X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;fp=src%2Fbitboard.h;h=7dbd5329be82abe8caaf5f07b163f8e4234b3a40;hp=d21d390b1fbe825b9a73e8c9c579996fb66c0965;hb=bfee35f930bac95b646b1821339f342c70aac2f6;hpb=487c21b1aa64dcc09dd95b845a66f39ae3c3754e diff --git a/src/bitboard.h b/src/bitboard.h index d21d390b..7dbd5329 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -19,6 +19,11 @@ #ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include +#include +#include +#include +#include #include #include "types.h" @@ -27,13 +32,10 @@ namespace Stockfish { namespace Bitboards { -void init(); +void init(); std::string pretty(Bitboard b); -} // namespace Stockfish::Bitboards - -constexpr Bitboard AllSquares = ~Bitboard(0); -constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; +} // namespace Stockfish::Bitboards constexpr Bitboard FileABB = 0x0101010101010101ULL; constexpr Bitboard FileBBB = FileABB << 1; @@ -53,17 +55,6 @@ constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); -constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB; -constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; -constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; -constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); - -constexpr Bitboard KingFlank[FILE_NB] = { - QueenSide ^ FileDBB, QueenSide, QueenSide, - CenterFiles, CenterFiles, - KingSide, KingSide, KingSide ^ FileEBB -}; - extern uint8_t PopCnt16[1 << 16]; extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; @@ -73,371 +64,311 @@ extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; -/// Magic holds all magic bitboards relevant data for a single square +// Magic holds all magic bitboards relevant data for a single square struct Magic { - Bitboard mask; - Bitboard magic; - Bitboard* attacks; - unsigned shift; + Bitboard mask; + Bitboard magic; + Bitboard* attacks; + unsigned shift; - // Compute the attack's index using the 'magic bitboards' approach - unsigned index(Bitboard occupied) const { + // Compute the attack's index using the 'magic bitboards' approach + unsigned index(Bitboard occupied) const { - if (HasPext) - return unsigned(pext(occupied, mask)); + if (HasPext) + return unsigned(pext(occupied, mask)); - if (Is64Bit) - return unsigned(((occupied & mask) * magic) >> shift); + if (Is64Bit) + return unsigned(((occupied & mask) * magic) >> shift); - unsigned lo = unsigned(occupied) & unsigned(mask); - unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); - return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; - } + unsigned lo = unsigned(occupied) & unsigned(mask); + unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); + return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; + } }; extern Magic RookMagics[SQUARE_NB]; extern Magic BishopMagics[SQUARE_NB]; inline Bitboard square_bb(Square s) { - assert(is_ok(s)); - return (1ULL << s); + assert(is_ok(s)); + return (1ULL << s); } -/// Overloads of bitwise operators between a Bitboard and a Square for testing -/// whether a given bit is set in a bitboard, and for setting and clearing bits. +// Overloads of bitwise operators between a Bitboard and a Square for testing +// whether a given bit is set in a bitboard, and for setting and clearing bits. -inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } -inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } -inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } +inline Bitboard operator&(Bitboard b, Square s) { return b & square_bb(s); } +inline Bitboard operator|(Bitboard b, Square s) { return b | square_bb(s); } +inline Bitboard operator^(Bitboard b, Square s) { return b ^ square_bb(s); } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } -inline Bitboard operator&(Square s, Bitboard b) { return b & s; } -inline Bitboard operator|(Square s, Bitboard b) { return b | s; } -inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } - -inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; } +inline Bitboard operator&(Square s, Bitboard b) { return b & s; } +inline Bitboard operator|(Square s, Bitboard b) { return b | s; } +inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } -constexpr bool more_than_one(Bitboard b) { - return b & (b - 1); -} - - -constexpr bool opposite_colors(Square s1, Square s2) { - return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1; -} +inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; } +constexpr bool more_than_one(Bitboard b) { return b & (b - 1); } -/// rank_bb() and file_bb() return a