]> git.sesse.net Git - stockfish/blobdiff - src/nnue/layers/affine_transform.h
Unify naming convention of the NNUE code
[stockfish] / src / nnue / layers / affine_transform.h
index 1faa180d4dd082496b041552764c2682975ccfd2..424fad5650f164b5c013ad775b3867b3109eb579 100644 (file)
@@ -27,7 +27,7 @@
 namespace Stockfish::Eval::NNUE::Layers {
 
   // Affine transformation layer
-  template <typename PreviousLayer, IndexType OutputDimensions>
+  template <typename PreviousLayer, IndexType OutDims>
   class AffineTransform {
    public:
     // Input/output type
@@ -36,64 +36,64 @@ namespace Stockfish::Eval::NNUE::Layers {
     static_assert(std::is_same<InputType, std::uint8_t>::value, "");
 
     // Number of input/output dimensions
-    static constexpr IndexType kInputDimensions =
-        PreviousLayer::kOutputDimensions;
-    static constexpr IndexType kOutputDimensions = OutputDimensions;
-    static constexpr IndexType kPaddedInputDimensions =
-        CeilToMultiple<IndexType>(kInputDimensions, kMaxSimdWidth);
+    static constexpr IndexType InputDimensions =
+        PreviousLayer::OutputDimensions;
+    static constexpr IndexType OutputDimensions = OutDims;
+    static constexpr IndexType PaddedInputDimensions =
+        ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
 #if defined (USE_AVX512)
-    static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 2;
+    static constexpr const IndexType OutputSimdWidth = SimdWidth / 2;
 #elif defined (USE_SSSE3)
-    static constexpr const IndexType kOutputSimdWidth = kSimdWidth / 4;
+    static constexpr const IndexType OutputSimdWidth = SimdWidth / 4;
 #endif
 
     // Size of forward propagation buffer used in this layer
-    static constexpr std::size_t kSelfBufferSize =
-        CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
+    static constexpr std::size_t SelfBufferSize =
+        ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
 
     // Size of the forward propagation buffer used from the input layer to this layer
-    static constexpr std::size_t kBufferSize =
-        PreviousLayer::kBufferSize + kSelfBufferSize;
+    static constexpr std::size_t BufferSize =
+        PreviousLayer::BufferSize + SelfBufferSize;
 
     // Hash value embedded in the evaluation file
-    static constexpr std::uint32_t GetHashValue() {
-      std::uint32_t hash_value = 0xCC03DAE4u;
-      hash_value += kOutputDimensions;
-      hash_value ^= PreviousLayer::GetHashValue() >> 1;
-      hash_value ^= PreviousLayer::GetHashValue() << 31;
-      return hash_value;
+    static constexpr std::uint32_t get_hash_value() {
+      std::uint32_t hashValue = 0xCC03DAE4u;
+      hashValue += OutputDimensions;
+      hashValue ^= PreviousLayer::get_hash_value() >> 1;
+      hashValue ^= PreviousLayer::get_hash_value() << 31;
+      return hashValue;
     }
 
-   // Read network parameters
-    bool ReadParameters(std::istream& stream) {
-      if (!previous_layer_.ReadParameters(stream)) return false;
-      for (std::size_t i = 0; i < kOutputDimensions; ++i)
-        biases_[i] = read_little_endian<BiasType>(stream);
-      for (std::size_t i = 0; i < kOutputDimensions * kPaddedInputDimensions; ++i)
+    // Read network parameters
+    bool read_parameters(std::istream& stream) {
+      if (!previousLayer.read_parameters(stream)) return false;
+      for (std::size_t i = 0; i < OutputDimensions; ++i)
+        biases[i] = read_little_endian<BiasType>(stream);
+      for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
 #if !defined (USE_SSSE3)
-        weights_[i] = read_little_endian<WeightType>(stream);
+        weights[i] = read_little_endian<WeightType>(stream);
 #else
-        weights_[
-          (i / 4) % (kPaddedInputDimensions / 4) * kOutputDimensions * 4 +
-          i / kPaddedInputDimensions * 4 +
+        weights[
+          (i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
+          i / PaddedInputDimensions * 4 +
           i % 4
         ] = read_little_endian<WeightType>(stream);
 
