X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Fsyzygy%2Ftbprobe.cpp;h=ba727825d4c69e99507fff6b25a791e0460ef8a3;hb=a9a0dbbcd0749b4e6255c7e9a17f19cffedaa531;hp=831c8259c538c103b6d4eb4a15fe1577ca8fbd79;hpb=83eac08e7562d93787f75eccd4b7781c4bd45dd3;p=stockfish diff --git a/src/syzygy/tbprobe.cpp b/src/syzygy/tbprobe.cpp index 831c8259..ba727825 100644 --- a/src/syzygy/tbprobe.cpp +++ b/src/syzygy/tbprobe.cpp @@ -1,6 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) + Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -24,9 +24,10 @@ #include #include #include +#include #include +#include #include -#include #include "../bitboard.h" #include "../movegen.h" @@ -59,6 +60,7 @@ namespace Stockfish { namespace { constexpr int TBPIECES = 7; // Max number of supported pieces +constexpr int MAX_DTZ = 1 << 18; // Max DTZ supported, large enough to deal with the syzygy TB limit. enum { BigEndian, LittleEndian }; enum TBType { WDL, DTZ }; // Used as template parameter @@ -69,7 +71,7 @@ enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, Singl inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } -const std::string PieceToChar = " PNBRQK pnbrqk"; +constexpr std::string_view PieceToChar = " PNBRQK pnbrqk"; int MapPawns[SQUARE_NB]; int MapB1H1H7[SQUARE_NB]; @@ -105,9 +107,6 @@ template<> inline void swap_endian(uint8_t&) {} template T number(void* addr) { - static const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; - static const bool IsLittleEndian = (Le.c[0] == 4); - T v; if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) @@ -143,7 +142,7 @@ struct SparseEntry { static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); -typedef uint16_t Sym; // Huffman symbol +using Sym = uint16_t; // Huffman symbol struct LR { enum Side { Left, Right }; @@ -201,13 +200,10 @@ public: } } - // Memory map the file and check it. File should be already open and will be - // closed after mapping. + // Memory map the file and check it. uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { - - assert(is_open()); - - close(); // Need to re-open to get native file descriptor + if (is_open()) + close(); // Need to re-open to get native file descriptor #ifndef _WIN32 struct stat statbuf; @@ -238,7 +234,7 @@ public: } #else // Note FILE_FLAG_RANDOM_ACCESS is only a hint to Windows and as such may get ignored. - HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, + HANDLE fd = CreateFileA(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS, nullptr); if (fd == INVALID_HANDLE_VALUE) @@ -331,7 +327,7 @@ struct PairsData { // first access, when the corresponding file is memory mapped. template struct TBTable { - typedef typename std::conditional::type Ret; + using Ret = typename std::conditional::type; static constexpr int Sides = Type == WDL ? 2 : 1; @@ -772,7 +768,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu goto encode_remaining; // With pawns we have finished special treatments } - // In positions withouth pawns, we further flip the squares to ensure leading + // In positions without pawns, we further flip the squares to ensure leading // piece is below RANK_5. if (rank_of(squares[0]) > RANK_4) for (int i = 0; i < size; ++i) @@ -815,7 +811,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be // swapped and still get the same position.) // - // In case we have at least 3 unique pieces (inlcuded kings) we encode them + // In case we have at least 3 unique pieces (included kings) we encode them // together. if (entry->hasUniquePieces) { @@ -830,7 +826,7 @@ Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* resu + (squares[1] - adjust1)) * 62 + squares[2] - adjust2; - // First piece is on a1-h8 diagonal, second below: map this occurence to + // First piece is on a1-h8 diagonal, second below: map this occurrence to // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. else if (off_A1H8(squares[1])) @@ -860,7 +856,7 @@ encode_remaining: idx *= d->groupIdx[0]; Square* groupSq = squares + d->groupLen[0]; - // Encode remainig pawns then pieces according to square, in ascending order + // Encode remaining pawns then pieces according to square, in ascending order bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; while (d->groupLen[++next]) @@ -888,7 +884,7 @@ encode_remaining: // Group together pieces that will be encoded together. The general rule is that // a group contains pieces of same type and color. The exception is the leading -// group that, in case of positions withouth pawns, can be formed by 3 different +// group that, in case of positions without pawns, can be formed by 3 different // pieces (default) or by the king pair when there is not a unique piece apart // from the kings. When there are pawns, pawns are always first in pieces[]. // @@ -920,7 +916,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) { // // This ensures unique encoding for the whole position. The order of the // groups is a per-table parameter and could not follow the canonical leading - // pawns/pieces -> remainig pawns -> remaining pieces. In particular the + // pawns/pieces -> remaining pawns -> remaining pieces. In particular the // first group is at order[0] position and the remaining pawns, when present, // are at order[1] position. bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides @@ -940,7 +936,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) { d->groupIdx[1] = idx; idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; } - else // Remainig pieces + else // Remaining pieces { d->groupIdx[next] = idx; idx *= Binomial[d->groupLen[next]][freeSquares]; @@ -950,7 +946,7 @@ void set_groups(T& e, PairsData* d, int order[], File f) { d->groupIdx[n] = idx; } -// In Recursive Pairing each symbol represents a pair of childern symbols. So +// In Recursive Pairing each symbol represents a pair of children symbols. So // read d->btree[] symbols data and expand each one in his left and right child // symbol until reaching the leafs that represent the symbol value. uint8_t set_symlen(PairsData* d, Sym s, std::vector& visited) { @@ -999,13 +995,19 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) { d->lowestSym = (Sym*)data; d->base64.resize(d->maxSymLen - d->minSymLen + 1); + // See https://en.wikipedia.org/wiki/Huffman_coding // The canonical code is ordered such that longer symbols (in terms of // the number of bits of their Huffman code) have lower numeric value, // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). // Starting from this we compute a base64[] table indexed by symbol length // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. - // See https://en.wikipedia.org/wiki/Huffman_coding - for (int i = d->base64.size() - 2; i >= 0; --i) { + + // Implementation note: we first cast the unsigned size_t "base64.size()" + // to a signed int "base64_size" variable and then we are able to subtract 2, + // avoiding unsigned overflow warnings. + + int base64_size = static_cast(d->base64.size()); + for (int i = base64_size - 2; i >= 0; --i) { d->base64[i] = (d->base64[i + 1] + number(&d->lowestSym[i]) - number(&d->lowestSym[i + 1])) / 2; @@ -1016,10 +1018,10 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) { // than d->base64[i+1] and given the above assert condition, we ensure that // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. - for (size_t i = 0; i < d->base64.size(); ++i) + for (int i = 0; i < base64_size; ++i) d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits - data += d->base64.size() * sizeof(Sym); + data += base64_size * sizeof(Sym); d->symlen.resize(number(data)); data += sizeof(uint16_t); d->btree = (LR*)data; @@ -1027,7 +1029,7 @@ uint8_t* set_sizes(PairsData* d, uint8_t* data) { // frequent adjacent pair of symbols in the source message by a new symbol, // reevaluating the frequencies of all of the symbol pairs with respect to // the extended alphabet, and then repeating the process. - // See http://www.larsson.dogma.net/dcc99.pdf + // See https://web.archive.org/web/20201106232444/http://www.larsson.dogma.net/dcc99.pdf std::vector visited(d->symlen.size()); for (Sym sym = 0; sym < d->symlen.size(); ++sym) @@ -1293,7 +1295,7 @@ void Tablebases::init(const std::string& paths) { for (auto s : diagonal) MapA1D1D4[s] = code++; - // MapKK[] encodes all the 461 possible legal positions of two kings where + // MapKK[] encodes all the 462 possible legal positions of two kings where // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 // diagonal, the other one shall not to be above the a1-h8 diagonal. std::vector> bothOnDiagonal; @@ -1320,7 +1322,7 @@ void Tablebases::init(const std::string& paths) { for (auto p : bothOnDiagonal) MapKK[p.first][p.second] = code++; - // Binomial[] stores the Binomial Coefficents using Pascal rule. There + // Binomial[] stores the Binomial Coefficients using Pascal rule. There // are Binomial[k][n] ways to choose k elements from a set of n elements. Binomial[0][0] = 1; @@ -1340,7 +1342,7 @@ void Tablebases::init(const std::string& paths) { for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) for (File f = FILE_A; f <= FILE_D; ++f) { - // Restart the index at every file because TB table is splitted + // Restart the index at every file because TB table is split // by file, so we can reuse the same index for different files. int idx = 0; @@ -1516,7 +1518,7 @@ int Tablebases::probe_dtz(Position& pos, ProbeState* result) { // A return value false indicates that not all probes were successful. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { - ProbeState result; + ProbeState result = OK; StateInfo st; // Obtain 50-move counter for the root position @@ -1525,7 +1527,7 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { // Check whether a position was repeated since the last zeroing move. bool rep = pos.has_repeated(); - int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1; + int dtz, bound = Options["Syzygy50MoveRule"] ? (MAX_DTZ - 100) : 1; // Probe and rank each move for (auto& m : rootMoves) @@ -1539,6 +1541,14 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { WDLScore wdl = -probe_wdl(pos, &result); dtz = dtz_before_zeroing(wdl); } + else if (pos.is_draw(1)) + { + // In case a root move leads to a draw by repetition or + // 50-move rule, we set dtz to zero. Note: since we are + // only 1 ply from the root, this must be a true 3-fold + // repetition inside the game history. + dtz = 0; + } else { // Otherwise, take dtz for the new position and correct by 1 ply @@ -1560,8 +1570,8 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { // Better moves are ranked higher. Certain wins are ranked equally. // Losing moves are ranked equally unless a 50-move draw is in sight. - int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) - : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) + int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? MAX_DTZ : MAX_DTZ - (dtz + cnt50)) + : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -MAX_DTZ : -MAX_DTZ + (-dtz + cnt50)) : 0; m.tbRank = r; @@ -1569,9 +1579,9 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { // 1 cp to cursed wins and let it grow to 49 cp as the positions gets // closer to a real win. m.tbScore = r >= bound ? VALUE_MATE - MAX_PLY - 1 - : r > 0 ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) + : r > 0 ? Value((std::max( 3, r - (MAX_DTZ - 200)) * int(PawnValue)) / 200) : r == 0 ? VALUE_DRAW - : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) + : r > -bound ? Value((std::min(-3, r + (MAX_DTZ - 200)) * int(PawnValue)) / 200) : -VALUE_MATE + MAX_PLY + 1; } @@ -1585,10 +1595,11 @@ bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { // A return value false indicates that not all probes were successful. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { - static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; + static const int WDL_to_rank[] = { -MAX_DTZ, -MAX_DTZ + 101, 0, MAX_DTZ - 101, MAX_DTZ }; - ProbeState result; + ProbeState result = OK; StateInfo st; + WDLScore wdl; bool rule50 = Options["Syzygy50MoveRule"]; @@ -1597,7 +1608,10 @@ bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { { pos.do_move(m.pv[0], st); - WDLScore wdl = -probe_wdl(pos, &result); + if (pos.is_draw(1)) + wdl = WDLDraw; + else + wdl = -probe_wdl(pos, &result); pos.undo_move(m.pv[0]);