X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Fnnue%2Fnnue_common.h;h=779f4e755557aceb8f30fbab29203afad8778a2d;hb=8a912951de6d4bff78d3ff5258213a0c7e6f494e;hp=33e58745e7f0b549f7029feeb8297470b3a44fa4;hpb=c4d67d77c99b99c9ac387ab622773a320f8d5cc3;p=stockfish diff --git a/src/nnue/nnue_common.h b/src/nnue/nnue_common.h index 33e58745..779f4e75 100644 --- a/src/nnue/nnue_common.h +++ b/src/nnue/nnue_common.h @@ -1,6 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) + Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -21,8 +21,14 @@ #ifndef NNUE_COMMON_H_INCLUDED #define NNUE_COMMON_H_INCLUDED +#include +#include +#include #include #include +#include + +#include "../misc.h" #if defined(USE_AVX2) #include @@ -36,68 +42,37 @@ #elif defined(USE_SSE2) #include -#elif defined(USE_MMX) -#include - #elif defined(USE_NEON) #include #endif -namespace Eval::NNUE { +namespace Stockfish::Eval::NNUE { // Version of the evaluation file - constexpr std::uint32_t kVersion = 0x7AF32F16u; + constexpr std::uint32_t Version = 0x7AF32F20u; // Constant used in evaluation value calculation - constexpr int FV_SCALE = 16; - constexpr int kWeightScaleBits = 6; + constexpr int OutputScale = 16; + constexpr int WeightScaleBits = 6; // Size of cache line (in bytes) - constexpr std::size_t kCacheLineSize = 64; + constexpr std::size_t CacheLineSize = 64; + + constexpr const char Leb128MagicString[] = "COMPRESSED_LEB128"; + constexpr const std::size_t Leb128MagicStringSize = sizeof(Leb128MagicString) - 1; // SIMD width (in bytes) #if defined(USE_AVX2) - constexpr std::size_t kSimdWidth = 32; + constexpr std::size_t SimdWidth = 32; #elif defined(USE_SSE2) - constexpr std::size_t kSimdWidth = 16; - - #elif defined(USE_MMX) - constexpr std::size_t kSimdWidth = 8; + constexpr std::size_t SimdWidth = 16; #elif defined(USE_NEON) - constexpr std::size_t kSimdWidth = 16; + constexpr std::size_t SimdWidth = 16; #endif - constexpr std::size_t kMaxSimdWidth = 32; - - // unique number for each piece type on each square - enum { - PS_NONE = 0, - PS_W_PAWN = 1, - PS_B_PAWN = 1 * SQUARE_NB + 1, - PS_W_KNIGHT = 2 * SQUARE_NB + 1, - PS_B_KNIGHT = 3 * SQUARE_NB + 1, - PS_W_BISHOP = 4 * SQUARE_NB + 1, - PS_B_BISHOP = 5 * SQUARE_NB + 1, - PS_W_ROOK = 6 * SQUARE_NB + 1, - PS_B_ROOK = 7 * SQUARE_NB + 1, - PS_W_QUEEN = 8 * SQUARE_NB + 1, - PS_B_QUEEN = 9 * SQUARE_NB + 1, - PS_W_KING = 10 * SQUARE_NB + 1, - PS_END = PS_W_KING, // pieces without kings (pawns included) - PS_B_KING = 11 * SQUARE_NB + 1, - PS_END2 = 12 * SQUARE_NB + 1 - }; - - constexpr uint32_t kpp_board_index[COLOR_NB][PIECE_NB] = { - // convention: W - us, B - them - // viewed from other side, W and B are reversed - { PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE, - PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE }, - { PS_NONE, PS_B_PAWN, PS_B_KNIGHT, PS_B_BISHOP, PS_B_ROOK, PS_B_QUEEN, PS_B_KING, PS_NONE, - PS_NONE, PS_W_PAWN, PS_W_KNIGHT, PS_W_BISHOP, PS_W_ROOK, PS_W_QUEEN, PS_W_KING, PS_NONE } - }; + constexpr std::size_t MaxSimdWidth = 32; // Type of input feature after conversion using TransformedFeatureType = std::uint8_t; @@ -105,28 +80,206 @@ namespace Eval::NNUE { // Round n up to be a multiple of base template - constexpr IntType CeilToMultiple(IntType n, IntType base) { + constexpr IntType ceil_to_multiple(IntType n, IntType base) { return (n + base - 1) / base * base; } + // read_little_endian() is our utility to read an integer (signed or unsigned, any size) // from a stream in little-endian order. We swap the byte order after the read if // necessary to return a result with the byte ordering of the compiling machine. template inline IntType read_little_endian(std::istream& stream) { - IntType result; - std::uint8_t u[sizeof(IntType)]; - typename std::make_unsigned::type v = 0; - stream.read(reinterpret_cast(u), sizeof(IntType)); - for (std::size_t i = 0; i < sizeof(IntType); ++i) - v = (v << 8) | u[sizeof(IntType) - i - 1]; + if (IsLittleEndian) + stream.read(reinterpret_cast(&result), sizeof(IntType)); + else + { + std::uint8_t u[sizeof(IntType)]; + std::make_unsigned_t v = 0; + + stream.read(reinterpret_cast(u), sizeof(IntType)); + for (std::size_t i = 0; i < sizeof(IntType); ++i) + v = (v << 8) | u[sizeof(IntType) - i - 1]; + + std::memcpy(&result, &v, sizeof(IntType)); + } - std::memcpy(&result, &v, sizeof(IntType)); return result; } -} // namespace Eval::NNUE + + // write_little_endian() is our utility to write an integer (signed