X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Fsearch.cpp;h=76d0545ac50bd7f619f88db3785ee6c0f3e4c316;hb=3c0e86a91e48baea273306e45fb6cf13a59373cf;hp=eccb97fd12c198cbf5efc1a1d19c2e26e7d91c92;hpb=085cace4574bf561472d8d3d3afe50c2c536b4e3;p=stockfish diff --git a/src/search.cpp b/src/search.cpp index eccb97fd..76d0545a 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -16,24 +16,34 @@ along with this program. If not, see . */ +#include "search.h" + #include +#include +#include #include #include -#include // For std::memset +#include +#include +#include #include #include +#include +#include +#include "bitboard.h" #include "evaluate.h" #include "misc.h" #include "movegen.h" #include "movepick.h" +#include "nnue/evaluate_nnue.h" +#include "nnue/nnue_common.h" #include "position.h" -#include "search.h" +#include "syzygy/tbprobe.h" #include "thread.h" #include "timeman.h" #include "tt.h" #include "uci.h" -#include "syzygy/tbprobe.h" namespace Stockfish { @@ -62,16 +72,16 @@ namespace { enum NodeType { NonPV, PV, Root }; // Futility margin - Value futility_margin(Depth d, bool improving) { - return Value(158 * (d - improving)); + Value futility_margin(Depth d, bool noTtCutNode, bool improving) { + return Value((140 - 40 * noTtCutNode) * (d - improving)); } - // Reductions lookup table, initialized at startup + // Reductions lookup table initialized at startup int Reductions[MAX_MOVES]; // [depth or moveNumber] Depth reduction(bool i, Depth d, int mn, Value delta, Value rootDelta) { int r = Reductions[d] * Reductions[mn]; - return (r + 1460 - int(delta) * 1024 / int(rootDelta)) / 1024 + (!i && r > 937); + return (r + 1372 - int(delta) * 1073 / int(rootDelta)) / 1024 + (!i && r > 936); } constexpr int futility_move_count(bool improving, Depth depth) { @@ -81,7 +91,7 @@ namespace { // History and stats update bonus, based on depth int stat_bonus(Depth d) { - return std::min(350 * d - 400, 1650); + return std::min(336 * d - 547, 1561); } // Add a small random component to draw evaluations to avoid 3-fold blindness @@ -91,7 +101,7 @@ namespace { // Skill structure is used to implement strength limit. If we have an uci_elo then // we convert it to a suitable fractional skill level using anchoring to CCRL Elo - // (goldfish 1.13 = 2000) and a fit through Ordo derived Elo for match (TC 60+0.6) + // (goldfish 1.13 = 2000) and a fit through Ordo derived Elo for a match (TC 60+0.6) // results spanning a wide range of k values. struct Skill { Skill(int skill_level, int uci_elo) { @@ -161,7 +171,7 @@ namespace { void Search::init() { for (int i = 1; i < MAX_MOVES; ++i) - Reductions[i] = int((20.26 + std::log(Threads.size()) / 2) * std::log(i)); + Reductions[i] = int((20.57 + std::log(Threads.size()) / 2) * std::log(i)); } @@ -287,8 +297,7 @@ void Thread::search() { ss->pv = pv; - bestValue = delta = alpha = -VALUE_INFINITE; - beta = VALUE_INFINITE; + bestValue = -VALUE_INFINITE; if (mainThread) { @@ -304,16 +313,12 @@ void Thread::search() { Skill skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0); // When playing with strength handicap enable MultiPV search that we will - // use behind the scenes to retrieve a set of possible moves. + // use behind-the-scenes to retrieve a set of possible moves. if (skill.enabled()) multiPV = std::max(multiPV, (size_t)4); multiPV = std::min(multiPV, rootMoves.size()); - complexityAverage.set(153, 1); - - optimism[us] = optimism[~us] = VALUE_ZERO; - int searchAgainCounter = 0; // Iterative deepening loop until requested to stop or the target depth is reached @@ -325,7 +330,7 @@ void Thread::search() { if (mainThread) totBestMoveChanges /= 2; - // Save the last iteration's scores before first PV line is searched and + // Save the last iteration's scores before the first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. for (RootMove& rm : rootMoves) rm.previousScore = rm.score; @@ -334,7 +339,7 @@ void Thread::search() { pvLast = 0; if (!Threads.increaseDepth) - searchAgainCounter++; + searchAgainCounter++; // MultiPV loop. We perform a full root search for each PV line for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx) @@ -351,18 +356,15 @@ void Thread::search() { selDepth = 0; // Reset aspiration window starting size - if (rootDepth >= 4) - { - Value prev = rootMoves[pvIdx].averageScore; - delta = Value(10) + int(prev) * prev / 15400; - alpha = std::max(prev - delta,-VALUE_INFINITE); - beta = std::min(prev + delta, VALUE_INFINITE); - - // Adjust optimism based on root move's previousScore - int opt = 116 * prev / (std::abs(prev) + 170); - optimism[ us] = Value(opt); - optimism[~us] = -optimism[us]; - } + Value prev = rootMoves[pvIdx].averageScore; + delta = Value(10) + int(prev) * prev / 15799; + alpha = std::max(prev - delta,-VALUE_INFINITE); + beta = std::min(prev + delta, VALUE_INFINITE); + + // Adjust optimism based on root move's previousScore + int opt = 109 * prev / (std::abs(prev) + 141); + optimism[ us] = Value(opt); + optimism[~us] = -optimism[us]; // Start with a small aspiration window and, in the case of a fail // high/low, re-search with a bigger window until we don't fail @@ -370,16 +372,16 @@ void Thread::search() { int failedHighCnt = 0; while (true) { - // Adjust the effective depth searched, but ensuring at least one effective increment for every + // Adjust the effective depth searched, but ensure at least one effective increment for every // four searchAgain steps (see issue #2717). Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - 3 * (searchAgainCounter + 1) / 4); bestValue = Stockfish::search(rootPos, ss, alpha, beta, adjustedDepth, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the - // first and eventually the new best one are set to -VALUE_INFINITE + // first and eventually the new best one is set to -VALUE_INFINITE // and we want to keep the same order for all the moves except the - // new PV that goes to the front. Note that in case of MultiPV + // new PV that goes to the front. Note that in the case of MultiPV // search the already searched PV lines are preserved. std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); @@ -416,7 +418,7 @@ void Thread::search() { else break; - delta += delta / 4 + 2; + delta += delta / 3; assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } @@ -432,9 +434,10 @@ void Thread::search() { if (!Threads.stop) completedDepth = rootDepth; - if (rootMoves[0].pv[0] != lastBestMove) { - lastBestMove = rootMoves[0].pv[0]; - lastBestMoveDepth = rootDepth; + if (rootMoves[0].pv[0] != lastBestMove) + { + lastBestMove = rootMoves[0].pv[0]; + lastBestMoveDepth = rootDepth; } // Have we found a "mate in x"? @@ -446,7 +449,7 @@ void Thread::search() { if (!mainThread) continue; - // If skill level is enabled and time is up, pick a sub-optimal best move + // If the skill level is enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(rootDepth)) skill.pick_best(multiPV); @@ -462,18 +465,16 @@ void Thread::search() { && !Threads.stop && !mainThread->stopOnPonderhit) { - double fallingEval = (71 + 12 * (mainThread->bestPreviousAverageScore - bestValue) - + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 656.7; + double fallingEval = (69 + 13 * (mainThread->bestPreviousAverageScore - bestValue) + + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 619.6; fallingEval = std::clamp(fallingEval, 0.5, 1.5); // If the bestMove is stable over several iterations, reduce time accordingly - timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.37 : 0.65; - double reduction = (1.4 + mainThread->previousTimeReduction) / (2.15 * timeReduction); - double bestMoveInstability = 1 + 1.7 * totBestMoveChanges / Threads.size(); - int complexity = mainThread->complexityAverage.value(); - double complexPosition = std::min(1.0 + (complexity - 261) / 1738.7, 1.5); + timeReduction = lastBestMoveDepth + 8 < completedDepth ? 1.57 : 0.65; + double reduction = (1.4 + mainThread->previousTimeReduction) / (2.08 * timeReduction); + double bestMoveInstability = 1 + 1.8 * totBestMoveChanges / Threads.size(); - double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability * complexPosition; + double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability; // Cap used time in case of a single legal move for a better viewer experience in tournaments // yielding correct scores and sufficiently fast moves. @@ -491,7 +492,7 @@ void Thread::search() { Threads.stop = true; } else if ( !mainThread->ponder - && Time.elapsed() > totalTime * 0.53) + && Time.elapsed() > totalTime * 0.50) Threads.increaseDepth = false; else Threads.increaseDepth = true; @@ -506,7 +507,7 @@ void Thread::search() { mainThread->previousTimeReduction = timeReduction; - // If skill level is enabled, swap best PV line with the sub-optimal one + // If the skill level is enabled, swap the best PV line with the sub-optimal one if (skill.enabled()) std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), skill.best ? skill.best : skill.pick_best(multiPV))); @@ -523,10 +524,9 @@ namespace { constexpr bool PvNode = nodeType != NonPV; constexpr bool rootNode = nodeType == Root; - // Check if we have an upcoming move which draws by repetition, or + // Check if we have an upcoming move that draws by repetition, or // if the opponent had an alternative move earlier to this position. if ( !rootNode - && pos.rule50_count() >= 3 && alpha < VALUE_DRAW && pos.has_game_cycle(ss->ply)) { @@ -556,7 +556,7 @@ namespace { bool givesCheck, improving, priorCapture, singularQuietLMR; bool capture, moveCountPruning, ttCapture; Piece movedPiece; - int moveCount, captureCount, quietCount, improvement, complexity; + int moveCount, captureCount, quietCount; // Step 1. Initialize node Thread* thisThread = pos.this_thread(); @@ -588,8 +588,8 @@ namespace { // would be at best mate_in(ss->ply+1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // because we will never beat the current alpha. Same logic but with reversed - // signs applies also in the opposite condition of being mated instead of giving - // mate. In this case return a fail-high score. + // signs apply also in the opposite condition of being mated instead of giving + // mate. In this case, return a fail-high score. alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply+1), beta); if (alpha >= beta) @@ -600,20 +600,12 @@ namespace { assert(0 <= ss->ply && ss->ply < MAX_PLY); - (ss+1)->ttPv = false; (ss+1)->excludedMove = bestMove = MOVE_NONE; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; (ss+2)->cutoffCnt = 0; ss->doubleExtensions = (ss-1)->doubleExtensions; - Square prevSq = to_sq((ss-1)->currentMove); - - // Initialize statScore to zero for the grandchildren of the current position. - // So statScore is shared between all grandchildren and only the first grandchild - // starts with statScore = 0. Later grandchildren start with the last calculated - // statScore of the previous grandchild. This influences the reduction rules in - // LMR which are based on the statScore of parent position. - if (!rootNode) - (ss+2)->statScore = 0; + Square prevSq = is_ok((ss-1)->currentMove) ? to_sq((ss-1)->currentMove) : SQ_NONE; + ss->statScore = 0; // Step 4. Transposition table lookup. excludedMove = ss->excludedMove; @@ -622,7 +614,7 @@ namespace { ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] : ss->ttHit ? tte->move() : MOVE_NONE; - ttCapture = ttMove && pos.capture(ttMove); + ttCapture = ttMove && pos.capture_stage(ttMove); // At this point, if excluded, skip straight to step 6, static eval. However, // to save indentation, we list the condition in all code between here and there. @@ -631,10 +623,9 @@ namespace { // At non-PV nodes we check for an early TT cutoff if ( !PvNode - && ss->ttHit && !excludedMove - && tte->depth() > depth - (tte->bound() == BOUND_EXACT) - && ttValue != VALUE_NONE // Possible in case of TT access race + && tte->depth() > depth + && ttValue != VALUE_NONE // Possible in case of TT access race or if !ttHit && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER))) { // If ttMove is quiet, update move sorting heuristics on TT hit (~2 Elo) @@ -647,7 +638,7 @@ namespace { update_quiet_stats(pos, ss, ttMove, stat_bonus(depth)); // Extra penalty for early quiet moves of the previous ply (~0 Elo on STC, ~2 Elo on LTC) - if ((ss-1)->moveCount <= 2 && !priorCapture) + if (prevSq != SQ_NONE && (ss-1)->moveCount <= 2 && !priorCapture) update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1)); } // Penalty for a quiet ttMove that fails low (~1 Elo) @@ -725,24 +716,22 @@ namespace { // Skip early pruning when in check ss->staticEval = eval = VALUE_NONE; improving = false; - improvement = 0; - complexity = 0; goto moves_loop; } - else if (excludedMove) { - // excludeMove implies that we had a ttHit on the containing non-excluded search with ss->staticEval filled from TT - // However static evals from the TT aren't good enough (-13 elo), presumably due to changing optimism context - // Recalculate value with current optimism (without updating thread avgComplexity) - ss->staticEval = eval = evaluate(pos, &complexity); + else if (excludedMove) + { + // Providing the hint that this node's accumulator will be used often brings significant Elo gain (13 Elo) + Eval::NNUE::hint_common_parent_position(pos); + eval = ss->staticEval; } else if (ss->ttHit) { // Never assume anything about values stored in TT ss->staticEval = eval = tte->eval(); if (eval == VALUE_NONE) - ss->staticEval = eval = evaluate(pos, &complexity); - else // Fall back to (semi)classical complexity for TT hits, the NNUE complexity is lost - complexity = abs(ss->staticEval - pos.psq_eg_stm()); + ss->staticEval = eval = evaluate(pos); + else if (PvNode) + Eval::NNUE::hint_common_parent_position(pos); // ttValue can be used as a better position evaluation (~7 Elo) if ( ttValue != VALUE_NONE @@ -751,32 +740,31 @@ namespace { } else { - ss->staticEval = eval = evaluate(pos, &complexity); - // Save static evaluation into transposition table + ss->staticEval = eval = evaluate(pos); + // Save static evaluation into the transposition table tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval); } - thisThread->complexityAverage.update(complexity); // Use static evaluation difference to improve quiet move ordering (~4 Elo) if (is_ok((ss-1)->currentMove) && !(ss-1)->inCheck && !priorCapture) { - int bonus = std::clamp(-19 * int((ss-1)->staticEval + ss->staticEval), -1940, 1940); + int bonus = std::clamp(-18 * int((ss-1)->staticEval + ss->staticEval), -1817, 1817); thisThread->mainHistory[~us][from_to((ss-1)->currentMove)] << bonus; } - // Set up the improvement variable, which is the difference between the current - // static evaluation and the previous static evaluation at our turn (if we were - // in check at our previous move we look at the move prior to it). The improvement - // margin and the improving flag are used in various pruning heuristics. - improvement = (ss-2)->staticEval != VALUE_NONE ? ss->staticEval - (ss-2)->staticEval - : (ss-4)->staticEval != VALUE_NONE ? ss->staticEval - (ss-4)->staticEval - : 172; - improving = improvement > 0; + // Set up the improving flag, which is true if current static evaluation is + // bigger than the previous static evaluation at our turn (if we were in + // check at our previous move we look at static evaluation at move prior to it + // and if we were in check at move prior to it flag is set to true) and is + // false otherwise. The improving flag is used in various pruning heuristics. + improving = (ss-2)->staticEval != VALUE_NONE ? ss->staticEval > (ss-2)->staticEval + : (ss-4)->staticEval != VALUE_NONE ? ss->staticEval > (ss-4)->staticEval + : true; // Step 7. Razoring (~1 Elo). // If eval is really low check with qsearch if it can exceed alpha, if it can't, // return a fail low. - if (eval < alpha - 394 - 255 * depth * depth) + if (eval < alpha - 456 - 252 * depth * depth) { value = qsearch(pos, ss, alpha - 1, alpha); if (value < alpha) @@ -786,27 +774,28 @@ namespace { // Step 8. Futility pruning: child node (~40 Elo). // The depth condition is important for mate finding. if ( !ss->ttPv - && depth < 8 - && eval - futility_margin(depth, improving) - (ss-1)->statScore / 304 >= beta + && depth < 9 + && eval - futility_margin(depth, cutNode && !ss->ttHit, improving) - (ss-1)->statScore / 306 >= beta && eval >= beta - && eval < 28580) // larger than VALUE_KNOWN_WIN, but smaller than TB wins + && eval < 24923) // larger than VALUE_KNOWN_WIN, but smaller than TB wins return eval; // Step 9. Null move search with verification search (~35 Elo) if ( !PvNode && (ss-1)->currentMove != MOVE_NULL - && (ss-1)->statScore < 18200 + && (ss-1)->statScore < 17329 && eval >= beta && eval >= ss->staticEval - && ss->staticEval >= beta - 20 * depth - improvement / 14 + 235 + complexity / 24 + && ss->staticEval >= beta - 21 * depth + 258 && !excludedMove && pos.non_pawn_material(us) - && (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor)) + && ss->ply >= thisThread->nmpMinPly + && beta > VALUE_TB_LOSS_IN_MAX_PLY) { assert(eval - beta >= 0); - // Null move dynamic reduction based on depth, eval and complexity of position - Depth R = std::min(int(eval - beta) / 165, 6) + depth / 3 + 4 - (complexity > 800); + // Null move dynamic reduction based on depth and eval + Depth R = std::min(int(eval - beta) / 173, 6) + depth / 3 + 4; ss->currentMove = MOVE_NULL; ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0]; @@ -820,18 +809,16 @@ namespace { if (nullValue >= beta) { // Do not return unproven mate or TB scores - if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY) - nullValue = beta; + nullValue = std::min(nullValue, VALUE_TB_WIN_IN_MAX_PLY-1); - if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 14)) + if (thisThread->nmpMinPly || depth < 14) return nullValue; assert(!thisThread->nmpMinPly); // Recursive verification is not allowed // Do verification search at high depths, with null move pruning disabled - // for us, until ply exceeds nmpMinPly. + // until ply exceeds nmpMinPly. thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4; - thisThread->nmpColor = us; Value v = search(pos, ss, beta-1, beta, depth-R, false); @@ -842,20 +829,34 @@ namespace { } } - probCutBeta = beta + 180 - 54 * improving; + // Step 10. If the position doesn't have a ttMove, decrease depth by 2 + // (or by 4 if the TT entry for the current position was hit and the stored depth is greater than or equal to the current depth). + // Use qsearch if depth is equal or below zero (~9 Elo) + if ( PvNode + && !ttMove) + depth -= 2 + 2 * (ss->ttHit && tte->depth() >= depth); + + if (depth <= 0) + return qsearch(pos, ss, alpha, beta); - // Step 10. ProbCut (~10 Elo) - // If we have a good enough capture and a reduced search returns a value + if ( cutNode + && depth >= 8 + && !ttMove) + depth -= 2; + + probCutBeta = beta + 168 - 61 * improving; + + // Step 11. ProbCut (~10 Elo) + // If we have a good enough capture (or queen promotion) and a reduced search returns a value // much above beta, we can (almost) safely prune the previous move. if ( !PvNode - && depth > 4 + && depth > 3 && abs(beta) < VALUE_TB_WIN_IN_MAX_PLY - // if value from transposition table is lower than probCutBeta, don't attempt probCut + // If value from transposition table is lower than probCutBeta, don't attempt probCut // there and in further interactions with transposition table cutoff depth is set to depth - 3 // because probCut search has depth set to depth - 4 but we also do a move before it - // so effective depth is equal to depth - 3 - && !( ss->ttHit - && tte->depth() >= depth - 3 + // So effective depth is equal to depth - 3 + && !( tte->depth() >= depth - 3 && ttValue != VALUE_NONE && ttValue < probCutBeta)) { @@ -866,7 +867,7 @@ namespace { while ((move = mp.next_move()) != MOVE_NONE) if (move != excludedMove && pos.legal(move)) { - assert(pos.capture(move) || promotion_type(move) == QUEEN); + assert(pos.capture_stage(move)); ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck] @@ -892,44 +893,29 @@ namespace { return value; } } - } - - // Step 11. If the position is not in TT, decrease depth by 3. - // Use qsearch if depth is equal or below zero (~9 Elo) - if ( PvNode - && !ttMove) - depth -= 3; - if (depth <= 0) - return qsearch(pos, ss, alpha, beta); - - if ( cutNode - && depth >= 9 - && !ttMove) - depth -= 2; + Eval::NNUE::hint_common_parent_position(pos); + } moves_loop: // When in check, search starts here // Step 12. A small Probcut idea, when we are in check (~4 Elo) - probCutBeta = beta + 402; + probCutBeta = beta + 413; if ( ss->inCheck && !PvNode - && depth >= 2 && ttCapture && (tte->bound() & BOUND_LOWER) - && tte->depth() >= depth - 3 + && tte->depth() >= depth - 4 && ttValue >= probCutBeta && abs(ttValue) <= VALUE_KNOWN_WIN - && abs(beta) <= VALUE_KNOWN_WIN - ) + && abs(beta) <= VALUE_KNOWN_WIN) return probCutBeta; - const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, nullptr , (ss-4)->continuationHistory, nullptr , (ss-6)->continuationHistory }; - Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; + Move countermove = prevSq != SQ_NONE ? thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] : MOVE_NONE; MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &captureHistory, @@ -941,7 +927,7 @@ moves_loop: // When in check, search starts here moveCountPruning = singularQuietLMR = false; // Indicate PvNodes that will probably fail low if the node was searched - // at a depth equal or greater than the current depth, and the result of this search was a fail low. + // at a depth equal to or greater than the current depth, and the result of this search was a fail low. bool likelyFailLow = PvNode && ttMove && (tte->bound() & BOUND_UPPER) @@ -957,8 +943,8 @@ moves_loop: // When in check, search starts here continue; // At root obey the "searchmoves" option and skip moves not listed in Root - // Move List. As a consequence any illegal move is also skipped. In MultiPV - // mode we also skip PV moves which have been already searched and those + // Move List. As a consequence, any illegal move is also skipped. In MultiPV + // mode we also skip PV moves that have been already searched and those // of lower "TB rank" if we are in a TB root position. if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, thisThread->rootMoves.begin() + thisThread->pvLast, move)) @@ -978,7 +964,7 @@ moves_loop: // When in check, search starts here (ss+1)->pv = nullptr; extension = 0; - capture = pos.capture(move); + capture = pos.capture_stage(move); movedPiece = pos.moved_piece(move); givesCheck = pos.gives_check(move); @@ -987,6 +973,8 @@ moves_loop: // When in check, search starts here Value delta = beta - alpha; + Depth r = reduction(improving, depth, moveCount, delta, thisThread->rootDelta); + // Step 14. Pruning at shallow depth (~120 Elo). Depth conditions are important for mate finding. if ( !rootNode && pos.non_pawn_material(us) @@ -996,22 +984,21 @@ moves_loop: // When in check, search starts here moveCountPruning = moveCount >= futility_move_count(improving, depth); // Reduced depth of the next LMR search - int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount, delta, thisThread->rootDelta), 0); + int lmrDepth = newDepth - r; if ( capture || givesCheck) { // Futility pruning for captures (~2 Elo) if ( !givesCheck - && !PvNode && lmrDepth < 7 && !ss->inCheck - && ss->staticEval + 185 + 203 * lmrDepth + PieceValue[EG][pos.piece_on(to_sq(move))] - + captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] / 6 < alpha) + && ss->staticEval + 197 + 248 * lmrDepth + PieceValue[pos.piece_on(to_sq(move))] + + captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] / 7 < alpha) continue; - // SEE based pruning (~11 Elo) - if (!pos.see_ge(move, Value(-220) * depth)) + // SEE based pruning for captures and checks (~11 Elo) + if (!pos.see_ge(move, Value(-205) * depth)) continue; } else @@ -1021,25 +1008,25 @@ moves_loop: // When in check, search starts here + (*contHist[3])[movedPiece][to_sq(move)]; // Continuation history based pruning (~2 Elo) - if ( lmrDepth < 5 - && history < -4180 * (depth - 1)) + if ( lmrDepth < 6 + && history < -3832 * depth) continue; history += 2 * thisThread->mainHistory[us][from_to(move)]; - lmrDepth += history / 7208; + lmrDepth += history / 7011; lmrDepth = std::max(lmrDepth, -2); // Futility pruning: parent node (~13 Elo) if ( !ss->inCheck - && lmrDepth < 13 - && ss->staticEval + 103 + 136 * lmrDepth <= alpha) + && lmrDepth < 12 + && ss->staticEval + 112 + 138 * lmrDepth <= alpha) continue; lmrDepth = std::max(lmrDepth, 0); // Prune moves with negative SEE (~4 Elo) - if (!pos.see_ge(move, Value(-25 * lmrDepth * lmrDepth - 16 * lmrDepth))) + if (!pos.see_ge(move, Value(-31 * lmrDepth * lmrDepth))) continue; } } @@ -1053,6 +1040,9 @@ moves_loop: // When in check, search starts here // then that move is singular and should be extended. To verify this we do // a reduced search on all the other moves but the ttMove and if the // result is lower than ttValue minus a margin, then we will extend the ttMove. + // Depth margin and singularBeta margin are known for having non-linear scaling. + // Their values are optimized to time controls of 180+1.8 and longer + // so changing them requires tests at this type of time controls. if ( !rootNode && depth >= 4 - (thisThread->completedDepth > 22) + 2 * (PvNode && tte->is_pv()) && move == ttMove @@ -1062,11 +1052,10 @@ moves_loop: // When in check, search starts here && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3) { - Value singularBeta = ttValue - (3 + (ss->ttPv && !PvNode)) * depth; + Value singularBeta = ttValue - (82 + 65 * (ss->ttPv && !PvNode)) * depth / 64; Depth singularDepth = (depth - 1) / 2; ss->excludedMove = move; - // the search with excludedMove will update ss->staticEval value = search(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode); ss->excludedMove = MOVE_NONE; @@ -1077,11 +1066,11 @@ moves_loop: // When in check, search starts here // Avoid search explosion by limiting the number of double extensions if ( !PvNode - && value < singularBeta - 25 - && ss->doubleExtensions <= 10) + && value < singularBeta - 21 + && ss->doubleExtensions <= 11) { extension = 2; - depth += depth < 12; + depth += depth < 13; } } @@ -1089,30 +1078,33 @@ moves_loop: // When in check, search starts here // Our ttMove is assumed to fail high, and now we failed high also on a reduced // search without the ttMove. So we assume this expected Cut-node is not singular, // that multiple moves fail high, and we can prune the whole subtree by returning - // a soft bound. + // a softbound. else if (singularBeta >= beta) return singularBeta; - // If the eval of ttMove is greater than beta, we reduce it (negative extension) + // If the eval of ttMove is greater than beta, we reduce it (negative extension) (~7 Elo) else if (ttValue >= beta) - extension = -2; + extension = -2 - !PvNode; - // If the eval of ttMove is less than alpha and value, we reduce it (negative extension) - else if (ttValue <= alpha && ttValue <= value) + // If we are on a cutNode, reduce it based on depth (negative extension) (~1 Elo) + else if (cutNode) + extension = depth < 17 ? -3 : -1; + + // If the eval of ttMove is less than value, we reduce it (negative extension) (~1 Elo) + else if (ttValue <= value) extension = -1; } // Check extensions (~1 Elo) else if ( givesCheck - && depth > 9 - && abs(ss->staticEval) > 78) + && depth > 9) extension = 1; // Quiet ttMove extensions (~1 Elo) else if ( PvNode && move == ttMove && move == ss->killers[0] - && (*contHist[0])[movedPiece][to_sq(move)] >= 5600) + && (*contHist[0])[movedPiece][to_sq(move)] >= 5168) extension = 1; } @@ -1133,16 +1125,15 @@ moves_loop: // When in check, search starts here // Step 16. Make the move pos.do_move(move, st, givesCheck); - Depth r = reduction(improving, depth, moveCount, delta, thisThread->rootDelta); - // Decrease reduction if position is or has been on the PV // and node is not likely to fail low. (~3 Elo) + // Decrease further on cutNodes. (~1 Elo) if ( ss->ttPv && !likelyFailLow) - r -= 2; + r -= cutNode && tte->depth() >= depth + 3 ? 3 : 2; // Decrease reduction if opponent's move count is high (~1 Elo) - if ((ss-1)->moveCount > 7) + if ((ss-1)->moveCount > 8) r--; // Increase reduction for cut nodes (~3 Elo) @@ -1153,40 +1144,38 @@ moves_loop: // When in check, search starts here if (ttCapture) r++; - // Decrease reduction for PvNodes based on depth + // Decrease reduction for PvNodes (~2 Elo) if (PvNode) - r -= 1 + 11 / (3 + depth); + r--; // Decrease reduction if ttMove has been singularly extended (~1 Elo) if (singularQuietLMR) r--; - // Decrease reduction if we move a threatened piece (~1 Elo) - if ( depth > 9 - && (mp.threatenedPieces & from_sq(move))) - r--; + // Increase reduction on repetition (~1 Elo) + if ( move == (ss-4)->currentMove + && pos.has_repeated()) + r += 2; - // Increase reduction if next ply has a lot of fail high + // Increase reduction if next ply has a lot of fail high (~5 Elo) if ((ss+1)->cutoffCnt > 3) r++; - // Decrease reduction if move is a killer and we have a good history - if (move == ss->killers[0] - && (*contHist[0])[movedPiece][to_sq(move)] >= 3600) + else if (move == ttMove) r--; ss->statScore = 2 * thisThread->mainHistory[us][from_to(move)] + (*contHist[0])[movedPiece][to_sq(move)] + (*contHist[1])[movedPiece][to_sq(move)] + (*contHist[3])[movedPiece][to_sq(move)] - - 4467; + - 4006; - // Decrease/increase reduction for moves with a good/bad history (~30 Elo) - r -= ss->statScore / (12800 + 4410 * (depth > 7 && depth < 19)); + // Decrease/increase reduction for moves with a good/bad history (~25 Elo) + r -= ss->statScore / (11124 + 4740 * (depth > 5 && depth < 22)); // Step 17. Late moves reduction / extension (LMR, ~117 Elo) // We use various heuristics for the sons of a node after the first son has - // been searched. In general we would like to reduce them, but there are many + // been searched. In general, we would like to reduce them, but there are many // cases where we extend a son if it has good chances to be "interesting". if ( depth >= 2 && moveCount > 1 + (PvNode && ss->ply <= 1) @@ -1201,13 +1190,13 @@ moves_loop: // When in check, search