bitboard representing all the squares on -/// the given file or rank. -constexpr Bitboard rank_bb(Rank r) { - return Rank1BB << (8 * r); -} +// rank_bb() and file_bb() return a bitboard representing all the squares on +// the given file or rank. -constexpr Bitboard rank_bb(Square s) { - return rank_bb(rank_of(s)); -} +constexpr Bitboard rank_bb(Rank r) { return Rank1BB << (8 * r); } -constexpr Bitboard file_bb(File f) { - return FileABB << f; -} +constexpr Bitboard rank_bb(Square s) { return rank_bb(rank_of(s)); } -constexpr Bitboard file_bb(Square s) { - return file_bb(file_of(s)); -} +constexpr Bitboard file_bb(File f) { return FileABB << f; } +constexpr Bitboard file_bb(Square s) { return file_bb(file_of(s)); } -/// shift() moves a bitboard one or two steps as specified by the direction D +// Moves a bitboard one or two steps as specified by the direction D template constexpr Bitboard shift(Bitboard b) { - return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 - : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 - : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 - : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 - : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 - : 0; -} - - -/// pawn_attacks_bb() returns the squares attacked by pawns of the given color -/// from the squares in the given bitboard. - + return D == NORTH ? b << 8 + : D == SOUTH ? b >> 8 + : D == NORTH + NORTH ? b << 16 + : D == SOUTH + SOUTH ? b >> 16 + : D == EAST ? (b & ~FileHBB) << 1 + : D == WEST ? (b & ~FileABB) >> 1 + : D == NORTH_EAST ? (b & ~FileHBB) << 9 + : D == NORTH_WEST ? (b & ~FileABB) << 7 + : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 + : D == SOUTH_WEST ? (b & ~FileABB) >> 9 + : 0; +} + + +// Returns the squares attacked by pawns of the given color +// from the squares in the given bitboard. template constexpr Bitboard pawn_attacks_bb(Bitboard b) { - return C == WHITE ? shift(b) | shift(b) - : shift(b) | shift(b); + return C == WHITE ? shift(b) | shift(b) + : shift(b) | shift(b); } inline Bitboard pawn_attacks_bb(Color c, Square s) { - assert(is_ok(s)); - return PawnAttacks[c][s]; + assert(is_ok(s)); + return PawnAttacks[c][s]; } - -/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the -/// given color from the squares in the given bitboard. - -template -constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { - return C == WHITE ? shift(b) & shift(b) - : shift(b) & shift(b); -} - - -/// adjacent_files_bb() returns a bitboard representing all the squares on the -/// adjacent files of a given square. - -constexpr Bitboard adjacent_files_bb(Square s) { - return shift(file_bb(s)) | shift(file_bb(s)); -} - - -/// line_bb() returns a bitboard representing an entire line (from board edge -/// to board edge) that intersects the two given squares. If the given squares -/// are not on a same file/rank/diagonal, the function returns 0. For instance, -/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. - +// Returns a bitboard representing an entire line (from board edge +// to board edge) that intersects the two given squares. If the given squares +// are not on a same file/rank/diagonal, the function returns 0. For instance, +// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. inline Bitboard line_bb(Square s1, Square s2) { - assert(is_ok(s1) && is_ok(s2)); + assert(is_ok(s1) && is_ok(s2)); - return LineBB[s1][s2]; + return LineBB[s1][s2]; } -/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open -/// segment between the squares s1 and s2 (excluding s1 but including s2). If the -/// given squares are not on a same file/rank/diagonal, it returns s2. For instance, -/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but -/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick -/// allows to generate non-king evasion moves faster: the defending piece must either -/// interpose itself to cover the check or capture the checking piece. - +// Returns a bitboard representing the squares in the semi-open +// segment between the squares s1 and s2 (excluding s1 but including s2). If the +// given squares are not on a same file/rank/diagonal, it returns s2. For instance, +// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but +// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick +// allows to generate non-king evasion moves faster: the defending piece must either +// interpose itself to cover the check or capture the checking piece. inline Bitboard between_bb(Square s1, Square