X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavfilter%2Faf_firequalizer.c;h=5c6fd542ae51710f71cc653a08d19a036c1e4a90;hb=f75035b06f4b287443fa9275f76183ace39c2d45;hp=6a9c64187e8d811bd4594a81ab15ad6bb97f55b7;hpb=2c138b2c9b0ec92d9baf704498b1a32a989d03c5;p=ffmpeg diff --git a/libavfilter/af_firequalizer.c b/libavfilter/af_firequalizer.c index 6a9c64187e8..5c6fd542ae5 100644 --- a/libavfilter/af_firequalizer.c +++ b/libavfilter/af_firequalizer.c @@ -30,8 +30,7 @@ #define RDFT_BITS_MAX 16 enum WindowFunc { - WFUNC_MIN, - WFUNC_RECTANGULAR = WFUNC_MIN, + WFUNC_RECTANGULAR, WFUNC_HANN, WFUNC_HAMMING, WFUNC_BLACKMAN, @@ -40,7 +39,16 @@ enum WindowFunc { WFUNC_NUTTALL, WFUNC_BNUTTALL, WFUNC_BHARRIS, - WFUNC_MAX = WFUNC_BHARRIS + WFUNC_TUKEY, + NB_WFUNC +}; + +enum Scale { + SCALE_LINLIN, + SCALE_LINLOG, + SCALE_LOGLIN, + SCALE_LOGLOG, + NB_SCALE }; #define NB_GAIN_ENTRY_MAX 4096 @@ -57,13 +65,16 @@ typedef struct { typedef struct { const AVClass *class; + RDFTContext *analysis_rdft; RDFTContext *analysis_irdft; RDFTContext *rdft; RDFTContext *irdft; + FFTContext *fft_ctx; int analysis_rdft_len; int rdft_len; float *analysis_buf; + float *dump_buf; float *kernel_tmp_buf; float *kernel_buf; float *conv_buf; @@ -84,6 +95,10 @@ typedef struct { int fixed; int multi; int zero_phase; + int scale; + char *dumpfile; + int dumpscale; + int fft2; int nb_gain_entry; int gain_entry_err; @@ -98,7 +113,7 @@ static const AVOption firequalizer_options[] = { { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS }, { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS }, - { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, WFUNC_MIN, WFUNC_MAX, FLAGS, "wfunc" }, + { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" }, { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" }, { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" }, { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" }, @@ -108,9 +123,18 @@ static const AVOption firequalizer_options[] = { { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" }, { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" }, { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" }, + { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" }, { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, + { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" }, + { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" }, + { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" }, + { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" }, + { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" }, + { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, + { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" }, + { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { NULL } }; @@ -118,12 +142,16 @@ AVFILTER_DEFINE_CLASS(firequalizer); static void common_uninit(FIREqualizerContext *s) { + av_rdft_end(s->analysis_rdft); av_rdft_end(s->analysis_irdft); av_rdft_end(s->rdft); av_rdft_end(s->irdft); - s->analysis_irdft = s->rdft = s->irdft = NULL; + av_fft_end(s->fft_ctx); + s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL; + s->fft_ctx = NULL; av_freep(&s->analysis_buf); + av_freep(&s->dump_buf); av_freep(&s->kernel_tmp_buf); av_freep(&s->kernel_buf); av_freep(&s->conv_buf); @@ -175,20 +203,19 @@ static void fast_convolute(FIREqualizerContext *s, const float *kernel_buf, floa if (nsamples <= s->nsamples_max) { float *buf = conv_buf + idx->buf_idx * s->rdft_len; float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; + int center = s->fir_len/2; int k; - memcpy(buf, data, nsamples * sizeof(*data)); - memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data)); + memset(buf, 0, center * sizeof(*data)); + memcpy(buf + center, data, nsamples * sizeof(*data)); + memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data)); av_rdft_calc(s->rdft, buf); buf[0] *= kernel_buf[0]; - buf[1] *= kernel_buf[1]; - for (k = 2; k < s->rdft_len; k += 2) { - float re, im; - re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1]; - im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k]; - buf[k] = re; - buf[k+1] = im; + buf[1] *= kernel_buf[s->rdft_len/2]; + for (k = 1; k < s->rdft_len/2; k++) { + buf[2*k] *= kernel_buf[k]; + buf[2*k+1] *= kernel_buf[k]; } av_rdft_calc(s->irdft, buf); @@ -208,6 +235,117 @@ static void fast_convolute(FIREqualizerContext *s, const float *kernel_buf, floa } } +static void fast_convolute2(FIREqualizerContext *s, const float *kernel_buf, FFTComplex *conv_buf, + OverlapIndex *idx, float *data0, float *data1, int nsamples) +{ + if (nsamples <= s->nsamples_max) { + FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len; + FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; + int center = s->fir_len/2; + int k; + float tmp; + + memset(buf, 0, center * sizeof(*buf)); + for (k = 0; k < nsamples; k++) { + buf[center+k].re = data0[k]; + buf[center+k].im = data1[k]; + } + memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf)); + av_fft_permute(s->fft_ctx, buf); + av_fft_calc(s->fft_ctx, buf); + + /* swap re <-> im, do backward fft using forward fft_ctx */ + /* normalize with 0.5f */ + tmp = buf[0].re; + buf[0].re = 0.5f * kernel_buf[0] * buf[0].im; + buf[0].im = 0.5f * kernel_buf[0] * tmp; + for (k = 1; k < s->rdft_len/2; k++) { + int m = s->rdft_len - k; + tmp = buf[k].re; + buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; + buf[k].im = 0.5f * kernel_buf[k] * tmp; + tmp = buf[m].re; + buf[m].re = 0.5f * kernel_buf[k] * buf[m].im; + buf[m].im = 0.5f * kernel_buf[k] * tmp; + } + tmp = buf[k].re; + buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; + buf[k].im = 0.5f * kernel_buf[k] * tmp; + + av_fft_permute(s->fft_ctx, buf); + av_fft_calc(s->fft_ctx, buf); + + for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) { + buf[k].re += obuf[k].re; + buf[k].im += obuf[k].im; + } + + /* swapped re <-> im */ + for (k = 0; k < nsamples; k++) { + data0[k] = buf[k].im; + data1[k] = buf[k].re; + } + idx->buf_idx = !idx->buf_idx; + idx->overlap_idx = nsamples; + } else { + while (nsamples > s->nsamples_max * 2) { + fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max); + data0 += s->nsamples_max; + data1 += s->nsamples_max; + nsamples -= s->nsamples_max; + } + fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2); + fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2); + } +} + +static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch) +{ + FIREqualizerContext *s = ctx->priv; + int rate = ctx->inputs[0]->sample_rate; + int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG; + int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG; + int x; + int center = s->fir_len / 2; + double delay = s->zero_phase ? 0.0 : (double) center / rate; + double vx, ya, yb; + + s->analysis_buf[0] *= s->rdft_len/2; + for (x = 1; x <= center; x++) { + s->analysis_buf[x] *= s->rdft_len/2; + s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2; + } + + if (ch) + fprintf(fp, "\n\n"); + + fprintf(fp, "# time[%d] (time amplitude)\n", ch); + + for (x = center; x > 0; x--) + fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]); + + for (x = 0; x <= center; x++) + fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]); + + av_rdft_calc(s->analysis_rdft, s->analysis_buf); + + fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch); + + for (x = 0; x <= s->analysis_rdft_len/2; x++) { + int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x; + vx = (double)x * rate / s->analysis_rdft_len; + if (xlog) + vx = log2(0.05*vx); + ya = s->dump_buf[i]; + yb = s->analysis_buf[i]; + if (ylog) { + ya = 20.0 * log10(fabs(ya)); + yb = 20.0 * log10(fabs(yb)); + } + fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb); + } +} + static double entry_func(void *p, double freq, double gain) { AVFilterContext *ctx = p; @@ -284,6 +422,51 @@ static double gain_interpolate_func(void *p, double freq) return res[0].gain; } +static double cubic_interpolate_func(void *p, double freq) +{ + AVFilterContext *ctx = p; + FIREqualizerContext *s = ctx->priv; + GainEntry *res; + double x, x2, x3; + double a, b, c, d; + double m0, m1, m2, msum, unit; + + if (!s->nb_gain_entry) + return 0; + + if (freq <= s->gain_entry_tbl[0].freq) + return s->gain_entry_tbl[0].gain; + + if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq) + return s->gain_entry_tbl[s->nb_gain_entry-1].gain; + + res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare); + av_assert0(res); + + unit = res[1].freq - res[0].freq; + m0 = res != s->gain_entry_tbl ? + unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0; + m1 = res[1].gain - res[0].gain; + m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ? + unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0; + + msum = fabs(m0) + fabs(m1); + m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0; + msum = fabs(m1) + fabs(m2); + m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0; + + d = res[0].gain; + c = m0; + b = 3 * res[1].gain - m1 - 2 * c - 3 * d; + a = res[1].gain - b - c - d; + + x = (freq - res[0].freq) / unit; + x2 = x * x; + x3 = x2 * x; + + return a * x3 + b * x2 + c * x + d; +} + static const char *const var_names[] = { "f", "sr", @@ -309,12 +492,15 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g FIREqualizerContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const char *gain_entry_func_names[] = { "entry", NULL }; - const char *gain_func_names[] = { "gain_interpolate", NULL }; + const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL }; double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL }; - double (*gain_funcs[])(void *, double) = { gain_interpolate_func, NULL }; + double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL }; double vars[VAR_NB]; AVExpr *gain_expr; int ret, k, center, ch; + int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG; + int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG; + FILE *dump_fp = NULL; s->nb_gain_entry = 0; s->gain_entry_err = 0; @@ -335,23 +521,41 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g if (ret < 0) return ret; + if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w")))) + av_log(ctx, AV_LOG_WARNING, "dumping failed.\n"); + vars[VAR_CHS] = inlink->channels; vars[VAR_CHLAYOUT] = inlink->channel_layout; vars[VAR_SR] = inlink->sample_rate; for (ch = 0; ch < inlink->channels; ch++) { + float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len; + double result; vars[VAR_CH] = ch; vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch); vars[VAR_F] = 0.0; - s->analysis_buf[0] = pow(10.0, 0.05 * av_expr_eval(gain_expr, vars, ctx)); + if (xlog) + vars[VAR_F] = log2(0.05 * vars[VAR_F]); + result = av_expr_eval(gain_expr, vars, ctx); + s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result; + vars[VAR_F] = 0.5 * inlink->sample_rate; - s->analysis_buf[1] = pow(10.0, 0.05 * av_expr_eval(gain_expr, vars, ctx)); + if (xlog) + vars[VAR_F] = log2(0.05 * vars[VAR_F]); + result = av_expr_eval(gain_expr, vars, ctx); + s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result; for (k = 1; k < s->analysis_rdft_len/2; k++) { vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len); - s->analysis_buf[2*k] = pow(10.0, 0.05 * av_expr_eval(gain_expr, vars, ctx)); + if (xlog) + vars[VAR_F] = log2(0.05 * vars[VAR_F]); + result = av_expr_eval(gain_expr, vars, ctx); + s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : result; s->analysis_buf[2*k+1] = 0.0; } + if (s->dump_buf) + memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf)); + av_rdft_calc(s->analysis_irdft, s->analysis_buf); center = s->fir_len / 2; @@ -369,7 +573,7 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g win = 0.53836 + 0.46164 * cos(u); break; case WFUNC_BLACKMAN: - win = 0.48 + 0.5 * cos(u) + 0.02 * cos(2*u); + win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u); break; case WFUNC_NUTTALL3: win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u); @@ -386,42 +590,54 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g case WFUNC_BHARRIS: win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u); break; + case WFUNC_TUKEY: + win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI)); + break; default: av_assert0(0); } s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win; + if (k) + s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k]; } - for (k = 0; k < center - k; k++) { - float tmp = s->analysis_buf[k]; - s->analysis_buf[k] = s->analysis_buf[center - k]; - s->analysis_buf[center - k] = tmp; - } - - for (k = 1; k <= center; k++) - s->analysis_buf[center + k] = s->analysis_buf[center - k]; - - memset(s->analysis_buf + s->fir_len, 0, (s->rdft_len - s->fir_len) * sizeof(*s->analysis_buf)); - av_rdft_calc(s->rdft, s->analysis_buf); + memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf)); + memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf)); + memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf)); + av_rdft_calc(s->rdft, rdft_buf); for (k = 0; k < s->rdft_len; k++) { - if (isnan(s->analysis_buf[k]) || isinf(s->analysis_buf[k])) { + if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) { av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n"); av_expr_free(gain_expr); + if (dump_fp) + fclose(dump_fp); return AVERROR(EINVAL); } } - memcpy(s->kernel_tmp_buf + ch * s->rdft_len, s->analysis_buf, s->rdft_len * sizeof(*s->analysis_buf)); + rdft_buf[s->rdft_len-1] = rdft_buf[1]; + for (k = 0; k < s->rdft_len/2; k++) + rdft_buf[k] = rdft_buf[2*k]; + rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1]; + + if (dump_fp) + dump_fir(ctx, dump_fp, ch); + if (!s->multi) break; } memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf)); av_expr_free(gain_expr); + if (dump_fp) + fclose(dump_fp); return 0; } +#define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain) +#define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry) + static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; @@ -451,6 +667,9 @@ static int config_input(AVFilterLink *inlink) if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R))) return AVERROR(ENOMEM); + if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0))) + return AVERROR(ENOMEM); + for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { s->analysis_rdft_len = 1 << rdft_bits; if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len) @@ -465,6 +684,11 @@ static int config_input(AVFilterLink *inlink) if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R))) return AVERROR(ENOMEM); + if (s->dumpfile) { + s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C); + s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf)); + } + s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf)); s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf)); s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf)); @@ -479,8 +703,7 @@ static int config_input(AVFilterLink *inlink) if (s->fixed) inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = s->nsamples_max; - return generate_kernel(ctx, s->gain_cmd ? s->gain_cmd : s->gain, - s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry); + return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s)); } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) @@ -489,7 +712,13 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *frame) FIREqualizerContext *s = ctx->priv; int ch; - for (ch = 0; ch < inlink->channels; ch++) { + for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) { + fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len), + s->conv_idx + ch, (float *) frame->extended_data[ch], + (float *) frame->extended_data[ch+1], frame->nb_samples); + } + + for ( ; ch < inlink->channels; ch++) { fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0), s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, (float *) frame->extended_data[ch], frame->nb_samples); @@ -536,11 +765,16 @@ static int process_command(AVFilterContext *ctx, const char *cmd, const char *ar if (!strcmp(cmd, "gain")) { char *gain_cmd; + if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) { + av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n"); + return 0; + } + gain_cmd = av_strdup(args); if (!gain_cmd) return AVERROR(ENOMEM); - ret = generate_kernel(ctx, gain_cmd, s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry); + ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s)); if (ret >= 0) { av_freep(&s->gain_cmd); s->gain_cmd = gain_cmd; @@ -550,11 +784,16 @@ static int process_command(AVFilterContext *ctx, const char *cmd, const char *ar } else if (!strcmp(cmd, "gain_entry")) { char *gain_entry_cmd; + if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) { + av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n"); + return 0; + } + gain_entry_cmd = av_strdup(args); if (!gain_entry_cmd) return AVERROR(ENOMEM); - ret = generate_kernel(ctx, s->gain_cmd ? s->gain_cmd : s->gain, gain_entry_cmd); + ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd); if (ret >= 0) { av_freep(&s->gain_entry_cmd); s->gain_entry_cmd = gain_entry_cmd;