X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavfilter%2Favf_showspectrum.c;h=f175bf1cb54491529718ddd70384f9718a321c61;hb=5a39b797ac46bbf992e76ea363f2c5fab7ebc29f;hp=e8d3f1ec8d22b9beb5783c3421a75acb63b03135;hpb=493240a522fca34882601fbeeda4e17aa40a0303;p=ffmpeg diff --git a/libavfilter/avf_showspectrum.c b/libavfilter/avf_showspectrum.c index e8d3f1ec8d2..f175bf1cb54 100644 --- a/libavfilter/avf_showspectrum.c +++ b/libavfilter/avf_showspectrum.c @@ -45,6 +45,7 @@ enum DisplayMode { COMBINED, SEPARATE, NB_MODES }; enum DataMode { D_MAGNITUDE, D_PHASE, NB_DMODES }; +enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES }; enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES }; enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES }; @@ -65,6 +66,7 @@ typedef struct ShowSpectrumContext { int mode; ///< channel display mode int color_mode; ///< display color scheme int scale; + int fscale; float saturation; ///< color saturation multiplier float rotation; ///< color rotation int start, stop; ///< zoom mode @@ -95,6 +97,7 @@ typedef struct ShowSpectrumContext { int single_pic; int legend; int start_x, start_y; + int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } ShowSpectrumContext; #define OFFSET(x) offsetof(ShowSpectrumContext, x) @@ -134,6 +137,9 @@ static const AVOption showspectrum_options[] = { { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" }, + { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" }, + { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" }, + { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, @@ -386,29 +392,29 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo } if (s->stop) { - double theta, phi, psi, a, b, S, c; + float theta, phi, psi, a, b, S, c; FFTComplex *g = s->fft_data[ch]; FFTComplex *h = s->fft_scratch[ch]; int L = s->buf_size; int N = s->win_size; int M = s->win_size / 2; - phi = 2.0 * M_PI * (s->stop - s->start) / (double)inlink->sample_rate / (M - 1); - theta = 2.0 * M_PI * s->start / (double)inlink->sample_rate; + phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1); + theta = 2.f * M_PI * s->start / (float)inlink->sample_rate; for (int n = 0; n < M; n++) { - h[n].re = cos(n * n / 2.0 * phi); - h[n].im = sin(n * n / 2.0 * phi); + h[n].re = cosf(n * n / 2.f * phi); + h[n].im = sinf(n * n / 2.f * phi); } for (int n = M; n < L; n++) { - h[n].re = 0.0; - h[n].im = 0.0; + h[n].re = 0.f; + h[n].im = 0.f; } for (int n = L - N; n < L; n++) { - h[n].re = cos((L - n) * (L - n) / 2.0 * phi); - h[n].im = sin((L - n) * (L - n) / 2.0 * phi); + h[n].re = cosf((L - n) * (L - n) / 2.f * phi); + h[n].im = sinf((L - n) * (L - n) / 2.f * phi); } for (int n = 0; n < N; n++) { @@ -417,14 +423,14 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo } for (int n = N; n < L; n++) { - g[n].re = 0.; - g[n].im = 0.; + g[n].re = 0.f; + g[n].im = 0.f; } for (int n = 0; n < N; n++) { - psi = n * theta + n * n / 2.0 * phi; - c = cos(psi); - S = -sin(psi); + psi = n * theta + n * n / 2.f * phi; + c = cosf(psi); + S = -sinf(psi); a = c * g[n].re - S * g[n].im; b = S * g[n].re + c * g[n].im; g[n].re = a; @@ -451,9 +457,9 @@ static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jo av_fft_calc(s->ifft[ch], g); for (int k = 0; k < M; k++) { - psi = k * k / 2.0 * phi; - c = cos(psi); - S = -sin(psi); + psi = k * k / 2.f * phi; + c = cosf(psi); + S = -sinf(psi); a = c * g[k].re - S * g[k].im; b = S * g[k].re + c * g[k].im; s->fft_data[ch][k].re = a; @@ -549,15 +555,15 @@ static void color_range(ShowSpectrumContext *s, int ch, if (s->color_mode == CHANNEL) { if (s->nb_display_channels > 1) { - *uf *= 0.5 * sin((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); - *vf *= 0.5 * cos((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); + *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); + *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); } else { - *uf *= 0.5 * sin(M_PI * s->rotation); - *vf *= 0.5 * cos(M_PI * s->rotation + M_PI_2); + *uf *= 0.5f * sinf(M_PI * s->rotation); + *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2); } } else { - *uf += *uf * sin(M_PI * s->rotation); - *vf += *vf * cos(M_PI * s->rotation + M_PI_2); + *uf += *uf * sinf(M_PI * s->rotation); + *vf += *vf * cosf(M_PI * s->rotation + M_PI_2); } *uf *= s->saturation; @@ -623,6 +629,56 @@ static char *get_time(AVFilterContext *ctx, float seconds, int x) return