X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=fft_pass_effect_test.cpp;fp=fft_pass_effect_test.cpp;h=6a6406c0a7fa67899e663c3f259828bce66f4201;hp=0000000000000000000000000000000000000000;hb=c4f0d4e876a8177db5738596f22349e030e0a1dc;hpb=614bef1bce4e94e7774d965b790a1d95b55b81bc diff --git a/fft_pass_effect_test.cpp b/fft_pass_effect_test.cpp new file mode 100644 index 0000000..6a6406c --- /dev/null +++ b/fft_pass_effect_test.cpp @@ -0,0 +1,332 @@ +// Unit tests for FFTPassEffect. + +#include + +#include "effect_chain.h" +#include "gtest/gtest.h" +#include "image_format.h" +#include "fft_pass_effect.h" +#include "multiply_effect.h" +#include "test_util.h" + +namespace { + +// Generate a random number uniformly distributed between [-1.0, 1.0]. +float uniform_random() +{ + return 2.0 * ((float)rand() / RAND_MAX - 0.5); +} + +void setup_fft(EffectChain *chain, int fft_size, bool inverse, + bool add_normalizer = false, + FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL) +{ + assert((fft_size & (fft_size - 1)) == 0); // Must be power of two. + for (int i = 1, subsize = 2; subsize <= fft_size; ++i, subsize *= 2) { + Effect *fft_effect = chain->add_effect(new FFTPassEffect()); + bool ok = fft_effect->set_int("fft_size", fft_size); + ok |= fft_effect->set_int("pass_number", i); + ok |= fft_effect->set_int("inverse", inverse); + ok |= fft_effect->set_int("direction", direction); + assert(ok); + } + + if (add_normalizer) { + float factor[4] = { 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size }; + Effect *multiply_effect = chain->add_effect(new MultiplyEffect()); + bool ok = multiply_effect->set_vec4("factor", factor); + assert(ok); + } +} + +void run_fft(const float *in, float *out, int fft_size, bool inverse, + bool add_normalizer = false, + FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL) +{ + int width, height; + if (direction == FFTPassEffect::HORIZONTAL) { + width = fft_size; + height = 1; + } else { + width = 1; + height = fft_size; + } + EffectChainTester tester(in, width, height, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR); + setup_fft(tester.get_chain(), fft_size, inverse, add_normalizer, direction); + tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED); +} + +} // namespace + +TEST(FFTPassEffectTest, ZeroStaysZero) { + const int fft_size = 64; + float data[fft_size * 4] = { 0 }; + float out_data[fft_size * 4]; + + run_fft(data, out_data, fft_size, false); + expect_equal(data, out_data, 4, fft_size); + + run_fft(data, out_data, fft_size, true); + expect_equal(data, out_data, 4, fft_size); +} + +TEST(FFTPassEffectTest, Impulse) { + const int fft_size = 64; + float data[fft_size * 4] = { 0 }; + float expected_data[fft_size * 4], out_data[fft_size * 4]; + data[0] = 1.0; + data[1] = 1.2; + data[2] = 1.4; + data[3] = 3.0; + + for (int i = 0; i < fft_size; ++i) { + expected_data[i * 4 + 0] = data[0]; + expected_data[i * 4 + 1] = data[1]; + expected_data[i * 4 + 2] = data[2]; + expected_data[i * 4 + 3] = data[3]; + } + + run_fft(data, out_data, fft_size, false); + expect_equal(expected_data, out_data, 4, fft_size); + + run_fft(data, out_data, fft_size, true); + expect_equal(expected_data, out_data, 4, fft_size); +} + +TEST(FFTPassEffectTest, SingleFrequency) { + const int fft_size = 16; + float data[fft_size * 4] = { 0 }; + float expected_data[fft_size * 4], out_data[fft_size * 4]; + for (int i = 0; i < fft_size; ++i) { + data[i * 4 + 0] = sin(2.0 * M_PI * (4.0 * i) / fft_size); + data[i * 4 + 1] = 0.0; + data[i * 4 + 2] = 0.0; + data[i * 4 + 3] = 0.0; + } + for (int i = 0; i < fft_size; ++i) { + expected_data[i * 4 + 0] = 0.0; + expected_data[i * 4 + 1] = 0.0; + expected_data[i * 4 + 2] = 0.0; + expected_data[i * 4 + 3] = 0.0; + } + expected_data[4 * 4 + 1] = -8.0; + expected_data[12 * 4 + 1] = 8.0; + + run_fft(data, out_data, fft_size, false, false, FFTPassEffect::HORIZONTAL); + expect_equal(expected_data, out_data, 4, fft_size); + + run_fft(data, out_data, fft_size, false, false, FFTPassEffect::VERTICAL); + expect_equal(expected_data, out_data, 