X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Ftimeman.cpp;h=f404ee0c353eb96215db47c14c500e3bc1c58246;hb=HEAD;hp=86c1d634e1e4bdef95f348e750a1f2b68b1cd2f2;hpb=f9571e8d57381275f08ffbfb960358319d4c34dd;p=stockfish diff --git a/src/timeman.cpp b/src/timeman.cpp index 86c1d634..9de70fdc 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,100 +16,125 @@ along with this program. If not, see . */ +#include "timeman.h" + #include -#include +#include #include +#include #include "search.h" -#include "timeman.h" -#include "uci.h" - -namespace { - - enum TimeType { OptimumTime, MaxTime }; - - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; - - - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. - - double move_importance(int ply) { - - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero - } - - template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; - double otherMovesImportance = 0; - - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); +#include "ucioption.h" - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); +namespace Stockfish { - return int(myTime * std::min(ratio1, ratio2)); - } +TimePoint TimeManagement::optimum() const { return optimumTime; } +TimePoint TimeManagement::maximum() const { return maximumTime; } -} // namespace - - -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - */ - - int hypMTG, hypMyTime, t1, t2; - - // Read uci parameters - int moveOverhead = Options["Move Overhead"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; - - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); - - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) - { - // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - moveOverhead * (2 + std::min(hypMTG, 40)); - - hypMyTime = std::max(hypMyTime, 0); - - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); - } +void TimeManagement::clear() { + availableNodes = -1; // When in 'nodes as time' mode +} - if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; +void TimeManagement::advance_nodes_time(std::int64_t nodes) { + assert(useNodesTime); + availableNodes = std::max(int64_t(0), availableNodes - nodes); +} - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); +// Called at the beginning of the search and calculates +// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) +void TimeManagement::init(Search::LimitsType& limits, + Color us, + int ply, + const OptionsMap& options, + double& originalTimeAdjust) { + TimePoint npmsec = TimePoint(options["nodestime"]); + + // If we have no time, we don't need to fully initialize TM. + // startTime is used by movetime and useNodesTime is used in elapsed calls. + startTime = limits.startTime; + useNodesTime = npmsec != 0; + + if (limits.time[us] == 0) + return; + + TimePoint moveOverhead = TimePoint(options["Move Overhead"]); + + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. + if (useNodesTime) + { + if (availableNodes == -1) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec + + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + moveOverhead *= npmsec; + } + + // These numbers are used where multiplications, divisions or comparisons + // with constants are involved. + const int64_t scaleFactor = useNodesTime ? npmsec : 1; + const TimePoint scaledTime = limits.time[us] / scaleFactor; + const TimePoint scaledInc = limits.inc[us] / scaleFactor; + + // Maximum move horizon of 50 moves + int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; + + // If less than one second, gradually reduce mtg + if (scaledTime < 1000 && double(mtg) / scaledInc > 0.05) + { + mtg = scaledTime * 0.05; + } + + // Make sure timeLeft is > 0 since we may use it as a divisor + TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1) + - moveOverhead * (2 + mtg)); + + // x basetime (+ z increment) + // If there is a healthy increment, timeLeft can exceed the actual available + // game time for the current move, so also cap to a percentage of available game time. + if (limits.movestogo == 0) + { + // Extra time according to timeLeft + if (originalTimeAdjust < 0) + originalTimeAdjust = 0.3285 * std::log10(timeLeft) - 0.4830; + + // Calculate time constants based on current time left. + double logTimeInSec = std::log10(scaledTime / 1000.0); + double optConstant = std::min(0.00308 + 0.000319 * logTimeInSec, 0.00506); + double maxConstant = std::max(3.39 + 3.01 * logTimeInSec, 2.93); + + optScale = std::min(0.0122 + std::pow(ply + 2.95, 0.462) * optConstant, + 0.213 * limits.time[us] / timeLeft) + * originalTimeAdjust; + + maxScale = std::min(6.64, maxConstant + ply / 12.0); + } + + // x moves in y seconds (+ z increment) + else + { + optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / timeLeft); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); + } + + // Limit the maximum possible time for this move + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = + TimePoint(std::min(0.825 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10; + + if (options["Ponder"]) + optimumTime += optimumTime / 4; } + +} // namespace Stockfish