X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Ftimeman.cpp;h=f404ee0c353eb96215db47c14c500e3bc1c58246;hb=HEAD;hp=fafde2aa62033d44a7953d29db8aca23dd78023e;hpb=c8589903777b6e0289640b43fae966ded442af48;p=stockfish diff --git a/src/timeman.cpp b/src/timeman.cpp index fafde2aa..9de70fdc 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,115 +16,125 @@ along with this program. If not, see . */ -#include -#include - -#include "search.h" #include "timeman.h" -#include "uci.h" - -TimeManagement Time; // Our global time management object - -namespace { - - enum TimeType { OptimumTime, MaxTime }; - - constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead - constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio - constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio - - - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from the CCRL game database with some simple filtering criteria. - - double move_importance(int ply) { - - constexpr double XScale = 6.85; - constexpr double XShift = 64.5; - constexpr double Skew = 0.171; - - return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero - } - - template - TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { - - constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); - constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); - - double moveImportance = (move_importance(ply) * slowMover) / 100.0; - double otherMovesImportance = 0.0; - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(ply + 2 * i); - - double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); - double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - - return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast - } - -} // namespace - - -/// init() is called at the beginning of the search and calculates the allowed -/// thinking time out of the time control and current game ply. We support four -/// different kinds of time controls, passed in 'limits': -/// -/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] -/// inc == 0 && movestogo != 0 means: x moves in y minutes -/// inc > 0 && movestogo == 0 means: x basetime + z increment -/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { - - TimePoint minThinkingTime = Options["Minimum Thinking Time"]; - TimePoint moveOverhead = Options["Move Overhead"]; - TimePoint slowMover = Options["Slow Mover"]; - TimePoint npmsec = Options["nodestime"]; - TimePoint hypMyTime; - - // If we have to play in 'nodes as time' mode, then convert from time - // to nodes, and use resulting values in time management formulas. - // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) - // must be much lower than the real engine speed. - if (npmsec) - { - if (!availableNodes) // Only once at game start - availableNodes = npmsec * limits.time[us]; // Time is in msec - - // Convert from milliseconds to nodes - limits.time[us] = TimePoint(availableNodes); - limits.inc[us] *= npmsec; - limits.npmsec = npmsec; - } - - startTime = limits.startTime; - optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); +#include +#include +#include +#include - const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; +#include "search.h" +#include "ucioption.h" - // We calculate optimum time usage for different hypothetical "moves to go" values - // and choose the minimum of calculated search time values. Usually the greatest - // hypMTG gives the minimum values. - for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) - { - // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - moveOverhead * (2 + std::min(hypMTG, 40)); +namespace Stockfish { - hypMyTime = std::max(hypMyTime, TimePoint(0)); +TimePoint TimeManagement::optimum() const { return optimumTime; } +TimePoint TimeManagement::maximum() const { return maximumTime; } - TimePoint t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - TimePoint t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); +void TimeManagement::clear() { + availableNodes = -1; // When in 'nodes as time' mode +} - optimumTime = std::min(t1, optimumTime); - maximumTime = std::min(t2, maximumTime); - } +void TimeManagement::advance_nodes_time(std::int64_t nodes) { + assert(useNodesTime); + availableNodes = std::max(int64_t(0), availableNodes - nodes); +} - if (Options["Ponder"]) - optimumTime += optimumTime / 4; +// Called at the beginning of the search and calculates +// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) +void TimeManagement::init(Search::LimitsType& limits, + Color us, + int ply, + const OptionsMap& options, + double& originalTimeAdjust) { + TimePoint npmsec = TimePoint(options["nodestime"]); + + // If we have no time, we don't need to fully initialize TM. + // startTime is used by movetime and useNodesTime is used in elapsed calls. + startTime = limits.startTime; + useNodesTime = npmsec != 0; + + if (limits.time[us] == 0) + return; + + TimePoint moveOverhead = TimePoint(options["Move Overhead"]); + + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. + if (useNodesTime) + { + if (availableNodes == -1) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec + + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + moveOverhead *= npmsec; + } + + // These numbers are used where multiplications, divisions or comparisons + // with constants are involved. + const int64_t scaleFactor = useNodesTime ? npmsec : 1; + const TimePoint scaledTime = limits.time[us] / scaleFactor; + const TimePoint scaledInc = limits.inc[us] / scaleFactor; + + // Maximum move horizon of 50 moves + int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; + + // If less than one second, gradually reduce mtg + if (scaledTime < 1000 && double(mtg) / scaledInc > 0.05) + { + mtg = scaledTime * 0.05; + } + + // Make sure timeLeft is > 0 since we may use it as a divisor + TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1) + - moveOverhead * (2 + mtg)); + + // x basetime (+ z increment) + // If there is a healthy increment, timeLeft can exceed the actual available + // game time for the current move, so also cap to a percentage of available game time. + if (limits.movestogo == 0) + { + // Extra time according to timeLeft + if (originalTimeAdjust < 0) + originalTimeAdjust = 0.3285 * std::log10(timeLeft) - 0.4830; + + // Calculate time constants based on current time left. + double logTimeInSec = std::log10(scaledTime / 1000.0); + double optConstant = std::min(0.00308 + 0.000319 * logTimeInSec, 0.00506); + double maxConstant = std::max(3.39 + 3.01 * logTimeInSec, 2.93); + + optScale = std::min(0.0122 + std::pow(ply + 2.95, 0.462) * optConstant, + 0.213 * limits.time[us] / timeLeft) + * originalTimeAdjust; + + maxScale = std::min(6.64, maxConstant + ply / 12.0); + } + + // x moves in y seconds (+ z increment) + else + { + optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / timeLeft); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); + } + + // Limit the maximum possible time for this move + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = + TimePoint(std::min(0.825 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10; + + if (options["Ponder"]) + optimumTime += optimumTime / 4; } + +} // namespace Stockfish