X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=motion_search.frag;h=05e901c12844cfa3dd38753435c4b8e649fd0144;hb=670611b5a707fb8dcebf60fcfcd0930545d14875;hp=e31a673484be9479f71a7428feec4348604bbf5d;hpb=bcdff7b1a183d7ff138a920997182d00f2decf0e;p=nageru diff --git a/motion_search.frag b/motion_search.frag index e31a673..05e901c 100644 --- a/motion_search.frag +++ b/motion_search.frag @@ -36,21 +36,24 @@ */ const uint patch_size = 12; -const uint num_iterations = 16; +const uint num_iterations = 8; in vec2 flow_tc; -in vec2 patch_bottom_left_texel; // Center of bottom-left texel of patch. -out vec2 out_flow; +in vec2 patch_center; +out vec3 out_flow; uniform sampler2D flow_tex, grad0_tex, image0_tex, image1_tex; -uniform float image_width, image_height, inv_image_width, inv_image_height; +uniform vec2 inv_image_size, inv_prev_level_size; void main() { - // Lock patch_bottom_left_texel to an integer, so that we never get - // any bilinear artifacts for the gradient. - vec2 base = round(patch_bottom_left_texel * vec2(image_width, image_height)) - * vec2(inv_image_width, inv_image_height); + vec2 image_size = textureSize(image0_tex, 0); + + // Lock the patch center to an integer, so that we never get + // any bilinear artifacts for the gradient. (NOTE: This assumes an + // even patch size.) Then calculate the bottom-left texel of the patch. + vec2 base = (round(patch_center * image_size) - (0.5f * patch_size - 0.5f)) + * inv_image_size; // First, precompute the pseudo-Hessian for the template patch. // This is the part where we really save by the inverse search @@ -63,15 +66,18 @@ void main() // this is an outer product, so we get a (symmetric) 2x2 matrix, // not a scalar. mat2 H = mat2(0.0f); + vec2 grad_sum = vec2(0.0f); // Used for patch normalization. + float template_sum = 0.0f; for (uint y = 0; y < patch_size; ++y) { for (uint x = 0; x < patch_size; ++x) { - vec2 tc; - tc.x = base.x + x * inv_image_width; - tc.y = base.y + y * inv_image_height; + vec2 tc = base + uvec2(x, y) * inv_image_size; vec2 grad = texture(grad0_tex, tc).xy; H[0][0] += grad.x * grad.x; H[1][1] += grad.y * grad.y; H[0][1] += grad.x * grad.y; + + template_sum += texture(image0_tex, tc).x; + grad_sum += grad; } } H[1][0] = H[0][1]; @@ -87,38 +93,67 @@ void main() mat2 H_inv = inverse(H); - // Fetch the initial guess for the flow. (We need the normalization step - // because densification works by accumulating; see the comments on the - // Densify class.) - vec3 prev_flow = texture(flow_tex, flow_tc).xyz; - vec2 initial_u; - if (prev_flow.z < 1e-3) { - initial_u = vec2(0.0, 0.0); - } else { - initial_u = prev_flow.xy / prev_flow.z; - } + // Fetch the initial guess for the flow, and convert from the previous size to this one. + vec2 initial_u = texture(flow_tex, flow_tc).xy * (image_size * inv_prev_level_size); vec2 u = initial_u; + float mean_diff, first_mean_diff; for (uint i = 0; i < num_iterations; ++i) { vec2 du = vec2(0.0, 0.0); + float warped_sum = 0.0f; + vec2 u_norm = u * inv_image_size; // In [0..1] coordinates instead of pixels. for (uint y = 0; y < patch_size; ++y) { for (uint x = 0; x < patch_size; ++x) { - vec2 tc; - tc.x = base.x + x * inv_image_width; - tc.y = base.y + y * inv_image_height; + vec2 tc = base + uvec2(x, y) * inv_image_size; vec2 grad = texture(grad0_tex, tc).xy; float t = texture(image0_tex, tc).x; - float warped = texture(image1_tex, tc + u).x; + float warped = texture(image1_tex, tc + u_norm).x; du += grad * (warped - t); + warped_sum += warped; } } - u += (H_inv * du) * vec2(inv_image_width, inv_image_height); + + // Subtract the mean for patch normalization. We've done our + // sums without subtracting the means (because we didn't know them + // beforehand), ie.: + // + // sum(S^T * ((x + µ1) - (y + µ2))) = sum(S^T * (x - y)) + (µ1 – µ2) sum(S^T) + // + // which gives trivially + // + // sum(S^T * (x - y)) = [what we calculated] - (µ1 - µ2) sum(S^T) + // + // so we can just subtract away the mean difference here. + mean_diff = (warped_sum - template_sum) * (1.0 / (patch_size * patch_size)); + du -= grad_sum * mean_diff; + + if (i == 0) { + first_mean_diff = mean_diff; + } + + // Do the actual update. + u -= H_inv * du; } - // Reject if we moved too far. - if (length((u - initial_u) * vec2(image_width, image_height)) > patch_size) { + // Reject if we moved too far. Note that the paper says “too far” is the + // patch size, but the DIS code uses half of a patch size. The latter seems + // to give much better overall results. + // + // Also reject if the patch goes out-of-bounds (the paper does not mention this, + // but the code does, and it seems to be critical to avoid really bad behavior + // at the edges). + vec2 patch_center = (base * image_size - 0.5f) + patch_size * 0.5f + u; + if (length(u - initial_u) > (patch_size * 0.5f) || + patch_center.x < -(patch_size * 0.5f) || + image_size.x - patch_center.x < -(patch_size * 0.5f) || + patch_center.y < -(patch_size * 0.5f) || + image_size.y - patch_center.y < -(patch_size * 0.5f)) { u = initial_u; + mean_diff = first_mean_diff; } - out_flow = u; + // NOTE: The mean patch diff will be for the second-to-last patch, + // not the true position of du. But hopefully, it will be very close. + u *= inv_image_size; + out_flow = vec3(u.x, u.y, mean_diff); }