X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=motion_search.frag;h=163db2cbaf4be29dc74d749e07ce4037dda9b9f6;hb=1622572018b35982441b53b93c78cf6610fb1799;hp=d9d1f4eb4997c7650fb0f4902acf2c42b5ff4e4c;hpb=bc86ab33f50d1bb42240d495051c38d1e962348e;p=nageru diff --git a/motion_search.frag b/motion_search.frag index d9d1f4e..163db2c 100644 --- a/motion_search.frag +++ b/motion_search.frag @@ -40,16 +40,16 @@ const uint num_iterations = 16; in vec2 flow_tc; in vec2 patch_bottom_left_texel; // Center of bottom-left texel of patch. -out vec2 out_flow; +out vec3 out_flow; uniform sampler2D flow_tex, grad0_tex, image0_tex, image1_tex; -uniform vec2 image_size, inv_image_size; +uniform vec2 image_size, inv_image_size, inv_prev_level_size; void main() { // Lock patch_bottom_left_texel to an integer, so that we never get // any bilinear artifacts for the gradient. - vec2 base = round(patch_bottom_left_texel * image_size) + vec2 base = (round(patch_bottom_left_texel * image_size - vec2(0.5, 0.5)) + vec2(0.5, 0.5)) * inv_image_size; // First, precompute the pseudo-Hessian for the template patch. @@ -90,21 +90,14 @@ void main() mat2 H_inv = inverse(H); - // Fetch the initial guess for the flow. (We need the normalization step - // because densification works by accumulating; see the comments on the - // Densify class.) - vec3 prev_flow = texture(flow_tex, flow_tc).xyz; - vec2 initial_u; - if (prev_flow.z < 1e-3) { - initial_u = vec2(0.0, 0.0); - } else { - initial_u = prev_flow.xy / prev_flow.z; - } + // Fetch the initial guess for the flow. + vec2 initial_u = texture(flow_tex, flow_tc).xy * inv_prev_level_size; // Note: The flow is in OpenGL coordinates [0..1], but the calculations // generally come out in pixels since the gradient is in pixels, // so we need to convert at the end. vec2 u = initial_u; + float mean_diff, first_mean_diff; for (uint i = 0; i < num_iterations; ++i) { vec2 du = vec2(0.0, 0.0); @@ -131,15 +124,30 @@ void main() // sum(S^T * (x - y)) = [what we calculated] - (µ1 - µ2) sum(S^T) // // so we can just subtract away the mean difference here. - du -= grad_sum * (warped_sum - template_sum) * (1.0 / (patch_size * patch_size)); + mean_diff = (warped_sum - template_sum) * (1.0 / (patch_size * patch_size)); + du -= grad_sum * mean_diff; + + if (i == 0) { + first_mean_diff = mean_diff; + } - u += (H_inv * du) * inv_image_size; + // Do the actual update. + u -= (H_inv * du) * inv_image_size; } - // Reject if we moved too far. - if (length((u - initial_u) * image_size) > patch_size) { + // Reject if we moved too far. Also reject if the patch goes out-of-bounds + // (the paper does not mention this, but the code does, and it seems to be + // critical to avoid really bad behavior at the edges). + if ((length((u - initial_u) * image_size) > patch_size) || + u.x * image_size.x < -(patch_size * 0.5f) || + (1.0 - u.x) * image_size.x < -(patch_size * 0.5f) || + u.y * image_size.y < -(patch_size * 0.5f) || + (1.0 - u.y) * image_size.y < -(patch_size * 0.5f)) { u = initial_u; + mean_diff = first_mean_diff; } - out_flow = u; + // NOTE: The mean patch diff will be for the second-to-last patch, + // not the true position of du. But hopefully, it will be very close. + out_flow = vec3(u.x, u.y, mean_diff); }