X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavfilter%2Fvf_nlmeans.c;h=82e779ce854d519d693b36df746741350f0aca31;hb=8dc5eb43b070efe152be8971ae58512ea23ecc02;hp=e4952e187e55e494522c28a30786a0c94817e632;hpb=085a2eb8e27330c51df490f986cb5926077974d6;p=ffmpeg diff --git a/libavfilter/vf_nlmeans.c b/libavfilter/vf_nlmeans.c index e4952e187e5..82e779ce854 100644 --- a/libavfilter/vf_nlmeans.c +++ b/libavfilter/vf_nlmeans.c @@ -20,8 +20,6 @@ /** * @todo - * - SIMD for compute_safe_ssd_integral_image - * - SIMD for final weighted averaging * - better automatic defaults? see "Parameters" @ http://www.ipol.im/pub/art/2011/bcm_nlm/ * - temporal support (probably doesn't need any displacement according to * "Denoising image sequences does not require motion estimation") @@ -37,11 +35,12 @@ #include "avfilter.h" #include "formats.h" #include "internal.h" +#include "vf_nlmeans.h" #include "video.h" struct weighted_avg { - double total_weight; - double sum; + float total_weight; + float sum; }; #define WEIGHT_LUT_NBITS 9 @@ -60,12 +59,13 @@ typedef struct NLMeansContext { uint32_t *ii_orig; // integral image uint32_t *ii; // integral image starting after the 0-line and 0-column int ii_w, ii_h; // width and height of the integral image - int ii_lz_32; // linesize in 32-bit units of the integral image + ptrdiff_t ii_lz_32; // linesize in 32-bit units of the integral image struct weighted_avg *wa; // weighted average of every pixel - int wa_linesize; // linesize for wa in struct size unit - double weight_lut[WEIGHT_LUT_SIZE]; // lookup table mapping (scaled) patch differences to their associated weights - double pdiff_lut_scale; // scale factor for patch differences before looking into the LUT - int max_meaningful_diff; // maximum difference considered (if the patch difference is too high we ignore the pixel) + ptrdiff_t wa_linesize; // linesize for wa in struct size unit + float weight_lut[WEIGHT_LUT_SIZE]; // lookup table mapping (scaled) patch differences to their associated weights + float pdiff_lut_scale; // scale factor for patch differences before looking into the LUT + uint32_t max_meaningful_diff; // maximum difference considered (if the patch difference is too high we ignore the pixel) + NLMeansDSPContext dsp; } NLMeansContext; #define OFFSET(x) offsetof(NLMeansContext, x) @@ -100,44 +100,6 @@ static int query_formats(AVFilterContext *ctx) return ff_set_common_formats(ctx, fmts_list); } -/* - * M is a discrete map where every entry contains the sum of all the entries - * in the rectangle from the top-left origin of M to its coordinate. In the - * following schema, "i" contains the sum of the whole map: - * - * M = +----------+-----------------+----+ - * | | | | - * | | | | - * | a| b| c| - * +----------+-----------------+----+ - * | | | | - * | | | | - * | | X | | - * | | | | - * | d| e| f| - * +----------+-----------------+----+ - * | | | | - * | g| h| i| - * +----------+-----------------+----+ - * - * The sum of the X box can be calculated with: - * X = e-d-b+a - * - * See https://en.wikipedia.org/wiki/Summed_area_table - * - * The compute*_ssd functions compute the integral image M where every entry - * contains the sum of the squared difference of every corresponding pixels of - * two input planes of the same size as M. - */ -static inline int get_integral_patch_value(const uint32_t *ii, int ii_lz_32, int x, int y, int p) -{ - const int e = ii[(y + p ) * ii_lz_32 + (x + p )]; - const int d = ii[(y + p ) * ii_lz_32 + (x - p - 1)]; - const int b = ii[(y - p - 1) * ii_lz_32 + (x + p )]; - const int a = ii[(y - p - 1) * ii_lz_32 + (x - p - 1)]; - return e - d - b + a; -} - /** * Compute