       // Determine if eights of weight and input products can be summed using 16bits
       // without saturation. We assume worst case combinations of 0 and 127 for all inputs.
-      if (kOutputDimensions > 1 && !stream.fail())
+      if (OutputDimensions > 1 && !stream.fail())
       {
           canSaturate16.count = 0;
 #if !defined(USE_VNNI)
-          for (IndexType i = 0; i < kPaddedInputDimensions; i += 16)
-              for (IndexType j = 0; j < kOutputDimensions; ++j)
+          for (IndexType i = 0; i < PaddedInputDimensions; i += 16)
+              for (IndexType j = 0; j < OutputDimensions; ++j)
                   for (int x = 0; x < 2; ++x)
                   {
-                      WeightType* w = &weights_[i * kOutputDimensions + j * 4 + x * 2];
+                      WeightType* w = &weights[i * OutputDimensions + j * 4 + x * 2];
                       int sum[2] = {0, 0};
                       for (int k = 0; k < 8; ++k)
                       {
-                          IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
+                          IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
                           sum[w[idx] < 0] += w[idx];
                       }
                       for (int sign : { -1, 1 })
@@ -102,12 +102,12 @@ namespace Stockfish::Eval::NNUE::Layers {
                               int maxK = 0, maxW = 0;
                               for (int k = 0; k < 8; ++k)
                               {
-                                  IndexType idx = k / 2 * kOutputDimensions * 4 + k % 2;
+                                  IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
                                   if (maxW < sign * w[idx])
                                       maxK = k, maxW = sign * w[idx];
                               }
 
-                              IndexType idx = maxK / 2 * kOutputDimensions * 4 + maxK % 2;
+                              IndexType idx = maxK / 2 * OutputDimensions * 4 + maxK % 2;
                               sum[sign == -1] -= w[idx];
                               canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
                               w[idx] = 0;
@@ -126,14 +126,14 @@ namespace Stockfish::Eval::NNUE::Layers {
     }
 
     // Forward propagation
-    const OutputType* Propagate(
-        const TransformedFeatureType* transformed_features, char* buffer) const {
-      const auto input = previous_layer_.Propagate(
-          transformed_features, buffer + kSelfBufferSize);
+    const OutputType* propagate(
+        const TransformedFeatureType* transformedFeatures, char* buffer) const {
+      const auto input = previousLayer.propagate(
+          transformedFeatures, buffer + SelfBufferSize);
 
 #if defined (USE_AVX512)
 
-      [[maybe_unused]] const __m512i kOnes512 = _mm512_set1_epi16(1);
+      [[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1);
 
       [[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int {
         return _mm512_reduce_add_epi32(sum) + bias;
@@ -144,7 +144,7 @@ namespace Stockfish::Eval::NNUE::Layers {
         acc = _mm512_dpbusd_epi32(acc, a, b);
 #else
         __m512i product0 = _mm512_maddubs_epi16(a, b);
-        product0 = _mm512_madd_epi16(product0, kOnes512);
+        product0 = _mm512_madd_epi16(product0, Ones512);
         acc = _mm512_add_epi32(acc, product0);
 #endif
       };
@@ -164,7 +164,7 @@ namespace Stockfish::Eval::NNUE::Layers {
         product0 = _mm512_add_epi16(product0, product1);
         product2 = _mm512_add_epi16(product2, product3);
         product0 = _mm512_add_epi16(product0, product2);
-        product0 = _mm512_madd_epi16(product0, kOnes512);
+        product0 = _mm512_madd_epi16(product0, Ones512);
         acc = _mm512_add_epi32(acc, product0);
 #endif
       };
@@ -172,7 +172,7 @@ namespace Stockfish::Eval::NNUE::Layers {
 #endif
 #if defined (USE_AVX2)
 
-      [[maybe_unused]] const __m256i kOnes256 = _mm256_set1_epi16(1);
+      [[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1);
 
       [[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int {
         __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
@@ -186,7 +186,7 @@ namespace Stockfish::Eval::NNUE::Layers {
         acc = _mm256_dpbusd_epi32(acc, a, b);
 #else
         __m256i product0 = _mm256_maddubs_epi16(a, b);
-        product0 = _mm256_madd_epi16(product0, kOnes256);
+        product0 = _mm256_madd_epi16(product0, Ones256);
         acc = _mm256_add_epi32(acc, product0);
 #endif
       };
@@ -206,7 +206,7 @@ namespace Stockfish::Eval::NNUE::Layers {
         product0 = _mm256_add_epi16(product0, product1);
         product2 = _mm256_add_epi16(product2, product3);
         product0 = _mm256_add_epi16(product0, product2);
-        product0 = _mm256_madd_epi16(product0, kOnes256);
+        product0 = _mm256_madd_epi16(product0, Ones256);
         acc = _mm256_add_epi32(acc, product0);
 #endif
       };
@@ -214,7 +214,7 @@ namespace Stockfish::Eval::NNUE::Layers {
 #endif
 #if defined (USE_SSSE3)
 
