X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Fposition.cpp;h=2a9d798ff7d0d85afa60c75f35646b7e4b399ef6;hb=e1dd005583bd6c2aaf58468efc5de86a3936380a;hp=62e6e2387cb657a58976ce52a4faa9be16db1ff1;hpb=02ef1f4496965b5ad8c26ac6bc18245eaffae2ea;p=stockfish diff --git a/src/position.cpp b/src/position.cpp index 62e6e238..2a9d798f 100644 --- a/src/position.cpp +++ b/src/position.cpp @@ -1,6 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file) + Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -22,6 +22,7 @@ #include // For std::memset, std::memcmp #include #include +#include #include "bitboard.h" #include "misc.h" @@ -46,7 +47,7 @@ namespace Zobrist { namespace { -const string PieceToChar(" PNBRQK pnbrqk"); +constexpr std::string_view PieceToChar(" PNBRQK pnbrqk"); constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; @@ -96,7 +97,7 @@ std::ostream& operator<<(std::ostream& os, const Position& pos) { // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" // situations. Description of the algorithm in the following paper: -// https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf +// http://web.archive.org/web/20201107002606/https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf // First and second hash functions for indexing the cuckoo tables inline int H1(Key h) { return h & 0x1fff; } @@ -129,7 +130,7 @@ void Position::init() { // Prepare the cuckoo tables std::memset(cuckoo, 0, sizeof(cuckoo)); std::memset(cuckooMove, 0, sizeof(cuckooMove)); - int count = 0; + [[maybe_unused]] int count = 0; for (Piece pc : Pieces) for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) @@ -281,7 +282,7 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th chess960 = isChess960; thisThread = th; - set_state(st); + set_state(); assert(pos_is_ok()); @@ -312,60 +313,59 @@ void Position::set_castling_right(Color c, Square rfrom) { /// Position::set_check_info() sets king attacks to detect if a move gives check -void Position::set_check_info(StateInfo* si) const { +void Position::set_check_info() const { - si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square(WHITE), si->pinners[BLACK]); - si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square(BLACK), si->pinners[WHITE]); + st->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square(WHITE), st->pinners[BLACK]); + st->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square(BLACK), st->pinners[WHITE]); Square ksq = square(~sideToMove); - si->checkSquares[PAWN] = pawn_attacks_bb(~sideToMove, ksq); - si->checkSquares[KNIGHT] = attacks_bb(ksq); - si->checkSquares[BISHOP] = attacks_bb(ksq, pieces()); - si->checkSquares[ROOK] = attacks_bb(ksq, pieces()); - si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; - si->checkSquares[KING] = 0; + st->checkSquares[PAWN] = pawn_attacks_bb(~sideToMove, ksq); + st->checkSquares[KNIGHT] = attacks_bb(ksq); + st->checkSquares[BISHOP] = attacks_bb(ksq, pieces()); + st->checkSquares[ROOK] = attacks_bb(ksq, pieces()); + st->checkSquares[QUEEN] = st->checkSquares[BISHOP] | st->checkSquares[ROOK]; + st->checkSquares[KING] = 0; } /// Position::set_state() computes the hash keys of the position, and other /// data that once computed is updated incrementally as moves are made. -/// The function is only used when a new position is set up, and to verify -/// the correctness of the StateInfo data when running in debug mode. +/// The function is only used when a new position is set up -void Position::set_state(StateInfo* si) const { +void Position::set_state() const { - si->key = si->materialKey = 0; - si->pawnKey = Zobrist::noPawns; - si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; - si->checkersBB = attackers_to(square(sideToMove)) & pieces(~sideToMove); + st->key = st->materialKey = 0; + st->pawnKey = Zobrist::noPawns; + st->nonPawnMaterial[WHITE] = st->nonPawnMaterial[BLACK] = VALUE_ZERO; + st->checkersBB = attackers_to(square(sideToMove)) & pieces(~sideToMove); - set_check_info(si); + set_check_info(); for (Bitboard b = pieces(); b; ) { Square s = pop_lsb(b); Piece pc = piece_on(s); - si->key ^= Zobrist::psq[pc][s]; + st->key ^= Zobrist::psq[pc][s]; if (type_of(pc) == PAWN) - si->pawnKey ^= Zobrist::psq[pc][s]; + st->pawnKey ^= Zobrist::psq[pc][s]; else if (type_of(pc) != KING) - si->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc]; + st->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc]; } - if (si->epSquare != SQ_NONE) - si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; + if (st->epSquare != SQ_NONE) + st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; if (sideToMove == BLACK) - si->key ^= Zobrist::side; + st->key ^= Zobrist::side; - si->key ^= Zobrist::castling[si->castlingRights]; + st->key ^= Zobrist::castling[st->castlingRights]; for (Piece pc : Pieces) for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) - si->materialKey ^= Zobrist::psq[pc][cnt]; + st->materialKey ^= Zobrist::psq[pc][cnt]; } @@ -568,8 +568,7 @@ bool Position::pseudo_legal(const Move m) const { : MoveList(*this).contains(m); // Is not a promotion, so promotion piece must be empty - if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) - return false; + assert(promotion_type(m) - KNIGHT == NO_PIECE_TYPE); // If the 'from' square is not occupied by a piece belonging to the side to // move, the move is obviously not legal. @@ -765,9 +764,6 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { // Update board and piece lists remove_piece(capsq); - if (type_of(m) == EN_PASSANT) - board[capsq] = NO_PIECE; - // Update material hash key and prefetch access to materialTable k ^= Zobrist::psq[captured][capsq]; st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; @@ -868,7 +864,7 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { sideToMove = ~sideToMove; // Update king attacks used for fast check detection - set_check_info(st); + set_check_info(); // Calculate the repetition info. It is the ply distance from the previous // occurrence of the same position, negative in the 3-fold case, or zero @@ -1020,7 +1016,7 @@ void Position::do_null_move(StateInfo& newSt) { sideToMove = ~sideToMove; - set_check_info(st); + set_check_info(); st->repetition = 0; @@ -1065,7 +1061,7 @@ Key Position::key_after(Move m) const { /// SEE value of move is greater or equal to the given threshold. We'll use an /// algorithm similar to alpha-beta pruning with a null window. -bool Position::see_ge(Move m, Value threshold) const { +bool Position::see_ge(Move m, Bitboard& occupied, Value threshold) const { assert(is_ok(m)); @@ -1084,7 +1080,7 @@ bool Position::see_ge(Move m, Value threshold) const { return true; assert(color_of(piece_on(from)) == sideToMove); - Bitboard occupied = pieces() ^ from ^ to; + occupied = pieces() ^ from ^ to; // xoring to is important for pinned piece logic Color stm = sideToMove; Bitboard attackers = attackers_to(to, occupied); Bitboard stmAttackers, bb; @@ -1115,45 +1111,44 @@ bool Position::see_ge(Move m, Value threshold) const { // the bitboard 'attackers' any X-ray attackers behind it. if ((bb = stmAttackers & pieces(PAWN))) { + occupied ^= least_significant_square_bb(bb); if ((swap = PawnValueMg - swap) < res) break; - occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(BISHOP, QUEEN); } else if ((bb = stmAttackers & pieces(KNIGHT))) { + occupied ^= least_significant_square_bb(bb); if ((swap = KnightValueMg - swap) < res) break; - - occupied ^= least_significant_square_bb(bb); } else if ((bb = stmAttackers & pieces(BISHOP))) { + occupied ^= least_significant_square_bb(bb); if ((swap = BishopValueMg - swap) < res) break; - occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(BISHOP, QUEEN); } else if ((bb = stmAttackers & pieces(ROOK))) { + occupied ^= least_significant_square_bb(bb); if ((swap = RookValueMg - swap) < res) break; - occupied ^= least_significant_square_bb(bb); attackers |= attacks_bb(to, occupied) & pieces(ROOK, QUEEN); } else if ((bb = stmAttackers & pieces(QUEEN))) { + occupied ^= least_significant_square_bb(bb); if ((swap = QueenValueMg - swap) < res) break; - occupied ^= least_significant_square_bb(bb); attackers |= (attacks_bb(to, occupied) & pieces(BISHOP, QUEEN)) | (attacks_bb(to, occupied) & pieces(ROOK , QUEEN)); } @@ -1167,6 +1162,11 @@ bool Position::see_ge(Move m, Value threshold) const { return bool(res); } +bool Position::see_ge(Move m, Value threshold) const { + Bitboard occupied; + return see_ge(m, occupied, threshold); +} + /// Position::is_draw() tests whether the position is drawn by 50-move rule /// or by repetition. It does not detect stalemates. @@ -1323,12 +1323,6 @@ bool Position::pos_is_ok() const { if (p1 != p2 && (pieces(p1) & pieces(p2))) assert(0 && "pos_is_ok: Bitboards"); - StateInfo si = *st; - ASSERT_ALIGNED(&si, Eval::NNUE::CacheLineSize); - - set_state(&si); - if (std::memcmp(&si, st, sizeof(StateInfo))) - assert(0 && "pos_is_ok: State"); for (Piece pc : Pieces) if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))