannelStats { double last; + double last_non_zero; double min_non_zero; double sigma_x, sigma_x2; double avg_sigma_x2, min_sigma_x2, max_sigma_x2; @@ -40,7 +75,17 @@ typedef struct ChannelStats { double diff1_sum_x2; uint64_t mask, imask; uint64_t min_count, max_count; + uint64_t noise_floor_count; + uint64_t zero_runs; uint64_t nb_samples; + uint64_t nb_nans; + uint64_t nb_infs; + uint64_t nb_denormals; + double *win_samples; + unsigned histogram[HISTOGRAM_SIZE]; + int win_pos; + int max_index; + double noise_floor; } ChannelStats; typedef struct AudioStatsContext { @@ -54,6 +99,10 @@ typedef struct AudioStatsContext { int reset_count; int nb_frames; int maxbitdepth; + int measure_perchannel; + int measure_overall; + int is_float; + int is_double; } AudioStatsContext; #define OFFSET(x) offsetof(AudioStatsContext, x) @@ -63,6 +112,34 @@ static const AVOption astats_options[] = { { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS }, { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS }, + { "measure_perchannel", "only measure_perchannel these per-channel statistics", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, + { "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" }, + { "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" }, + { "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" }, + { "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" }, + { "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" }, + { "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, + { "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" }, + { "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" }, + { "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" }, + { "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" }, + { "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" }, + { "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" }, + { "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" }, + { "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" }, + { "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" }, + { "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" }, + { "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" }, + { "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" }, + { "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" }, + { "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" }, + { "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" }, + { "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" }, + { "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" }, + { "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" }, + { "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" }, + { "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" }, + { "measure_overall", "only measure_perchannel these overall statistics", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" }, { NULL } }; @@ -110,10 +187,10 @@ static void reset_stats(AudioStatsContext *s) ChannelStats *p = &s->chstats[c]; p->min = p->nmin = p->min_sigma_x2 = DBL_MAX; - p->max = p->nmax = p->max_sigma_x2 = DBL_MIN; + p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX; p->min_non_zero = DBL_MAX; p->min_diff = DBL_MAX; - p->max_diff = DBL_MIN; + p->max_diff = 0; p->sigma_x = 0; p->sigma_x2 = 0; p->avg_sigma_x2 = 0; @@ -127,7 +204,17 @@ static void reset_stats(AudioStatsContext *s) p->imask = 0xFFFFFFFFFFFFFFFF; p->min_count = 0; p->max_count = 0; + p->zero_runs = 0; p->nb_samples = 0; + p->nb_nans = 0; + p->nb_infs = 0; + p->nb_denormals = 0; + p->last = NAN; + p->noise_floor = NAN; + p->noise_floor_count = 0; + p->win_pos = 0; + memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples)); + memset(p->histogram, 0, sizeof(p->histogram)); } } @@ -138,11 +225,26 @@ static int config_output(AVFilterLink *outlink) s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels); if (!s->chstats) return AVERROR(ENOMEM); + + s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5; s->nb_channels = outlink->channels; + + for (int i = 0; i < s->nb_channels; i++) { + ChannelStats *p = &s->chstats[i]; + + p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples)); + if (!p->win_samples) + return AVERROR(ENOMEM); + } + s->mult = exp((-1 / s->time_constant / outlink->sample_rate)); - s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5; s->nb_frames = 0; s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8; + s->is_double = outlink->format == AV_SAMPLE_FMT_DBL || + outlink->format == AV_SAMPLE_FMT_DBLP; + + s->is_float = outlink->format == AV_SAMPLE_FMT_FLT || + outlink->format == AV_SAMPLE_FMT_FLTP; reset_stats(s); @@ -165,8 +267,19 @@ static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRat depth->num++; } +static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d) +{ + if (d < p->min) + p->min = d; + if (d > p->max) + p->max = d; +} + static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i) { + double drop; + int index; + if (d < p->min) { p->min = d; p->nmin = nd; @@ -196,17 +309,62 @@ static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, p->max_runs += p->max_run * p->max_run; } + if (d != 0) { + p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero); + p->last_non_zero = d; + } + p->sigma_x += nd; p->sigma_x2 += nd * nd; p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd; - p->min_diff = FFMIN(p->min_diff, fabs(d - p->last)); - p->max_diff = FFMAX(p->max_diff, fabs(d - p->last)); - p->diff1_sum += fabs(d - p->last); - p->diff1_sum_x2 += (d - p->last) * (d - p->last); + if (!isnan(p->last)) { + p->min_diff = FFMIN(p->min_diff, fabs(d - p->last)); + p->max_diff = FFMAX(p->max_diff, fabs(d - p->last)); + p->diff1_sum += fabs(d - p->last); + p->diff1_sum_x2 += (d - p->last) * (d - p->last); + } p->last = d; p->mask |= i; p->imask &= i; + drop = p->win_samples[p->win_pos]; + p->win_samples[p->win_pos] = nd; + index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX); + p->max_index = FFMAX(p->max_index, index); + p->histogram[index]++; + if (!isnan(p->noise_floor)) + p->histogram[av_clip(lrint(av_clipd(FFABS(drop), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX)]--; + p->win_pos++; + + while (p->histogram[p->max_index] == 0) + p->max_index--; + if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) { + double noise_floor = 1.; + + for (int i = p->max_index; i >= 0; i--) { + if (p->histogram[i]) { + noise_floor = i / (double)HISTOGRAM_MAX; + break; + } + } + + if (isnan(p->noise_floor)) { + p->noise_floor = noise_floor; + p->noise_floor_count = 1; + } else { + if (noise_floor < p->noise_floor) { + p->noise_floor = noise_floor; + p->noise_floor_count = 1; + } else if (noise_floor == p->noise_floor) { + p->noise_floor_count++; + } + } + } + + if (p->win_pos >= s->tc_samples) { + p->win_pos = 0; + } + if (p->nb_samples >= s->tc_samples) { p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2); p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2); @@ -214,6 +372,24 @@ static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, p->nb_samples++; } +static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d) +{ + int type = fpclassify(d); + + p->nb_nans += type == FP_NAN; + p->nb_infs += type == FP_INFINITE; + p->nb_denormals += type == FP_SUBNORMAL; +} + +static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d) +{ + int type = fpclassify(d); + + p->nb_nans += type == FP_NAN; + p->nb_infs += type == FP_INFINITE; + p->nb_denormals += type == FP_SUBNORMAL; +} + static void set_meta(AVDictionary **metadata, int chan, const char *key, const char *fmt, double val) { @@ -232,17 +408,19 @@ static void set_meta(AVDictionary **metadata, int chan, const char *key, static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) { - uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0; + uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; + uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; double min_runs = 0, max_runs = 0, - min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0, - nmin = DBL_MAX, nmax = DBL_MIN, + min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, + nmin = DBL_MAX, nmax =-DBL_MAX, max_sigma_x = 0, diff1_sum = 0, diff1_sum_x2 = 0, sigma_x = 0, sigma_x2 = 0, + noise_floor = 0, min_sigma_x2 = DBL_MAX, - max_sigma_x2 = DBL_MIN; + max_sigma_x2 =-DBL_MAX; AVRational depth; int c; @@ -264,6 +442,8 @@ static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); sigma_x += p->sigma_x; sigma_x2 += p->sigma_x2; + noise_floor = FFMAX(noise_floor, p->noise_floor); + noise_floor_count += p->noise_floor_count; min_count += p->min_count; max_count += p->max_count; min_runs += p->min_runs; @@ -271,151 +451,202 @@ static void set_metadata(AudioStatsContext *s, AVDictionary **metadata) mask |= p->mask; imask &= p->imask; nb_samples += p->nb_samples; + nb_nans += p->nb_nans; + nb_infs += p->nb_infs; + nb_denormals += p->nb_denormals; if (fabs(p->sigma_x) > fabs(max_sigma_x)) max_sigma_x = p->sigma_x; - set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples); - set_meta(metadata, c + 1, "Min_level", "%f", p->min); - set_meta(metadata, c + 1, "Max_level", "%f", p->max); - set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff); - set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff); - set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1)); - set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); - set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); - set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); - set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); - set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2))); - set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1); - set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); - set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count)); - bit_depth(s, p->mask, p->imask, &depth); - set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num); - set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den); - set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); + if (s->measure_perchannel & MEASURE_DC_OFFSET) + set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples); + if (s->measure_perchannel & MEASURE_MIN_LEVEL) + set_meta(metadata, c + 1, "Min_level", "%f", p->min); + if (s->measure_perchannel & MEASURE_MAX_LEVEL) + set_meta(metadata, c + 1, "Max_level", "%f", p->max); + if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) + set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff); + if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) + set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff); + if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) + set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1)); + if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) + set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); + if (s->measure_perchannel & MEASURE_PEAK_LEVEL) + set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); + if (s->measure_perchannel & MEASURE_RMS_LEVEL) + set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); + if (s->measure_perchannel & MEASURE_RMS_PEAK) + set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); + if (s->measure_perchannel & MEASURE_RMS_TROUGH) + set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2))); + if (s->measure_perchannel & MEASURE_CREST_FACTOR) + set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1); + if (s->measure_perchannel & MEASURE_FLAT_FACTOR) + set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); + if (s->measure_perchannel & MEASURE_PEAK_COUNT) + set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count)); + if (s->measure_perchannel & MEASURE_NOISE_FLOOR) + set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor)); + if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) + set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count); + if (s->measure_perchannel & MEASURE_BIT_DEPTH) { + bit_depth(s, p->mask, p->imask, &depth); + set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num); + set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den); + } + if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) + set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); + if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) + set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs); + if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) + set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) + set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) + set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) + set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals); } - set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels)); - set_meta(metadata, 0, "Overall.Min_level", "%f", min); - set_meta(metadata, 0, "Overall.Max_level", "%f", max); - set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff); - set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff); - set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels)); - set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); - set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax))); - set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); - set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2))); - set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2))); - set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); - set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels); - bit_depth(s, mask, imask, &depth); - set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num); - set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den); - set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels); + if (s->measure_overall & MEASURE_DC_OFFSET) + set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels)); + if (s->measure_overall & MEASURE_MIN_LEVEL) + set_meta(metadata, 0, "Overall.Min_level", "%f", min); + if (s->measure_overall & MEASURE_MAX_LEVEL) + set_meta(metadata, 0, "Overall.Max_level", "%f", max); + if (s->measure_overall & MEASURE_MIN_DIFFERENCE) + set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff); + if (s->measure_overall & MEASURE_MAX_DIFFERENCE) + set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff); + if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) + set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels)); + if (s->measure_overall & MEASURE_RMS_DIFFERENCE) + set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); + if (s->measure_overall & MEASURE_PEAK_LEVEL) + set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax))); + if (s->measure_overall & MEASURE_RMS_LEVEL) + set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); + if (s->measure_overall & MEASURE_RMS_PEAK) + set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2))); + if (s->measure_overall & MEASURE_RMS_TROUGH) + set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2))); + if (s->measure_overall & MEASURE_FLAT_FACTOR) + set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); + if (s->measure_overall & MEASURE_PEAK_COUNT) + set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels); + if (s->measure_overall & MEASURE_NOISE_FLOOR) + set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor)); + if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) + set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels); + if (s->measure_overall & MEASURE_BIT_DEPTH) { + bit_depth(s, mask, imask, &depth); + set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num); + set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den); + } + if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) + set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) + set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) + set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) + set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels); } -static int filter_frame(AVFilterLink *inlink, AVFrame *buf) -{ - AudioStatsContext *s = inlink->dst->priv; - AVDictionary **metadata = &buf->metadata; - const int channels = s->nb_channels; - int i, c; +#define UPDATE_STATS_P(type, update_func, update_float, channel_func) \ + for (int c = start; c < end; c++) { \ + ChannelStats *p = &s->chstats[c]; \ + const type *src = (const type *)data[c]; \ + const type * const srcend = src + samples; \ + for (; src < srcend; src++) { \ + update_func; \ + update_float; \ + } \ + channel_func; \ + } - if (s->reset_count > 0) { - if (s->nb_frames >= s->reset_count) { - reset_stats(s); - s->nb_frames = 0; - } - s->nb_frames++; +#define UPDATE_STATS_I(type, update_func, update_float, channel_func) \ + for (int c = start; c < end; c++) { \ + ChannelStats *p = &s->chstats[c]; \ + const type *src = (const type *)data[0]; \ + const type * const srcend = src + samples * channels; \ + for (src += c; src < srcend; src += channels) { \ + update_func; \ + update_float; \ + } \ + channel_func; \ } +#define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \ + if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \ + UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \ + } else { \ + UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \ + } + +static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) +{ + AudioStatsContext *s = ctx->priv; + AVFilterLink *inlink = ctx->inputs[0]; + AVFrame *buf = arg; + const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data; + const int channels = s->nb_channels; + const int samples = buf->nb_samples; + const int start = (buf->channels * jobnr) / nb_jobs; + const int end = (buf->channels * (jobnr+1)) / nb_jobs; + switch (inlink->format) { case AV_SAMPLE_FMT_DBLP: - for (c = 0; c < channels; c++) { - ChannelStats *p = &s->chstats[c]; - const double *src = (const double *)buf->extended_data[c]; - - for (i = 0; i < buf->nb_samples; i++, src++) - update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 63))); - } + UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63))); break; - case AV_SAMPLE_FMT_DBL: { - const double *src = (const double *)buf->extended_data[0]; - - for (i = 0; i < buf->nb_samples; i++) { - for (c = 0; c < channels; c++, src++) - update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 63))); - }} + case AV_SAMPLE_FMT_DBL: + UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63))); break; case AV_SAMPLE_FMT_FLTP: - for (c = 0; c < channels; c++) { - ChannelStats *p = &s->chstats[c]; - const float *src = (const float *)buf->extended_data[c]; - - for (i = 0; i < buf->nb_samples; i++, src++) - update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 31))); - } + UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31))); break; - case AV_SAMPLE_FMT_FLT: { - const float *src = (const float *)buf->extended_data[0]; - - for (i = 0; i < buf->nb_samples; i++) { - for (c = 0; c < channels; c++, src++) - update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 31))); - }} + case AV_SAMPLE_FMT_FLT: + UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31))); break; case AV_SAMPLE_FMT_S64P: - for (c = 0; c < channels; c++) { - ChannelStats *p = &s->chstats[c]; - const int64_t *src = (const int64_t *)buf->extended_data[c]; - - for (i = 0; i < buf->nb_samples; i++, src++) - update_stat(s, p, *src, *src / (double)INT64_MAX, *src); - } + UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src); break; - case AV_SAMPLE_FMT_S64: { - const int64_t *src = (const int64_t *)buf->extended_data[0]; - - for (i = 0; i < buf->nb_samples; i++) { - for (c = 0; c < channels; c++, src++) - update_stat(s, &s->chstats[c], *src, *src / (double)INT64_MAX, *src); - }} + case AV_SAMPLE_FMT_S64: + UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src); break; case AV_SAMPLE_FMT_S32P: - for (c = 0; c < channels; c++) { - ChannelStats *p = &s->chstats[c]; - const int32_t *src = (const int32_t *)buf->extended_data[c]; - - for (i = 0; i < buf->nb_samples; i++, src++) - update_stat(s, p, *src, *src / (double)INT32_MAX, *src); - } + UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src); break; - case AV_SAMPLE_FMT_S32: { - const int32_t *src = (const int32_t *)buf->extended_data[0]; - - for (i = 0; i < buf->nb_samples; i++) { - for (c = 0; c < channels; c++, src++) - update_stat(s, &s->chstats[c], *src, *src / (double)INT32_MAX, *src); - }} + case AV_SAMPLE_FMT_S32: + UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src); break; case AV_SAMPLE_FMT_S16P: - for (c = 0; c < channels; c++) { - ChannelStats *p = &s->chstats[c]; - const int16_t *src = (const int16_t *)buf->extended_data[c]; - - for (i = 0; i < buf->nb_samples; i++, src++) - update_stat(s, p, *src, *src / (double)INT16_MAX, *src); - } + UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src); break; - case AV_SAMPLE_FMT_S16: { - const int16_t *src = (const int16_t *)buf->extended_data[0]; - - for (i = 0; i < buf->nb_samples; i++) { - for (c = 0; c < channels; c++, src++) - update_stat(s, &s->chstats[c], *src, *src / (double)INT16_MAX, *src); - }} + case AV_SAMPLE_FMT_S16: + UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src); break; } + return 0; +} + +static int filter_frame(AVFilterLink *inlink, AVFrame *buf) +{ + AVFilterContext *ctx = inlink->dst; + AudioStatsContext *s = ctx->priv; + AVDictionary **metadata = &buf->metadata; + + if (s->reset_count > 0) { + if (s->nb_frames >= s->reset_count) { + reset_stats(s); + s->nb_frames = 0; + } + s->nb_frames++; + } + + ctx->internal->execute(ctx, filter_channel, buf, NULL, FFMIN(inlink->channels, ff_filter_get_nb_threads(ctx))); + if (s->metadata) set_metadata(s, metadata); @@ -425,17 +656,19 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *buf) static void print_stats(AVFilterContext *ctx) { AudioStatsContext *s = ctx->priv; - uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0; + uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0; + uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0; double min_runs = 0, max_runs = 0, - min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0, - nmin = DBL_MAX, nmax = DBL_MIN, + min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0, + nmin = DBL_MAX, nmax =-DBL_MAX, max_sigma_x = 0, diff1_sum_x2 = 0, diff1_sum = 0, sigma_x = 0, sigma_x2 = 0, + noise_floor = 0, min_sigma_x2 = DBL_MAX, - max_sigma_x2 = DBL_MIN; + max_sigma_x2 =-DBL_MAX; AVRational depth; int c; @@ -457,55 +690,117 @@ static void print_stats(AVFilterContext *ctx) max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2); sigma_x += p->sigma_x; sigma_x2 += p->sigma_x2; + noise_floor = FFMAX(noise_floor, p->noise_floor); min_count += p->min_count; max_count += p->max_count; + noise_floor_count += p->noise_floor_count; min_runs += p->min_runs; max_runs += p->max_runs; mask |= p->mask; imask &= p->imask; nb_samples += p->nb_samples; + nb_nans += p->nb_nans; + nb_infs += p->nb_infs; + nb_denormals += p->nb_denormals; if (fabs(p->sigma_x) > fabs(max_sigma_x)) max_sigma_x = p->sigma_x; av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1); - av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples); - av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min); - av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max); - av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff); - av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff); - av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1)); - av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); - av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); - av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); - av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); - if (p->min_sigma_x2 != 1) - av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2))); - av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1); - av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); - av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count); - bit_depth(s, p->mask, p->imask, &depth); - av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); - av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); + if (s->measure_perchannel & MEASURE_DC_OFFSET) + av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples); + if (s->measure_perchannel & MEASURE_MIN_LEVEL) + av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min); + if (s->measure_perchannel & MEASURE_MAX_LEVEL) + av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max); + if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff); + if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff); + if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1)); + if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1))); + if (s->measure_perchannel & MEASURE_PEAK_LEVEL) + av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax))); + if (s->measure_perchannel & MEASURE_RMS_LEVEL) + av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples))); + if (s->measure_perchannel & MEASURE_RMS_PEAK) + av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2))); + if (s->measure_perchannel & MEASURE_RMS_TROUGH) + if (p->min_sigma_x2 != 1) + av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2))); + if (s->measure_perchannel & MEASURE_CREST_FACTOR) + av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1); + if (s->measure_perchannel & MEASURE_FLAT_FACTOR) + av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count))); + if (s->measure_perchannel & MEASURE_PEAK_COUNT) + av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count); + if (s->measure_perchannel & MEASURE_NOISE_FLOOR) + av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor)); + if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT) + av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count); + if (s->measure_perchannel & MEASURE_BIT_DEPTH) { + bit_depth(s, p->mask, p->imask, &depth); + av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); + } + if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE) + av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero)); + if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS) + av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs); + if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE) + av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS) + av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS) + av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs); + if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS) + av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals); } av_log(ctx, AV_LOG_INFO, "Overall\n"); - av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels)); - av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min); - av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max); - av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff); - av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff); - av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels)); - av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); - av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax))); - av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); - av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2))); - if (min_sigma_x2 != 1) - av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2))); - av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); - av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels); - bit_depth(s, mask, imask, &depth); - av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); - av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels); + if (s->measure_overall & MEASURE_DC_OFFSET) + av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels)); + if (s->measure_overall & MEASURE_MIN_LEVEL) + av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min); + if (s->measure_overall & MEASURE_MAX_LEVEL) + av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max); + if (s->measure_overall & MEASURE_MIN_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff); + if (s->measure_overall & MEASURE_MAX_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff); + if (s->measure_overall & MEASURE_MEAN_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels)); + if (s->measure_overall & MEASURE_RMS_DIFFERENCE) + av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels))); + if (s->measure_overall & MEASURE_PEAK_LEVEL) + av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax))); + if (s->measure_overall & MEASURE_RMS_LEVEL) + av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples))); + if (s->measure_overall & MEASURE_RMS_PEAK) + av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2))); + if (s->measure_overall & MEASURE_RMS_TROUGH) + if (min_sigma_x2 != 1) + av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2))); + if (s->measure_overall & MEASURE_FLAT_FACTOR) + av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count))); + if (s->measure_overall & MEASURE_PEAK_COUNT) + av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels); + if (s->measure_overall & MEASURE_NOISE_FLOOR) + av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor)); + if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT) + av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels); + if (s->measure_overall & MEASURE_BIT_DEPTH) { + bit_depth(s, mask, imask, &depth); + av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den); + } + if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES) + av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS) + av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS) + av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels); + if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS) + av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels); } static av_cold void uninit(AVFilterContext *ctx) @@ -514,6 +809,13 @@ static av_cold void uninit(AVFilterContext *ctx) if (s->nb_channels) print_stats(ctx); + if (s->chstats) { + for (int i = 0; i < s->nb_channels; i++) { + ChannelStats *p = &s->chstats[i]; + + av_freep(&p->win_samples); + } + } av_freep(&s->chstats); } @@ -535,7 +837,7 @@ static const AVFilterPad astats_outputs[] = { { NULL } }; -AVFilter ff_af_astats = { +const AVFilter ff_af_astats = { .name = "astats", .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."), .query_formats = query_formats, @@ -544,4 +846,5 @@ AVFilter ff_af_astats = { .uninit = uninit, .inputs = astats_inputs, .outputs = astats_outputs, + .flags = AVFILTER_FLAG_SLICE_THREADS, };