-      [[maybe_unused]] const __m128i kOnes128 = _mm_set1_epi16(1);
+      [[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1);
 
       [[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int {
         sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
@@ -224,7 +224,7 @@ namespace Stockfish::Eval::NNUE::Layers {
 
       [[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
         __m128i product0 = _mm_maddubs_epi16(a, b);
-        product0 = _mm_madd_epi16(product0, kOnes128);
+        product0 = _mm_madd_epi16(product0, Ones128);
         acc = _mm_add_epi32(acc, product0);
       };
 
@@ -237,7 +237,7 @@ namespace Stockfish::Eval::NNUE::Layers {
         product0 = _mm_add_epi16(product0, product1);
         product2 = _mm_add_epi16(product2, product3);
         product0 = _mm_add_epi16(product0, product2);
-        product0 = _mm_madd_epi16(product0, kOnes128);
+        product0 = _mm_madd_epi16(product0, Ones128);
         acc = _mm_add_epi32(acc, product0);
       };
 
@@ -269,71 +269,71 @@ namespace Stockfish::Eval::NNUE::Layers {
 #if defined (USE_SSSE3)
 
       const auto output = reinterpret_cast<OutputType*>(buffer);
-      const auto input_vector = reinterpret_cast<const vec_t*>(input);
+      const auto inputVector = reinterpret_cast<const vec_t*>(input);
 
-      static_assert(kOutputDimensions % kOutputSimdWidth == 0 || kOutputDimensions == 1);
+      static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);
 
-      // kOutputDimensions is either 1 or a multiple of kSimdWidth
+      // OutputDimensions is either 1 or a multiple of SimdWidth
       // because then it is also an input dimension.
-      if constexpr (kOutputDimensions % kOutputSimdWidth == 0)
+      if constexpr (OutputDimensions % OutputSimdWidth == 0)
       {
-          constexpr IndexType kNumChunks = kPaddedInputDimensions / 4;
+          constexpr IndexType NumChunks = PaddedInputDimensions / 4;
 
           const auto input32 = reinterpret_cast<const std::int32_t*>(input);
           vec_t* outptr = reinterpret_cast<vec_t*>(output);
-          std::memcpy(output, biases_, kOutputDimensions * sizeof(OutputType));
+          std::memcpy(output, biasesOutputDimensions * sizeof(OutputType));
 
-          for (int i = 0; i < (int)kNumChunks - 3; i += 4)
+          for (int i = 0; i < (int)NumChunks - 3; i += 4)
           {
               const vec_t in0 = vec_set_32(input32[i + 0]);
               const vec_t in1 = vec_set_32(input32[i + 1]);
               const vec_t in2 = vec_set_32(input32[i + 2]);
               const vec_t in3 = vec_set_32(input32[i + 3]);
-              const auto col0 = reinterpret_cast<const vec_t*>(&weights_[(i + 0) * kOutputDimensions * 4]);
-              const auto col1 = reinterpret_cast<const vec_t*>(&weights_[(i + 1) * kOutputDimensions * 4]);
-              const auto col2 = reinterpret_cast<const vec_t*>(&weights_[(i + 2) * kOutputDimensions * 4]);
-              const auto col3 = reinterpret_cast<const vec_t*>(&weights_[(i + 3) * kOutputDimensions * 4]);
-              for (int j = 0; j * kOutputSimdWidth < kOutputDimensions; ++j)
+              const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
+              const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
+              const auto col2 = reinterpret_cast<const vec_t*>(&weights[(i + 2) * OutputDimensions * 4]);
+              const auto col3 = reinterpret_cast<const vec_t*>(&weights[(i + 3) * OutputDimensions * 4]);
+              for (int j = 0; j * OutputSimdWidth < OutputDimensions; ++j)
                   vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
           }
           for (int i = 0; i < canSaturate16.count; ++i)
               output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
       }
-      else if constexpr (kOutputDimensions == 1)
+      else if constexpr (OutputDimensions == 1)
       {
 #if defined (USE_AVX512)
-          if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) != 0)
+          if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0)
           {
-              constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-              const auto input_vector256 = reinterpret_cast<const __m256i*>(input);
+              constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
+              const auto inputVector256 = reinterpret_cast<const __m256i*>(input);
 