or unsigned, any size) + // to a stream in little-endian order. We swap the byte order before the write if + // necessary to always write in little endian order, independently of the byte + // ordering of the compiling machine. + template + inline void write_little_endian(std::ostream& stream, IntType value) { + + if (IsLittleEndian) + stream.write(reinterpret_cast(&value), sizeof(IntType)); + else + { + std::uint8_t u[sizeof(IntType)]; + std::make_unsigned_t v = value; + + std::size_t i = 0; + // if constexpr to silence the warning about shift by 8 + if constexpr (sizeof(IntType) > 1) + { + for (; i + 1 < sizeof(IntType); ++i) + { + u[i] = (std::uint8_t)v; + v >>= 8; + } + } + u[i] = (std::uint8_t)v; + + stream.write(reinterpret_cast(u), sizeof(IntType)); + } + } + + + // read_little_endian(s, out, N) : read integers in bulk from a little indian stream. + // This reads N integers from stream s and put them in array out. + template + inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) { + if (IsLittleEndian) + stream.read(reinterpret_cast(out), sizeof(IntType) * count); + else + for (std::size_t i = 0; i < count; ++i) + out[i] = read_little_endian(stream); + } + + + // write_little_endian(s, values, N) : write integers in bulk to a little indian stream. + // This takes N integers from array values and writes them on stream s. + template + inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) { + if (IsLittleEndian) + stream.write(reinterpret_cast(values), sizeof(IntType) * count); + else + for (std::size_t i = 0; i < count; ++i) + write_little_endian(stream, values[i]); + } + + + // read_leb_128(s, out, N) : read N signed integers from the stream s, putting them in + // the array out. The stream is assumed to be compressed using the signed LEB128 format. + // See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme. + template + inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) { + + // Check the presence of our LEB128 magic string + char leb128MagicString[Leb128MagicStringSize]; + stream.read(leb128MagicString, Leb128MagicStringSize); + assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0); + + static_assert(std::is_signed_v, "Not implemented for unsigned types"); + + const std::uint32_t BUF_SIZE = 4096; + std::uint8_t buf[BUF_SIZE]; + + auto bytes_left = read_little_endian(stream); + + std::uint32_t buf_pos = BUF_SIZE; + for (std::size_t i = 0; i < count; ++i) + { + IntType result = 0; + size_t shift = 0; + do + { + if (buf_pos == BUF_SIZE) + { + stream.read(reinterpret_cast(buf), std::min(bytes_left, BUF_SIZE)); + buf_pos = 0; + } + + std::uint8_t byte = buf[buf_pos++]; + --bytes_left; + result |= (byte & 0x7f) << shift; + shift += 7; + + if ((byte & 0x80) == 0) + { + out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0) ? result + : result | ~((1 << shift) - 1); + break; + } + } + while (shift < sizeof(IntType) * 8); + } + + assert(bytes_left == 0); + } + + + // write_leb_128(s, values, N) : write signed integers to a stream with LEB128 compression. + // This takes N integers from array values, compress them with the LEB128 algorithm and + // writes the result on the stream s. + // See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme. + template + inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) { + + // Write our LEB128 magic string + stream.write(Leb128MagicString, Leb128MagicStringSize); + + static_assert(std::is_signed_v, "Not implemented for unsigned types"); + + std::uint32_t byte_count = 0; + for (std::size_t i = 0; i < count; ++i) + { + IntType value = values[i]; + std::uint8_t byte; + do + { + byte = value & 0x7f; + value >>= 7; + ++byte_count; + } + while ((byte & 0x40) == 0 ? value != 0 : value != -1); + } + + write_little_endian(stream, byte_count); + + const std::uint32_t BUF_SIZE = 4096; + std::uint8_t buf[BUF_SIZE]; + std::uint32_t buf_pos = 0; + + auto flush = [&]() { + if (buf_pos > 0) + { + stream.write(reinterpret_cast(buf), buf_pos); + buf_pos = 0; + } + }; + + auto write = [&](std::uint8_t byte) { + buf[buf_pos++] = byte; + if (buf_pos == BUF_SIZE) + flush(); + }; + + for (std::size_t i = 0; i < count; ++i) + { + IntType value = values[i]; + while (true) + { + std::uint8_t byte = value & 0x7f; + value >>= 7; + if ((byte & 0x40) == 0 ? value == 0 : value == -1) + { + write(byte); + break; + } + write(byte | 0x80); + } + } + + flush(); + } + +} // namespace Stockfish::Eval::NNUE #endif // #ifndef NNUE_COMMON_H_INCLUDED