squared difference of the safe area (the zone where s1 and s2 * overlap). It is likely the largest integral zone, so it is interesting to do @@ -145,29 +107,39 @@ static inline int get_integral_patch_value(const uint32_t *ii, int ii_lz_32, int * function, we do not need any clipping here. * * The line above dst and the column to its left are always readable. - * - * This C version computes the SSD integral image using a scalar accumulator, - * while for SIMD implementation it is likely more interesting to use the - * two-loops algorithm variant. */ -static void compute_safe_ssd_integral_image_c(uint32_t *dst, int dst_linesize_32, - const uint8_t *s1, int linesize1, - const uint8_t *s2, int linesize2, +static void compute_safe_ssd_integral_image_c(uint32_t *dst, ptrdiff_t dst_linesize_32, + const uint8_t *s1, ptrdiff_t linesize1, + const uint8_t *s2, ptrdiff_t linesize2, int w, int h) { int x, y; + const uint32_t *dst_top = dst - dst_linesize_32; - for (y = 0; y < h; y++) { - uint32_t acc = dst[-1] - dst[-dst_linesize_32 - 1]; + /* SIMD-friendly assumptions allowed here */ + av_assert2(!(w & 0xf) && w >= 16 && h >= 1); - for (x = 0; x < w; x++) { - const int d = s1[x] - s2[x]; - acc += d * d; - dst[x] = dst[-dst_linesize_32 + x] + acc; + for (y = 0; y < h; y++) { + for (x = 0; x < w; x += 4) { + const int d0 = s1[x ] - s2[x ]; + const int d1 = s1[x + 1] - s2[x + 1]; + const int d2 = s1[x + 2] - s2[x + 2]; + const int d3 = s1[x + 3] - s2[x + 3]; + + dst[x ] = dst_top[x ] - dst_top[x - 1] + d0*d0; + dst[x + 1] = dst_top[x + 1] - dst_top[x ] + d1*d1; + dst[x + 2] = dst_top[x + 2] - dst_top[x + 1] + d2*d2; + dst[x + 3] = dst_top[x + 3] - dst_top[x + 2] + d3*d3; + + dst[x ] += dst[x - 1]; + dst[x + 1] += dst[x ]; + dst[x + 2] += dst[x + 1]; + dst[x + 3] += dst[x + 2]; } s1 += linesize1; s2 += linesize2; dst += dst_linesize_32; + dst_top += dst_linesize_32; } } @@ -195,9 +167,9 @@ static void compute_safe_ssd_integral_image_c(uint32_t *dst, int dst_linesize_32 * @param w width to compute * @param h height to compute */ -static inline void compute_unsafe_ssd_integral_image(uint32_t *dst, int dst_linesize_32, +static inline void compute_unsafe_ssd_integral_image(uint32_t *dst, ptrdiff_t dst_linesize_32, int startx, int starty, - const uint8_t *src, int linesize, + const uint8_t *src, ptrdiff_t linesize, int offx, int offy, int r, int sw, int sh, int w, int h) { @@ -237,8 +209,9 @@ static inline void compute_unsafe_ssd_integral_image(uint32_t *dst, int dst_line * @param h source height * @param e research padding edge */ -static void compute_ssd_integral_image(uint32_t *ii, int ii_linesize_32, - const uint8_t *src, int linesize, int offx, int offy, +static void compute_ssd_integral_image(const NLMeansDSPContext *dsp, + uint32_t *ii, ptrdiff_t ii_linesize_32, + const uint8_t *src, ptrdiff_t linesize, int offx, int offy, int e, int w, int h) { // ii has a surrounding padding of thickness "e" @@ -257,9 +230,16 @@ static void compute_ssd_integral_image(uint32_t *ii, int ii_linesize_32, // to compare the 2 sources pixels const int startx_safe = FFMAX(s1x, s2x); const int starty_safe = FFMAX(s1y, s2y); - const int endx_safe = FFMIN(s1x + w, s2x + w); + const int u_endx_safe = FFMIN(s1x + w, s2x + w); // unaligned const int endy_safe = FFMIN(s1y + h, s2y + h); + // deduce the safe area width and height + const int safe_pw = (u_endx_safe - startx_safe) & ~0xf; + const int safe_ph = endy_safe - starty_safe; + + // adjusted end x position of the safe area after width of the safe area gets aligned + const int endx_safe = startx_safe + safe_pw; + // top part where only one of s1 and s2 is