               __m256i sum0 = _mm256_setzero_si256();
-              const auto row0 = reinterpret_cast<const __m256i*>(&weights_[0]);
+              const auto row0 = reinterpret_cast<const __m256i*>(&weights[0]);
 
-              for (int j = 0; j < (int)kNumChunks; ++j)
+              for (int j = 0; j < (int)NumChunks; ++j)
               {
-                  const __m256i in = input_vector256[j];
+                  const __m256i in = inputVector256[j];
                   m256_add_dpbusd_epi32(sum0, in, row0[j]);
               }
-              output[0] = m256_hadd(sum0, biases_[0]);
+              output[0] = m256_hadd(sum0, biases[0]);
           }
           else
 #endif
           {
 #if defined (USE_AVX512)
-              constexpr IndexType kNumChunks = kPaddedInputDimensions / (kSimdWidth * 2);
+              constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2);
 #else
-              constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
+              constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
 #endif
               vec_t sum0 = vec_setzero();
-              const auto row0 = reinterpret_cast<const vec_t*>(&weights_[0]);
+              const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
 
-              for (int j = 0; j < (int)kNumChunks; ++j)
+              for (int j = 0; j < (int)NumChunks; ++j)
               {
-                  const vec_t in = input_vector[j];
+                  const vec_t in = inputVector[j];
                   vec_add_dpbusd_32(sum0, in, row0[j]);
               }
-              output[0] = vec_hadd(sum0, biases_[0]);
+              output[0] = vec_hadd(sum0, biases[0]);
           }
       }
 
@@ -344,80 +344,80 @@ namespace Stockfish::Eval::NNUE::Layers {
       auto output = reinterpret_cast<OutputType*>(buffer);
 
 #if defined(USE_SSE2)
-      constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-      const __m128i kZeros = _mm_setzero_si128();
-      const auto input_vector = reinterpret_cast<const __m128i*>(input);
+      constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
+      const __m128i Zeros = _mm_setzero_si128();
+      const auto inputVector = reinterpret_cast<const __m128i*>(input);
 
 #elif defined(USE_MMX)
-      constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-      const __m64 kZeros = _mm_setzero_si64();
-      const auto input_vector = reinterpret_cast<const __m64*>(input);
+      constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
+      const __m64 Zeros = _mm_setzero_si64();
+      const auto inputVector = reinterpret_cast<const __m64*>(input);
 
 #elif defined(USE_NEON)
-      constexpr IndexType kNumChunks = kPaddedInputDimensions / kSimdWidth;
-      const auto input_vector = reinterpret_cast<const int8x8_t*>(input);
+      constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
+      const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
 #endif
 
-      for (IndexType i = 0; i < kOutputDimensions; ++i) {
-        const IndexType offset = i * kPaddedInputDimensions;
+      for (IndexType i = 0; i < OutputDimensions; ++i) {
+        const IndexType offset = i * PaddedInputDimensions;
 
 #if defined(USE_SSE2)
-        __m128i sum_lo = _mm_cvtsi32_si128(biases_[i]);
-        __m128i sum_hi = kZeros;
-        const auto row = reinterpret_cast<const __m128i*>(&weights_[offset]);
-        for (IndexType j = 0; j < kNumChunks; ++j) {
+        __m128i sumLo = _mm_cvtsi32_si128(biases[i]);
+        __m128i sumHi = Zeros;
+        const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
+        for (IndexType j = 0; j < NumChunks; ++j) {
           __m128i row_j = _mm_load_si128(&row[j]);
-          __m128i input_j = _mm_load_si128(&input_vector[j]);
-          __m128i extended_row_lo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
-          __m128i extended_row_hi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
-          __m128i extended_input_lo = _mm_unpacklo_epi8(input_j, kZeros);
-          __m128i extended_input_hi = _mm_unpackhi_epi8(input_j, kZeros);
-          __m128i product_lo = _mm_madd_epi16(extended_row_lo, extended_input_lo);
-          __m128i product_hi = _mm_madd_epi16(extended_row_hi, extended_input_hi);
-          sum_lo = _mm_add_epi32(sum_lo, product_lo);
-          sum_hi = _mm_add_epi32(sum_hi, product_hi);
+          __m128i input_j = _mm_load_si128(&inputVector[j]);
+          __m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
+          __m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
+          __m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
+          __m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
+          __m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
+          __m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
+          sumLo = _mm_add_epi32(sumLo, productLo);
+          sumHi = _mm_add_epi32(sumHi, productHi);
         }
-        __m128i sum = _mm_add_epi32(sum_lo, sum_hi);
-        __m128i sum_high_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
-        sum = _mm_add_epi32(sum, sum_high_64);
+        __m128i sum = _mm_add_epi32(sumLo, sumHi);
+        __m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
+        sum = _mm_add_epi32(sum, sumHigh_64);
         __m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
         sum = _mm_add_epi32(sum, sum_second_32);
         output[i] = _mm_cvtsi128_si32(sum);
 