starts here value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); - // Do full depth search when reduced LMR search fails high + // Do a full-depth search when reduced LMR search fails high if (value > alpha && d < newDepth) { - // Adjust full depth search based on LMR results - if result + // Adjust full-depth search based on LMR results - if the result // was good enough search deeper, if it was bad enough search shallower - const bool doDeeperSearch = value > (alpha + 66 + 11 * (newDepth - d)); - const bool doEvenDeeperSearch = value > alpha + 582 && ss->doubleExtensions <= 5; + const bool doDeeperSearch = value > (bestValue + 64 + 11 * (newDepth - d)); + const bool doEvenDeeperSearch = value > alpha + 711 && ss->doubleExtensions <= 6; const bool doShallowerSearch = value < bestValue + newDepth; ss->doubleExtensions = ss->doubleExtensions + doEvenDeeperSearch; @@ -1217,27 +1206,27 @@ moves_loop: // When in check, search starts here if (newDepth > d) value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); - int bonus = value > alpha ? stat_bonus(newDepth) - : -stat_bonus(newDepth); + int bonus = value <= alpha ? -stat_bonus(newDepth) + : value >= beta ? stat_bonus(newDepth) + : 0; update_continuation_histories(ss, movedPiece, to_sq(move), bonus); } } - // Step 18. Full depth search when LMR is skipped. If expected reduction is high, reduce its depth by 1. + // Step 18. Full-depth search when LMR is skipped. If expected reduction is high, reduce its depth by 1. else if (!PvNode || moveCount > 1) { - // Increase reduction for cut nodes and not ttMove (~1 Elo) - if (!ttMove && cutNode) - r += 2; + // Increase reduction for cut nodes and not ttMove (~1 Elo) + if (!ttMove && cutNode) + r += 2; - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth - (r > 4), !cutNode); + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth - (r > 3), !cutNode); } - // For PV nodes only, do a full PV search on the first move or after a fail - // high (in the latter case search only if value < beta), otherwise let the - // parent node fail low with value <= alpha and try another move. - if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) + // For PV nodes only, do a full PV search on the first move or after a fail high, + // otherwise let the parent node fail low with value <= alpha and try another move. + if (PvNode && (moveCount == 1 || value > alpha)) { (ss+1)->pv = pv; (ss+1)->pv[0] = MOVE_NONE; @@ -1271,14 +1260,17 @@ moves_loop: // When in check, search starts here rm.selDepth = thisThread->selDepth; rm.scoreLowerbound = rm.scoreUpperbound = false; - if (value >= beta) { - rm.scoreLowerbound = true; - rm.uciScore = beta; + if (value >= beta) + { + rm.scoreLowerbound = true; + rm.uciScore = beta; } - else if (value <= alpha) { - rm.scoreUpperbound = true; - rm.uciScore = alpha; + else if (value <= alpha) + { + rm.scoreUpperbound = true; + rm.uciScore = alpha; } + rm.pv.resize(1); assert((ss+1)->pv); @@ -1294,7 +1286,7 @@ moves_loop: // When in check, search starts here ++thisThread->bestMoveChanges; } else - // All other moves but the PV are set to the lowest value: this + // All other moves but the PV, are set to the lowest value: this // is not a problem when sorting because the sort is stable and the // move position in the list is preserved - just the PV is pushed up. rm.score = -VALUE_INFINITE; @@ -1311,30 +1303,29 @@ moves_loop: // When in check, search starts here if (PvNode && !rootNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss+1)->pv); - if (PvNode && value < beta) // Update alpha! Always alpha < beta + if (value >= beta) { - alpha = value; - - // Reduce other moves if we have found at least one score improvement - if ( depth > 1 - && depth < 6 - && beta < VALUE_KNOWN_WIN - && alpha > -VALUE_KNOWN_WIN) - depth -= 1; - - assert(depth > 0); + ss->cutoffCnt += 1 + !ttMove; + assert(value >= beta); // Fail high + break; } else { - ss->cutoffCnt++; - assert(value >= beta); // Fail high - break; + // Reduce other moves if we have found at least one score improvement (~2 Elo) + if ( depth > 2 + && depth < 12 + && beta < 14362 + && value > -12393) + depth -= 2; + + assert(depth > 0); + alpha = value; // Update alpha! Always alpha < beta } } } - // If the move is worse than some previously searched move, remember it to update its stats later + // If the move is worse than some previously searched move, remember it, to update its stats later if (move != bestMove) { if (capture && captureCount < 32) @@ -1346,7 +1337,7 @@ moves_loop: // When in check, search starts here } // The following condition would detect a stop only after move loop has been - // completed. But in this case bestValue is valid because we have fully + // completed. But in this case, bestValue is valid because we have fully // searched our subtree, and we can anyhow save the result in TT. /* if (Threads.stop) @@ -1365,24 +1356,24 @@ moves_loop: // When in check, search starts here ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW; - // If there is a move which produces search value greater than alpha we update stats of searched moves + // If there is a move that produces search value greater than alpha we update the stats of searched moves else if (bestMove) update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq, quietsSearched, quietCount, capturesSearched, captureCount, depth); // Bonus for prior countermove that caused the fail low - else if (!priorCapture) + else if (!priorCapture && prevSq != SQ_NONE) { - // Extra bonuses for PV/Cut nodes or bad fail lows - int bonus = (depth > 4) + (PvNode || cutNode) + (bestValue < alpha - 88 * depth); + int bonus = (depth > 5) + (PvNode || cutNode) + (bestValue < alpha - 800) + ((ss-1)->moveCount > 12); update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth) * bonus); + thisThread->mainHistory[~us][from_to((ss-1)->currentMove)] << stat_bonus(depth) * bonus / 2; } if (PvNode) bestValue = std::min(bestValue, maxValue); // If no good move is found and the previous position was ttPv, then the previous - // opponent move is probably good and the new position is added to the search tree. + // opponent move is probably good and the new position is added to the search tree. (~7 Elo) if (bestValue <= alpha) ss->ttPv = ss->ttPv || ((ss-1)->ttPv && depth > 3); @@ -1401,7 +1392,7 @@ moves_loop: // When in check, search starts here // qsearch() is the quiescence search function, which is called by the main search // function with zero depth, or recursively with further decreasing depth per call. - // (~155 elo) + // (~155 Elo) template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { @@ -1412,6 +1403,17 @@ moves_loop: // When in check, search starts here assert(PvNode || (alpha == beta - 1)); assert(depth <= 0); + // Check if we have an upcoming move that draws by repetition, or + // if the opponent had an alternative move earlier to this position. + if ( depth < 0 + && alpha < VALUE_DRAW + && pos.has_game_cycle(ss->ply)) + { + alpha = value_draw(pos.this_thread()); + if (alpha >= beta) + return alpha; + } + Move pv[MAX_PLY+1]; StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); @@ -1447,7 +1449,8 @@ moves_loop: // When in check, search starts here // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS - : DEPTH_QS_NO_CHECKS; + : DEPTH_QS_NO_CHECKS; + // Step 3. Transposition table lookup posKey = pos.key(); tte = TT.probe(posKey, ss->ttHit); @@ -1457,18 +1460,14 @@ moves_loop: // When in check, search starts here // At non-PV nodes we check for an early TT cutoff if ( !PvNode - && ss->ttHit && tte->depth() >= ttDepth - && ttValue != VALUE_NONE // Only in case of TT access race + && ttValue != VALUE_NONE // Only in case of TT access race or if !ttHit && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER))) return ttValue; // Step 4. Static evaluation of the position if (ss->inCheck) - { - ss->staticEval = VALUE_NONE; bestValue = futilityBase = -VALUE_INFINITE; - } else { if (ss->ttHit) @@ -1484,9 +1483,8 @@ moves_loop: // When in check, search starts here } else // In case of null move search use previous static eval with a different sign - ss->staticEval = bestValue = - (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) - : -(ss-1)->staticEval; + ss->staticEval = bestValue = (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) + : -(ss-1)->staticEval; // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) @@ -1499,10 +1497,10 @@ moves_loop: // When in check, search starts here return bestValue; } - if (PvNode && bestValue > alpha) + if (bestValue > alpha) alpha = bestValue; - futilityBase = bestValue + 158; + futilityBase = std::min(ss->staticEval, bestValue) + 200; } const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory, @@ -1513,7 +1511,7 @@ moves_loop: // When in check, search starts here // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS) // will be generated. - Square prevSq = to_sq((ss-1)->currentMove); + Square prevSq = is_ok((ss-1)->currentMove) ? to_sq((ss-1)->currentMove) : SQ_NONE; MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory, contHist, @@ -1525,98 +1523,98 @@ moves_loop: // When in check, search starts here // or a beta cutoff occurs. while ((move = mp.next_move()) != MOVE_NONE) { - assert(is_ok(move)); - - // Check for legality - if (!pos.legal(move)) - continue; - - givesCheck = pos.gives_check(move); - capture = pos.capture(move); - - moveCount++; + assert(is_ok(move)); - // Step 6. Pruning. - if (bestValue > VALUE_TB_LOSS_IN_MAX_PLY) - { - // Futility pruning and moveCount pruning (~10 Elo) - if ( !givesCheck - && to_sq(move) != prevSq - && futilityBase > -VALUE_KNOWN_WIN - && type_of(move) != PROMOTION) - { - if (moveCount > 2) - continue; + // Check for legality + if (!pos.legal(move)) + continue; - futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))]; + givesCheck = pos.gives_check(move); + capture = pos.capture_stage(move); - if (futilityValue <= alpha) - { - bestValue = std::max(bestValue, futilityValue); - continue; - } + moveCount++; - if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) - { - bestValue = std::max(bestValue, futilityBase); - continue; - } - } + // Step 6. Pruning. + if (bestValue > VALUE_TB_LOSS_IN_MAX_PLY) + { + // Futility pruning and moveCount pruning (~10 Elo) + if ( !givesCheck + && to_sq(move) != prevSq + && futilityBase > -VALUE_KNOWN_WIN + && type_of(move) != PROMOTION) + { + if (moveCount > 2) + continue; - // We prune after 2nd quiet check evasion where being 'in check' is implicitly checked through the counter - // and being a 'quiet' apart from being a tt move is assumed after an increment because captures are pushed ahead. - if (quietCheckEvasions > 1) - break; + futilityValue = futilityBase + PieceValue[pos.piece_on(to_sq(move))]; - // Continuation history based pruning (~3 Elo) - if ( !capture - && (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < 0 - && (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < 0) - continue; + if (futilityValue <= alpha) + { + bestValue = std::max(bestValue, futilityValue); + continue; + } - // Do not search moves with bad enough SEE values (~5 Elo) - if (!pos.see_ge(move, Value(-108))) - continue; + if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) + { + bestValue = std::max(bestValue, futilityBase); + continue; + } + } - } + // We prune after the second quiet check evasion move, where being 'in check' is + // implicitly checked through the counter, and being a 'quiet move' apart from + // being a tt move is assumed after an increment because captures are pushed ahead. + if (quietCheckEvasions > 1) + break; + + // Continuation history based pruning (~3 Elo) + if ( !capture + && (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < 0 + && (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < 0) + continue; + + // Do not search moves with bad enough SEE values (~5 Elo) + if (!pos.see_ge(move, Value(-95))) + continue; + } - // Speculative prefetch as early as possible - prefetch(TT.first_entry(pos.key_after(move))); + // Speculative prefetch as early as possible + prefetch(TT.first_entry(pos.key_after(move))); - // Update the current move - ss->currentMove = move; - ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck] - [capture] - [pos.moved_piece(move)] - [to_sq(move)]; + // Update the current move + ss->currentMove = move; + ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck] + [capture] + [pos.moved_piece(move)] + [to_sq(move)]; - quietCheckEvasions += !capture && ss->inCheck; + quietCheckEvasions += !capture && ss->inCheck; - // Step 7. Make and search the move - pos.do_move(move, st, givesCheck); - value = -qsearch(pos, ss+1, -beta, -alpha, depth - 1); - pos.undo_move(move); + // Step 7. Make and search the move + pos.do_move(move, st, givesCheck); + value = -qsearch(pos, ss+1, -beta, -alpha, depth - 1); + pos.undo_move(move); - assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); + assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - // Step 8. Check for a new best move - if (value > bestValue) - { - bestValue = value; + // Step 8. Check for a new best move + if (value > bestValue) + { + bestValue = value; - if (value > alpha) - { - bestMove = move; + if (value > alpha) + { + bestMove = move; - if (PvNode) // Update pv even in fail-high case - update_pv(ss->pv, move, (ss+1)->pv); + if (PvNode) // Update pv even in fail-high case + update_pv(ss->pv, move, (ss+1)->pv); - if (PvNode && value < beta) // Update alpha here! - alpha = value; - else - break; // Fail high - } - } + if (value < beta) // Update alpha here! + alpha = value; + else + break; // Fail high + } + } } // Step 9. Check for mate @@ -1703,40 +1701,45 @@ moves_loop: // When in check, search starts here Thread* thisThread = pos.this_thread(); CapturePieceToHistory& captureHistory = thisThread->captureHistory; Piece moved_piece = pos.moved_piece(bestMove); - PieceType captured = type_of(pos.piece_on(to_sq(bestMove))); - int bonus1 = stat_bonus(depth + 1); + PieceType captured; - if (!pos.capture(bestMove)) + int quietMoveBonus = stat_bonus(depth + 1); + + if (!pos.capture_stage(bestMove)) { - int bonus2 = bestValue > beta + 146 ? bonus1 // larger bonus - : stat_bonus(depth); // smaller bonus + int bestMoveBonus = bestValue > beta + 145 ? quietMoveBonus // larger bonus + : stat_bonus(depth); // smaller bonus // Increase stats for the best move in case it was a quiet move - update_quiet_stats(pos, ss, bestMove, bonus2); + update_quiet_stats(pos, ss, bestMove, bestMoveBonus); // Decrease stats for all non-best quiet moves for (int i = 0; i < quietCount; ++i) { - thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2; - update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2); + thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bestMoveBonus; + update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bestMoveBonus); } } else + { // Increase stats for the best move in case it was a capture move - captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1; + captured = type_of(pos.piece_on(to_sq(bestMove))); + captureHistory[moved_piece][to_sq(bestMove)][captured] << quietMoveBonus; + } // Extra penalty for a quiet early move that was not a TT move or // main killer move in previous ply when it gets refuted. - if ( ((ss-1)->moveCount == 1 + (ss-1)->ttHit || ((ss-1)->currentMove == (ss-1)->killers[0])) + if ( prevSq != SQ_NONE + && ((ss-1)->moveCount == 1 + (ss-1)->ttHit || ((ss-1)->currentMove == (ss-1)->killers[0])) && !pos.captured_piece()) - update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1); + update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -quietMoveBonus); // Decrease stats for all non-best capture moves for (int i = 0; i < captureCount; ++i) { moved_piece = pos.moved_piece(capturesSearched[i]); captured = type_of(pos.piece_on(to_sq(capturesSearched[i]))); - captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1; + captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -quietMoveBonus; } } @@ -1748,7 +1751,7 @@ moves_loop: // When in check, search starts here for (int i : {1, 2, 4, 6}) { - // Only update first 2 continuation histories if we are in check + // Only update the first 2 continuation histories if we are in check if (ss->inCheck && i > 2) break; if (is_ok((ss-i)->currentMove)) @@ -1781,7 +1784,7 @@ moves_loop: // When in check, search starts here } } - // When playing with strength handicap, choose best move among a set of RootMoves + // When playing with strength handicap, choose the best move among a set of RootMoves // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_best(size_t multiPV) { @@ -1791,7 +1794,7 @@ moves_loop: // When in check, search starts here // RootMoves are already sorted by score in descending order Value topScore = rootMoves[0].score; - int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg); + int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValue); int maxScore = -VALUE_INFINITE; double weakness = 120 - 2 * level; @@ -1826,7 +1829,7 @@ void MainThread::check_time() { return; // When using nodes, ensure checking rate is not lower than 0.1% of nodes - callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024; + callsCnt = Limits.nodes ? std::min(512, int(Limits.nodes / 1024)) : 512; static TimePoint lastInfoTime = now(); @@ -1843,7 +1846,7 @@ void MainThread::check_time() { if (ponder) return; - if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit)) + if ( (Limits.use_time_management() && (elapsed > Time.maximum() || stopOnPonderhit)) || (Limits.movetime && elapsed >= Limits.movetime) || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) Threads.stop = true; @@ -1912,7 +1915,7 @@ string UCI::pv(const Position& pos, Depth depth) { /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move /// before exiting the search, for instance, in case we stop the search during a /// fail high at root. We try hard to have a ponder move to return to the GUI, -/// otherwise in case of 'ponder on' we have nothing to think on. +/// otherwise in case of 'ponder on' we have nothing to think about. bool RootMove::extract_ponder_from_tt(Position& pos) {