4, fft_size); +} + +TEST(FFTPassEffectTest, Repeat) { + const int fft_size = 64; + const int num_repeats = 31; // Prime, to make things more challenging. + float data[num_repeats * fft_size * 4] = { 0 }; + float expected_data[num_repeats * fft_size * 4], out_data[num_repeats * fft_size * 4]; + + srand(12345); + for (int i = 0; i < num_repeats * fft_size * 4; ++i) { + data[i] = uniform_random(); + } + + for (int i = 0; i < num_repeats; ++i) { + run_fft(data + i * fft_size * 4, expected_data + i * fft_size * 4, fft_size, false); + } + + { + // Horizontal. + EffectChainTester tester(data, num_repeats * fft_size, 1, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR); + setup_fft(tester.get_chain(), fft_size, false); + tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED); + + expect_equal(expected_data, out_data, 4, num_repeats * fft_size); + } + { + // Vertical. + EffectChainTester tester(data, 1, num_repeats * fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR); + setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL); + tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED); + + expect_equal(expected_data, out_data, 4, num_repeats * fft_size); + } +} + +TEST(FFTPassEffectTest, TwoDimensional) { // Implicitly tests vertical. + srand(1234); + const int fft_size = 16; + float in[fft_size * fft_size * 4], out[fft_size * fft_size * 4], expected_out[fft_size * fft_size * 4]; + for (int y = 0; y < fft_size; ++y) { + for (int x = 0; x < fft_size; ++x) { + in[(y * fft_size + x) * 4 + 0] = + sin(2.0 * M_PI * (2 * x + 3 * y) / fft_size); + in[(y * fft_size + x) * 4 + 1] = 0.0; + in[(y * fft_size + x) * 4 + 2] = 0.0; + in[(y * fft_size + x) * 4 + 3] = 0.0; + } + } + memset(expected_out, 0, sizeof(expected_out)); + + // This result has been verified using the fft2() function in Octave, + // which uses FFTW. + expected_out[(3 * fft_size + 2) * 4 + 1] = -128.0; + expected_out[(13 * fft_size + 14) * 4 + 1] = 128.0; + + EffectChainTester tester(in, fft_size, fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR); + setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::HORIZONTAL); + setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL); + tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED); + + expect_equal(expected_out, out, 4 * fft_size, fft_size, 0.25, 0.0005); +} + +// The classic paper for FFT correctness testing is Funda Ergün: +// “Testing Multivariate Linear Functions: Overcoming the Generator Bottleneck” +// (http://www.cs.sfu.ca/~funda/PUBLICATIONS/stoc95.ps), which proves that +// testing three basic properties of FFTs guarantees that the function is +// correct (at least under the assumption that errors are random). +// +// We don't follow the paper directly, though, for a few reasons: First, +// Ergün's paper really considers _self-correcting_ systems, which may +// be stochastically faulty, and thus uses various relatively complicated +// bounds and tests we don't really need. Second, the FFTs it considers +// are all about polynomials over finite fields, which means that results +// are exact and thus easy to test; we work with floats (half-floats!), +// and thus need some error tolerance. +// +// So instead, we follow the implementation of FFTW, which is really the +// gold standard when it comes to FFTs these days. They hard-code 20 +// testing rounds as opposed to the more complicated bounds in the paper, +// and have a simpler version of the third test. +// +// The error bounds are set somewhat empirically, but remember that these +// inputs will give frequency values as large as ~16, where 0.025 is +// within the 9th bit (of 11 total mantissa bits in fp16). +const int ergun_rounds = 20; + +// Test 1: Test that FFT(a + b) = FFT(a) + FFT(b). +TEST(FFTPassEffectTest, ErgunLinearityTest) { + srand(1234); + const int max_fft_size = 64; + float a[max_fft_size * 4], b[max_fft_size * 4], sum[max_fft_size * 4]; + float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4]; + for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) { + for (int inverse = 0; inverse <= 1; ++inverse) { + for (int i = 0; i < ergun_rounds; ++i) { + for (int j = 0; j < fft_size * 4; ++j) { + a[j] = uniform_random(); + b[j] = uniform_random(); + } + run_fft(a, a_out, fft_size, inverse); + run_fft(b, b_out, fft_size, inverse); + + for (int j = 0; j < fft_size * 4; ++j) { + sum[j] = a[j] + b[j]; + expected_sum_out[j] = a_out[j] + b_out[j]; + } + + run_fft(sum, sum_out, fft_size, inverse); + expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.03, 0.0005); + } + } + } +} + +// Test 2: Test that FFT(delta(i)) = 1 (where delta(i) = [1 0 0 0 ...]), +// or more specifically, test that FFT(a + delta(i)) - FFT(a) = 1. +TEST(FFTPassEffectTest, ErgunImpulseTransform) { + srand(1235); + const int max_fft_size = 64; + float a[max_fft_size * 4], b[max_fft_size * 4]; + float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4]; + for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) { + for (int inverse = 0; inverse <= 1; ++inverse) { + for (int i = 0; i < ergun_rounds; ++i) { + for (int j = 0; j < fft_size * 4; ++j) { + a[j] = uniform_random(); + + // Compute delta(j) - a. + if (j < 4) { + b[j] = 1.0 - a[j]; + } else { + b[j] = -a[j]; + } + } + run_fft(a, a_out, fft_size, inverse); + run_fft(b, b_out, fft_size, inverse); + + for (int j = 0; j < fft_size * 4; ++j) { + sum_out[j] = a_out[j] + b_out[j]; + expected_sum_out[j] = 1.0; + } + expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.025, 0.0005); + } + } + } +} + +// Test 3: Test the time-shift property of the FFT, in that a circular left-shift +// multiplies the result by e^(j 2pi k/N) (linear phase adjustment). +// As fftw_test.c says, “The paper performs more tests, but this code should be +// fine too”. +TEST(FFTPassEffectTest, ErgunShiftProperty) { + srand(1236); + const int max_fft_size = 64; + float a[max_fft_size * 4], b[max_fft_size * 4]; + float a_out[max_fft_size * 4], b_out[max_fft_size * 4], expected_a_out[max_fft_size * 4]; + for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) { + for (int inverse = 0; inverse <= 1; ++inverse) { + for (int direction = 0; direction <= 1; ++direction) { + for (int i = 0; i < ergun_rounds; ++i) { + for (int j = 0; j < fft_size * 4; ++j) { + a[j] = uniform_random(); + } + + // Circular shift left by one step. + for (int j = 0; j < fft_size * 4; ++j) { + b[j] = a[(j + 4) % (fft_size * 4)]; + } + run_fft(a, a_out, fft_size, inverse, false, FFTPassEffect::Direction(direction)); + run_fft(b, b_out, fft_size, inverse, false, FFTPassEffect::Direction(direction)); + + for (int j = 0; j < fft_size; ++j) { + double s = -sin(j * 2.0 * M_PI / fft_size); + double c = cos(j * 2.0 * M_PI / fft_size); + if (inverse) { + s = -s; + } + + expected_a_out[j * 4 + 0] = b_out[j * 4 + 0] * c - b_out[j * 4 + 1] * s; + expected_a_out[j * 4 + 1] = b_out[j * 4 + 0] * s + b_out[j * 4 + 1] * c; + + expected_a_out[j * 4 + 2] = b_out[j * 4 + 2] * c - b_out[j * 4 + 3] * s; + expected_a_out[j * 4 + 3] = b_out[j * 4 + 2] * s + b_out[j * 4 + 3] * c; + } + expect_equal(expected_a_out, a_out, 4, fft_size, 0.025, 0.0005); + } + } + } + } +} + +TEST(FFTPassEffectTest, BigFFTAccuracy) { + srand(1234); + const int max_fft_size = 2048; + float in[max_fft_size * 4], out[max_fft_size * 4], out2[max_fft_size * 4]; + for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) { + for (int j = 0; j < fft_size * 4; ++j) { + in[j] = uniform_random(); + } + run_fft(in, out, fft_size, false, true); // Forward, with normalization. + run_fft(out, out2, fft_size, true); // Reverse. + + // These error bounds come from + // http://en.wikipedia.org/wiki/Fast_Fourier_transform#Accuracy_and_approximations, + // with empirically estimated epsilons. Note that the calculated + // rms in expect_equal() is divided by sqrt(N), so we compensate + // similarly here. + double max_error = 0.0009 * log2(fft_size); + double rms_limit = 0.0007 * sqrt(log2(fft_size)) / sqrt(fft_size); + expect_equal(in, out2, 4, fft_size, max_error, rms_limit); + } +}