 #elif defined(USE_MMX)
-        __m64 sum_lo = _mm_cvtsi32_si64(biases_[i]);
-        __m64 sum_hi = kZeros;
-        const auto row = reinterpret_cast<const __m64*>(&weights_[offset]);
-        for (IndexType j = 0; j < kNumChunks; ++j) {
+        __m64 sumLo = _mm_cvtsi32_si64(biases[i]);
+        __m64 sumHi = Zeros;
+        const auto row = reinterpret_cast<const __m64*>(&weights[offset]);
+        for (IndexType j = 0; j < NumChunks; ++j) {
           __m64 row_j = row[j];
-          __m64 input_j = input_vector[j];
-          __m64 extended_row_lo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
-          __m64 extended_row_hi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
-          __m64 extended_input_lo = _mm_unpacklo_pi8(input_j, kZeros);
-          __m64 extended_input_hi = _mm_unpackhi_pi8(input_j, kZeros);
-          __m64 product_lo = _mm_madd_pi16(extended_row_lo, extended_input_lo);
-          __m64 product_hi = _mm_madd_pi16(extended_row_hi, extended_input_hi);
-          sum_lo = _mm_add_pi32(sum_lo, product_lo);
-          sum_hi = _mm_add_pi32(sum_hi, product_hi);
+          __m64 input_j = inputVector[j];
+          __m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
+          __m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
+          __m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros);
+          __m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros);
+          __m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo);
+          __m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi);
+          sumLo = _mm_add_pi32(sumLo, productLo);
+          sumHi = _mm_add_pi32(sumHi, productHi);
         }
-        __m64 sum = _mm_add_pi32(sum_lo, sum_hi);
+        __m64 sum = _mm_add_pi32(sumLo, sumHi);
         sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
         output[i] = _mm_cvtsi64_si32(sum);
 
 #elif defined(USE_NEON)
-        int32x4_t sum = {biases_[i]};
-        const auto row = reinterpret_cast<const int8x8_t*>(&weights_[offset]);
-        for (IndexType j = 0; j < kNumChunks; ++j) {
-          int16x8_t product = vmull_s8(input_vector[j * 2], row[j * 2]);
-          product = vmlal_s8(product, input_vector[j * 2 + 1], row[j * 2 + 1]);
+        int32x4_t sum = {biases[i]};
+        const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
+        for (IndexType j = 0; j < NumChunks; ++j) {
+          int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
+          product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
           sum = vpadalq_s16(sum, product);
         }
         output[i] = sum[0] + sum[1] + sum[2] + sum[3];
 
 #else
-        OutputType sum = biases_[i];
-        for (IndexType j = 0; j < kInputDimensions; ++j) {
-          sum += weights_[offset + j] * input[j];
+        OutputType sum = biases[i];
+        for (IndexType j = 0; j < InputDimensions; ++j) {
+          sum += weights[offset + j] * input[j];
         }
         output[i] = sum;
 #endif
@@ -436,10 +436,10 @@ namespace Stockfish::Eval::NNUE::Layers {
     using BiasType = OutputType;
     using WeightType = std::int8_t;
 
-    PreviousLayer previous_layer_;
+    PreviousLayer previousLayer;
 
-    alignas(kCacheLineSize) BiasType biases_[kOutputDimensions];
-    alignas(kCacheLineSize) WeightType weights_[kOutputDimensions * kPaddedInputDimensions];
+    alignas(CacheLineSize) BiasType biases[OutputDimensions];
+    alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
 #if defined (USE_SSSE3)
     struct CanSaturate {
         int count;
@@ -447,7 +447,7 @@ namespace Stockfish::Eval::NNUE::Layers {
             uint16_t out;
             uint16_t in;
             int8_t w;
-        } ids[kPaddedInputDimensions * kOutputDimensions * 3 / 4];
+        } ids[PaddedInputDimensions * OutputDimensions * 3 / 4];
 
         void add(int i, int j, int8_t w) {
             ids[count].out = i;