s2) { - assert(is_ok(s1) && is_ok(s2)); + assert(is_ok(s1) && is_ok(s2)); - return BetweenBB[s1][s2]; + return BetweenBB[s1][s2]; } +// Returns true if the squares s1, s2 and s3 are aligned either on a +// straight or on a diagonal line. +inline bool aligned(Square s1, Square s2, Square s3) { return line_bb(s1, s2) & s3; } -/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in -/// front of the given one, from the point of view of the given color. For instance, -/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. - -constexpr Bitboard forward_ranks_bb(Color c, Square s) { - return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s) - : ~Rank8BB >> 8 * relative_rank(BLACK, s); -} +// distance() functions return the distance between x and y, defined as the +// number of steps for a king in x to reach y. -/// forward_file_bb() returns a bitboard representing all the squares along the -/// line in front of the given one, from the point of view of the given color. +template +inline int distance(Square x, Square y); -constexpr Bitboard forward_file_bb(Color c, Square s) { - return forward_ranks_bb(c, s) & file_bb(s); +template<> +inline int distance(Square x, Square y) { + return std::abs(file_of(x) - file_of(y)); } - -/// pawn_attack_span() returns a bitboard representing all the squares that can -/// be attacked by a pawn of the given color when it moves along its file, starting -/// from the given square. - -constexpr Bitboard pawn_attack_span(Color c, Square s) { - return forward_ranks_bb(c, s) & adjacent_files_bb(s); +template<> +inline int distance(Square x, Square y) { + return std::abs(rank_of(x) - rank_of(y)); } - -/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of -/// the given color and on the given square is a passed pawn. - -constexpr Bitboard passed_pawn_span(Color c, Square s) { - return pawn_attack_span(c, s) | forward_file_bb(c, s); +template<> +inline int distance(Square x, Square y) { + return SquareDistance[x][y]; } - -/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a -/// straight or on a diagonal line. - -inline bool aligned(Square s1, Square s2, Square s3) { - return line_bb(s1, s2) & s3; -} - - -/// distance() functions return the distance between x and y, defined as the -/// number of steps for a king in x to reach y. - -template inline int distance(Square x, Square y); -template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } -template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } -template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } - inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } -inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); } - - -/// attacks_bb(Square) returns the pseudo attacks of the give piece type -/// assuming an empty board. +// Returns the pseudo attacks of the given piece type +// assuming an empty board. template inline Bitboard attacks_bb(Square s) { - assert((Pt != PAWN) && (is_ok(s))); + assert((Pt != PAWN) && (is_ok(s))); - return PseudoAttacks[Pt][s]; + return PseudoAttacks[Pt][s]; } -/// attacks_bb(Square, Bitboard) returns the attacks by the given piece -/// assuming the board is occupied according to the passed Bitboard. -/// Sliding piece attacks do not continue passed an occupied square. - +// Returns the attacks by the given piece +// assuming the board is occupied according to the passed Bitboard. +// Sliding piece attacks do not continue passed an occupied square. template inline Bitboard attacks_bb(Square s, Bitboard occupied) { - assert((Pt != PAWN) && (is_ok(s))); + assert((Pt != PAWN) && (is_ok(s))); - switch (Pt) - { - case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; - case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)]; - case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); - default : return PseudoAttacks[Pt][s]; - } + switch (Pt) + { + case BISHOP : + return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; + case ROOK : + return RookMagics[s].attacks[RookMagics[s].index(occupied)]; + case QUEEN : + return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : + return PseudoAttacks[Pt][s]; + } } +// Returns the attacks by the given piece +// assuming the board is occupied according to the passed Bitboard. +// Sliding piece attacks do not continue passed an occupied square. inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { - assert((pt != PAWN) && (is_ok(s))); + assert((pt != PAWN) && (is_ok(s))); - switch (pt) - { - case BISHOP: return attacks_bb(s, occupied); - case ROOK : return