units; } +static float log_scale(const float value, const float min, const float max) +{ + if (value < min) + return min; + if (value > max) + return max; + + { + const float b = logf(max / min) / (max - min); + const float a = max / expf(max * b); + + return expf(value * b) * a; + } +} + +static float get_log_hz(const int bin, const int num_bins, const float sample_rate) +{ + const float max_freq = sample_rate / 2; + const float hz_per_bin = max_freq / num_bins; + const float freq = hz_per_bin * bin; + const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1; + + return num_bins * scaled_freq / max_freq; +} + +static float inv_log_scale(const float value, const float min, const float max) +{ + if (value < min) + return min; + if (value > max) + return max; + + { + const float b = logf(max / min) / (max - min); + const float a = max / expf(max * b); + + return logf(value / a) / b; + } +} + +static float bin_pos(const int bin, const int num_bins, const float sample_rate) +{ + const float max_freq = sample_rate / 2; + const float hz_per_bin = max_freq / num_bins; + const float freq = hz_per_bin * bin; + const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1; + + return num_bins * scaled_freq / max_freq; +} + static int draw_legend(AVFilterContext *ctx, int samples) { ShowSpectrumContext *s = ctx->priv; @@ -691,7 +747,8 @@ static int draw_legend(AVFilterContext *ctx, int samples) } for (y = 0; y < h; y += 40) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; - float hertz = s->start + y * range / (float)(1 << (int)ceil(log2(h))); + float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate); + float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h))); char *units; if (hertz == 0) @@ -746,7 +803,8 @@ static int draw_legend(AVFilterContext *ctx, int samples) } for (x = 0; x < w - 79; x += 80) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; - float hertz = s->start + x * range / (float)(1 << (int)ceil(log2(w))); + float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate); + float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w))); char *units; if (hertz == 0) @@ -796,7 +854,7 @@ static int draw_legend(AVFilterContext *ctx, int samples) } for (y = 0; ch == 0 && y < h; y += h / 10) { - float value = 120.0 * log10(1. - y / (float)h); + float value = 120.f * log10f(1.f - y / (float)h); char *text; if (value < -120) @@ -812,6 +870,110 @@ static int draw_legend(AVFilterContext *ctx, int samples) return 0; } +static float get_value(AVFilterContext *ctx, int ch, int y) +{ + ShowSpectrumContext *s = ctx->priv; + float *magnitudes = s->magnitudes[ch]; + float *phases = s->phases[ch]; + float a; + + switch (s->data) { + case D_MAGNITUDE: + /* get magnitude */ + a = magnitudes[y]; + break; + case D_PHASE: + /* get phase */ + a = phases[y]; + break; + default: + av_assert0(0); + } + + /* apply scale */ + switch (s->scale) { + case LINEAR: + a = av_clipf(a, 0, 1); + break; + case SQRT: + a = av_clipf(sqrtf(a), 0, 1); + break; + case CBRT: + a = av_clipf(cbrtf(a), 0, 1); + break; + case FOURTHRT: + a = av_clipf(sqrtf(sqrtf(a)), 0, 1); + break; + case FIFTHRT: + a = av_clipf(powf(a, 0.20), 0, 1); + break; + case LOG: + a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS + break; + default: + av_assert0(0); + } + + return a; +} + +static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) +{ + ShowSpectrumContext *s = ctx->priv; + const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; + const int ch = jobnr; + float yf, uf, vf; + int y; + + /* decide color range */ + color_range(s, ch, &yf, &uf, &vf); + + /* draw the channel */ + for (y = 0; y < h; y++) { + int row = (s->mode == COMBINED) ? y : ch * h + y; + float *out = &s->color_buffer[ch][3 * row]; + float a = get_value(ctx, ch, y); + + pick_color(s, yf, uf, vf, a, out); + } + + return 0; +} + +static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) +{ + ShowSpectrumContext *s = ctx->priv; + AVFilterLink *inlink = ctx->inputs[0]; + const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; + const int ch = jobnr; + float y, yf, uf, vf; + int yy = 0; + + /* decide color range */ + color_range(s, ch, &yf, &uf, &vf); + + /* draw the channel */ + for (y = 0; y < h && yy < h; yy++) { + float pos0 = bin_pos(yy+0, h, inlink->sample_rate); + float pos1 = bin_pos(yy+1, h, inlink->sample_rate); + float delta = pos1 - pos0; + float a0, a1; + + a0 = get_value(ctx, ch, yy+0); + a1 = get_value(ctx, ch, FFMIN(yy+1, h-1)); + for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) { + float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0; + float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)]; + float lerpfrac = (j - pos0) / delta; + + pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out); + } + y += delta; + } + + return 0; +} + static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; @@ -820,6 +982,12 @@ static int config_output(AVFilterLink *outlink) int i, fft_bits, h, w; float overlap; + switch (s->fscale) { + case F_LINEAR: s->plot_channel = plot_channel_lin; break; + case F_LOG: s->plot_channel = plot_channel_log; break; + default: return AVERROR_BUG; + } + s->stop = FFMIN(s->stop, inlink->sample_rate / 2); if (s->stop && s->stop <= s->start) { av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n"); @@ -960,7 +1128,7 @@ static int config_output(AVFilterLink *outlink) generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; - s->hop_size = (1. - s->overlap) * s->win_size; + s->hop_size = (1.f - s->overlap) * s->win_size; if (s->hop_size < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); @@ -969,7 +1137,7 @@ static int config_output(AVFilterLink *outlink) for (s->win_scale = 0, i = 0; i < s->win_size; i++) { s->win_scale += s->window_func_lut[i] * s->window_func_lut[i]; } - s->win_scale = 1. / sqrt(s->win_scale); + s->win_scale = 1.f / sqrtf(s->win_scale); /* prepare the initial picref buffer (black frame) */ av_frame_free(&s->outpicref); @@ -1030,8 +1198,8 @@ static int config_output(AVFilterLink *outlink) #define RE(y, ch) s->fft_data[ch][y].re #define IM(y, ch) s->fft_data[ch][y].im -#define MAGNITUDE(y, ch) hypot(RE(y, ch), IM(y, ch)) -#define PHASE(y, ch) atan2(IM(y, ch), RE(y, ch)) +#define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch)) +#define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch)) static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { @@ -1099,68 +1267,6 @@ static void clear_combine_buffer(ShowSpectrumContext *s, int size) } } -static int plot_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) -{ - ShowSpectrumContext *s = ctx->priv; - const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; - const int ch = jobnr; - float *magnitudes = s->magnitudes[ch]; - float *phases = s->phases[ch]; - float yf, uf, vf; - int y; - - /* decide color range */ - color_range(s, ch, &yf, &uf, &vf); - - /* draw the channel */ - for (y = 0; y < h; y++) { - int row = (s->mode == COMBINED) ? y : ch * h + y; - float *out = &s->color_buffer[ch][3 * row]; - float a; - - switch (s->data) { - case D_MAGNITUDE: - /* get magnitude */ - a = magnitudes[y]; - break; - case D_PHASE: - /* get phase */ - a = phases[y]; - break; - default: - av_assert0(0); - } - - /* apply scale */ - switch (s->scale) { - case LINEAR: - a = av_clipf(a, 0, 1); - break; - case SQRT: - a = av_clipf(sqrt(a), 0, 1); - break; - case CBRT: - a = av_clipf(cbrt(a), 0, 1); - break; - case FOURTHRT: - a = av_clipf(sqrt(sqrt(a)), 0, 1); - break; - case FIFTHRT: - a = av_clipf(pow(a, 0.20), 0, 1); - break; - case LOG: - a = 1 + log10(av_clipd(a, 1e-6, 1)) / 6; // zero = -120dBFS - break; - default: - av_assert0(0); - } - - pick_color(s, yf, uf, vf, a, out); - } - - return 0; -} - static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; @@ -1173,7 +1279,7 @@ static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) /* initialize buffer for combining to black */ clear_combine_buffer(s, z); - ctx->internal->execute(ctx, plot_channel, NULL, NULL, s->nb_display_channels); + ctx->internal->execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels); for (y = 0; y < z * 3; y++) { for (x = 0; x < s->nb_display_channels; x++) { @@ -1447,6 +1553,9 @@ static const AVOption showspectrumpic_options[] = { { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" }, + { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" }, + { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" }, + { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, @@ -1530,7 +1639,7 @@ static int showspectrumpic_request_frame(AVFilterLink *outlink) if (consumed >= spb) { int h = s->orientation == VERTICAL ? s->h : s->w; - scale_magnitudes(s, 1. / (consumed / spf)); + scale_magnitudes(s, 1.f / (consumed / spf)); plot_spectrum_column(inlink, fin); consumed = 0; x++;