still readable, or none at all compute_unsafe_ssd_integral_image(ii, ii_linesize_32, 0, 0, @@ -273,24 +253,25 @@ static void compute_ssd_integral_image(uint32_t *ii, int ii_linesize_32, 0, starty_safe, src, linesize, offx, offy, e, w, h, - startx_safe, endy_safe - starty_safe); + startx_safe, safe_ph); // main and safe part of the integral av_assert1(startx_safe - s1x >= 0); av_assert1(startx_safe - s1x < w); av_assert1(starty_safe - s1y >= 0); av_assert1(starty_safe - s1y < h); av_assert1(startx_safe - s2x >= 0); av_assert1(startx_safe - s2x < w); av_assert1(starty_safe - s2y >= 0); av_assert1(starty_safe - s2y < h); - compute_safe_ssd_integral_image_c(ii + starty_safe*ii_linesize_32 + startx_safe, ii_linesize_32, - src + (starty_safe - s1y) * linesize + (startx_safe - s1x), linesize, - src + (starty_safe - s2y) * linesize + (startx_safe - s2x), linesize, - endx_safe - startx_safe, endy_safe - starty_safe); + if (safe_pw && safe_ph) + dsp->compute_safe_ssd_integral_image(ii + starty_safe*ii_linesize_32 + startx_safe, ii_linesize_32, + src + (starty_safe - s1y) * linesize + (startx_safe - s1x), linesize, + src + (starty_safe - s2y) * linesize + (startx_safe - s2x), linesize, + safe_pw, safe_ph); // right part of the integral compute_unsafe_ssd_integral_image(ii, ii_linesize_32, endx_safe, starty_safe, src, linesize, offx, offy, e, w, h, - ii_w - endx_safe, endy_safe - starty_safe); + ii_w - endx_safe, safe_ph); // bottom part where only one of s1 and s2 is still readable, or none at all compute_unsafe_ssd_integral_image(ii, ii_linesize_32, @@ -308,8 +289,8 @@ static int config_input(AVFilterLink *inlink) const int e = FFMAX(s->research_hsize, s->research_hsize_uv) + FFMAX(s->patch_hsize, s->patch_hsize_uv); - s->chroma_w = FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); - s->chroma_h = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); + s->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); + s->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->nb_planes = av_pix_fmt_count_planes(inlink->format); /* Allocate the integral image with extra edges of thickness "e" @@ -356,7 +337,7 @@ static int config_input(AVFilterLink *inlink) struct thread_data { const uint8_t *src; - int src_linesize; + ptrdiff_t src_linesize; int startx, starty; int endx, endy; const uint32_t *ii_start; @@ -368,34 +349,93 @@ static int nlmeans_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs int x, y; NLMeansContext *s = ctx->priv; const struct thread_data *td = arg; - const uint8_t *src = td->src; - const int src_linesize = td->src_linesize; + const ptrdiff_t src_linesize = td->src_linesize; const int process_h = td->endy - td->starty; const int slice_start = (process_h * jobnr ) / nb_jobs; const int slice_end = (process_h * (jobnr+1)) / nb_jobs; const int starty = td->starty + slice_start; const int endy = td->starty + slice_end; + const int p = td->p; + const uint32_t *ii = td->ii_start + (starty - p - 1) * s->ii_lz_32 - p - 1; + const int dist_b = 2*p + 1; + const int dist_d = dist_b * s->ii_lz_32; + const int dist_e = dist_d + dist_b; for (y = starty; y < endy; y++) { + const uint8_t *src = td->src + y*src_linesize; + struct weighted_avg *wa = s->wa + y*s->wa_linesize; for (x = td->startx; x < td->endx; x++) { - const int patch_diff_sq = get_integral_patch_value(td->ii_start, s->ii_lz_32, x, y, td->p); + /* + * M is a discrete map where every entry contains the sum of all the entries + * in the rectangle from the top-left origin of M to its coordinate. In the + * following schema, "i" contains the sum of the whole map: + * + * M = +----------+-----------------+----+ + * | | | | + * | | | | + * | a| b| c| + * +----------+-----------------+----+ + * | | | | + * | | | | + * | | X | | + * | | | | + * | d| e| f| + * +----------+-----------------+----+ + * | | | | + * | g| h| i| + * +----------+-----------------+----+ + * + * The sum of the X box can be calculated with: + * X = e-d-b+a + * + * See https://en.wikipedia.org/wiki/Summed_area_table + * + * The compute*_ssd functions compute the integral image M where every entry + * contains the sum of the squared difference of every corresponding pixels of + * two input planes of the same size as M. + */ + const uint32_t a = ii[x]; + const uint32_t b = ii[x + dist_b]; + const uint32_t d = ii[x + dist_d]; + const uint32_t e = ii[x + dist_e]; + const uint32_t patch_diff_sq = e - d - b + a; + if (patch_diff_sq < s->max_meaningful_diff) { - struct weighted_avg *wa = &s->wa[y*s->wa_linesize + x]; - const int weight_lut_idx = patch_diff_sq * s->pdiff_lut_scale; - const double weight = s->weight_lut[weight_lut_idx]; // exp(-patch_diff_sq * s->pdiff_scale) - wa->total_weight += weight; - wa->sum += weight * src[y*src_linesize + x]; + const unsigned weight_lut_idx = patch_diff_sq * s->pdiff_lut_scale; + const float weight = s->weight_lut[weight_lut_idx]; // exp(-patch_diff_sq * s->pdiff_scale) + wa[x].total_weight += weight; + wa[x].sum += weight * src[x]; } } + ii += s->ii_lz_32; } return 0; } -static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r, - uint8_t *dst, int dst_linesize, - const uint8_t *src, int src_linesize) +static void weight_averages(uint8_t *dst, ptrdiff_t dst_linesize, + const uint8_t *src, ptrdiff_t src_linesize, + struct weighted_avg *wa, ptrdiff_t wa_linesize, + int w, int h) { int x, y; + + for (y = 0; y < h; y++) { + for (x = 0; x < w; x++) { + // Also weight the centered pixel + wa[x].total_weight += 1.f; + wa[x].sum += 1.f * src[x]; + dst[x] = av_clip_uint8(wa[x].sum / wa[x].total_weight); + } + dst += dst_linesize; + src += src_linesize; + wa += wa_linesize; + } +} + +static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r, + uint8_t *dst, ptrdiff_t dst_linesize, + const uint8_t *src, ptrdiff_t src_linesize) +{ int offx, offy; NLMeansContext *s = ctx->priv; /* patches center points cover the whole research window so the patches @@ -420,7 +460,7 @@ static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r, .p = p, }; - compute_ssd_integral_image(s->ii, s->ii_lz_32, + compute_ssd_integral_image(&s->dsp, s->ii, s->ii_lz_32, src, src_linesize, offx, offy, e, w, h); ctx->internal->execute(ctx, nlmeans_slice, &td, NULL, @@ -428,17 +468,10 @@ static int nlmeans_plane(AVFilterContext *ctx, int w, int h, int p, int r, } } } - for (y = 0; y < h; y++) { - for (x = 0; x < w; x++) { - struct weighted_avg *wa = &s->wa[y*s->wa_linesize + x]; - // Also weight the centered pixel - wa->total_weight += 1.0; - wa->sum += 1.0 * src[y*src_linesize + x]; + weight_averages(dst, dst_linesize, src, src_linesize, + s->wa, s->wa_linesize, w, h); - dst[y*dst_linesize + x] = av_clip_uint8(wa->sum / wa->total_weight); - } - } return 0; } @@ -478,6 +511,14 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *in) } \ } while (0) +void ff_nlmeans_init(NLMeansDSPContext *dsp) +{ + dsp->compute_safe_ssd_integral_image = compute_safe_ssd_integral_image_c; + + if (ARCH_AARCH64) + ff_nlmeans_init_aarch64(dsp); +} + static av_cold int init(AVFilterContext *ctx) { int i; @@ -509,6 +550,8 @@ static av_cold int init(AVFilterContext *ctx) s->research_size, s->research_size, s->research_size_uv, s->research_size_uv, s->patch_size, s->patch_size, s->patch_size_uv, s->patch_size_uv); + ff_nlmeans_init(&s->dsp); + return 0; }