attacks_bb< ROOK>(s, occupied); - case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); - default : return PseudoAttacks[pt][s]; - } + switch (pt) + { + case BISHOP : + return attacks_bb(s, occupied); + case ROOK : + return attacks_bb(s, occupied); + case QUEEN : + return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : + return PseudoAttacks[pt][s]; + } } -/// popcount() counts the number of non-zero bits in a bitboard - +// Counts the number of non-zero bits in a bitboard. inline int popcount(Bitboard b) { #ifndef USE_POPCNT - union { Bitboard bb; uint16_t u[4]; } v = { b }; - return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; + union { + Bitboard bb; + uint16_t u[4]; + } v = {b}; + return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; -#elif defined(_MSC_VER) || defined(__INTEL_COMPILER) +#elif defined(_MSC_VER) - return (int)_mm_popcnt_u64(b); + return int(_mm_popcnt_u64(b)); -#else // Assumed gcc or compatible compiler +#else // Assumed gcc or compatible compiler - return __builtin_popcountll(b); + return __builtin_popcountll(b); #endif } +// Returns the least significant bit in a non-zero bitboard. +inline Square lsb(Bitboard b) { + assert(b); -/// lsb() and msb() return the least/most significant bit in a non-zero bitboard - -#if defined(__GNUC__) // GCC, Clang, ICC +#if defined(__GNUC__) // GCC, Clang, ICX -inline Square lsb(Bitboard b) { - assert(b); - return Square(__builtin_ctzll(b)); -} + return Square(__builtin_ctzll(b)); -inline Square msb(Bitboard b) { - assert(b); - return Square(63 ^ __builtin_clzll(b)); -} +#elif defined(_MSC_VER) + #ifdef _WIN64 // MSVC, WIN64 -#elif defined(_MSC_VER) // MSVC + unsigned long idx; + _BitScanForward64(&idx, b); + return Square(idx); -#ifdef _WIN64 // MSVC, WIN64 + #else // MSVC, WIN32 + unsigned long idx; -inline Square lsb(Bitboard b) { - assert(b); - unsigned long idx; - _BitScanForward64(&idx, b); - return (Square) idx; + if (b & 0xffffffff) + { + _BitScanForward(&idx, int32_t(b)); + return Square(idx); + } + else + { + _BitScanForward(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } + #endif +#else // Compiler is neither GCC nor MSVC compatible + #error "Compiler not supported." +#endif } +// Returns the most significant bit in a non-zero bitboard. inline Square msb(Bitboard b) { - assert(b); - unsigned long idx; - _BitScanReverse64(&idx, b); - return (Square) idx; -} + assert(b); -#else // MSVC, WIN32 +#if defined(__GNUC__) // GCC, Clang, ICX -inline Square lsb(Bitboard b) { - assert(b); - unsigned long idx; - - if (b & 0xffffffff) { - _BitScanForward(&idx, int32_t(b)); - return Square(idx); - } else { - _BitScanForward(&idx, int32_t(b >> 32)); - return Square(idx + 32); - } -} + return Square(63 ^ __builtin_clzll(b)); -inline Square msb(Bitboard b) { - assert(b); - unsigned long idx; - - if (b >> 32) { - _BitScanReverse(&idx, int32_t(b >> 32)); - return Square(idx + 32); - } else { - _BitScanReverse(&idx, int32_t(b)); - return Square(idx); - } -} +#elif defined(_MSC_VER) + #ifdef _WIN64 // MSVC, WIN64 -#endif + unsigned long idx; + _BitScanReverse64(&idx, b); + return Square(idx); -#else // Compiler is neither GCC nor MSVC compatible + #else // MSVC, WIN32 -#error "Compiler not supported." + unsigned long idx; + if (b >> 32) + { + _BitScanReverse(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } + else + { + _BitScanReverse(&idx, int32_t(b)); + return Square(idx); + } + #endif +#else // Compiler is neither GCC nor MSVC compatible + #error "Compiler not supported." #endif +} -/// least_significant_square_bb() returns the bitboard of the least significant -/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)). - +// Returns the bitboard of the least significant +// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)). inline Bitboard least_significant_square_bb(Bitboard b) { - assert(b); - return b & -b; + assert(b); + return b & -b; } -/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard - +// Finds and clears the least significant bit in a non-zero bitboard. inline Square pop_lsb(Bitboard& b) { - assert(b); - const Square s = lsb(b); - b &= b - 1; - return s; -} - - -/// frontmost_sq() returns the most advanced square for the given color, -/// requires a non-zero bitboard. -inline Square frontmost_sq(Color c, Bitboard b) { - assert(b); - return c == WHITE ? msb(b) : lsb(b); + assert(b); + const Square s = lsb(b); + b &= b - 1; + return s; } -} // namespace Stockfish +} // namespace Stockfish -#endif // #ifndef BITBOARD_H_INCLUDED +#endif // #ifndef BITBOARD_H_INCLUDED