]> git.sesse.net Git - ffmpeg/blob - libavcodec/aacenc_utils.h
avfilter/avfilter: Remove deprecated avfilter_link_set_closed()
[ffmpeg] / libavcodec / aacenc_utils.h
1 /*
2  * AAC encoder utilities
3  * Copyright (C) 2015 Rostislav Pehlivanov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC encoder utilities
25  * @author Rostislav Pehlivanov ( atomnuker gmail com )
26  */
27
28 #ifndef AVCODEC_AACENC_UTILS_H
29 #define AVCODEC_AACENC_UTILS_H
30
31 #include "libavutil/ffmath.h"
32 #include "aac.h"
33 #include "aacenctab.h"
34 #include "aactab.h"
35
36 #define ROUND_STANDARD 0.4054f
37 #define ROUND_TO_ZERO 0.1054f
38 #define C_QUANT 0.4054f
39
40 static inline void abs_pow34_v(float *out, const float *in, const int size)
41 {
42     int i;
43     for (i = 0; i < size; i++) {
44         float a = fabsf(in[i]);
45         out[i] = sqrtf(a * sqrtf(a));
46     }
47 }
48
49 static inline float pos_pow34(float a)
50 {
51     return sqrtf(a * sqrtf(a));
52 }
53
54 /**
55  * Quantize one coefficient.
56  * @return absolute value of the quantized coefficient
57  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
58  */
59 static inline int quant(float coef, const float Q, const float rounding)
60 {
61     float a = coef * Q;
62     return sqrtf(a * sqrtf(a)) + rounding;
63 }
64
65 static inline void quantize_bands(int *out, const float *in, const float *scaled,
66                                   int size, int is_signed, int maxval, const float Q34,
67                                   const float rounding)
68 {
69     int i;
70     for (i = 0; i < size; i++) {
71         float qc = scaled[i] * Q34;
72         int tmp = (int)FFMIN(qc + rounding, (float)maxval);
73         if (is_signed && in[i] < 0.0f) {
74             tmp = -tmp;
75         }
76         out[i] = tmp;
77     }
78 }
79
80 static inline float find_max_val(int group_len, int swb_size, const float *scaled)
81 {
82     float maxval = 0.0f;
83     int w2, i;
84     for (w2 = 0; w2 < group_len; w2++) {
85         for (i = 0; i < swb_size; i++) {
86             maxval = FFMAX(maxval, scaled[w2*128+i]);
87         }
88     }
89     return maxval;
90 }
91
92 static inline int find_min_book(float maxval, int sf)
93 {
94     float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
95     int qmaxval, cb;
96     qmaxval = maxval * Q34 + C_QUANT;
97     if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
98         cb = 11;
99     else
100         cb = aac_maxval_cb[qmaxval];
101     return cb;
102 }
103
104 static inline float find_form_factor(int group_len, int swb_size, float thresh,
105                                      const float *scaled, float nzslope) {
106     const float iswb_size = 1.0f / swb_size;
107     const float iswb_sizem1 = 1.0f / (swb_size - 1);
108     const float ethresh = thresh;
109     float form = 0.0f, weight = 0.0f;
110     int w2, i;
111     for (w2 = 0; w2 < group_len; w2++) {
112         float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
113         float nzl = 0;
114         for (i = 0; i < swb_size; i++) {
115             float s = fabsf(scaled[w2*128+i]);
116             maxval = FFMAX(maxval, s);
117             e += s;
118             e2 += s *= s;
119             /* We really don't want a hard non-zero-line count, since
120              * even below-threshold lines do add up towards band spectral power.
121              * So, fall steeply towards zero, but smoothly
122              */
123             if (s >= ethresh) {
124                 nzl += 1.0f;
125             } else {
126                 if (nzslope == 2.f)
127                     nzl += (s / ethresh) * (s / ethresh);
128                 else
129                     nzl += ff_fast_powf(s / ethresh, nzslope);
130             }
131         }
132         if (e2 > thresh) {
133             float frm;
134             e *= iswb_size;
135
136             /** compute variance */
137             for (i = 0; i < swb_size; i++) {
138                 float d = fabsf(scaled[w2*128+i]) - e;
139                 var += d*d;
140             }
141             var = sqrtf(var * iswb_sizem1);
142
143             e2 *= iswb_size;
144             frm = e / FFMIN(e+4*var,maxval);
145             form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
146             weight += e2;
147         }
148     }
149     if (weight > 0) {
150         return form / weight;
151     } else {
152         return 1.0f;
153     }
154 }
155
156 /** Return the minimum scalefactor where the quantized coef does not clip. */
157 static inline uint8_t coef2minsf(float coef)
158 {
159     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
160 }
161
162 /** Return the maximum scalefactor where the quantized coef is not zero. */
163 static inline uint8_t coef2maxsf(float coef)
164 {
165     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
166 }
167
168 /*
169  * Returns the closest possible index to an array of float values, given a value.
170  */
171 static inline int quant_array_idx(const float val, const float *arr, const int num)
172 {
173     int i, index = 0;
174     float quant_min_err = INFINITY;
175     for (i = 0; i < num; i++) {
176         float error = (val - arr[i])*(val - arr[i]);
177         if (error < quant_min_err) {
178             quant_min_err = error;
179             index = i;
180         }
181     }
182     return index;
183 }
184
185 /**
186  * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
187  */
188 static av_always_inline float bval2bmax(float b)
189 {
190     return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
191 }
192
193 /*
194  * Compute a nextband map to be used with SF delta constraint utilities.
195  * The nextband array should contain 128 elements, and positions that don't
196  * map to valid, nonzero bands of the form w*16+g (with w being the initial
197  * window of the window group, only) are left indetermined.
198  */
199 static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
200 {
201     unsigned char prevband = 0;
202     int w, g;
203     /** Just a safe default */
204     for (g = 0; g < 128; g++)
205         nextband[g] = g;
206
207     /** Now really navigate the nonzero band chain */
208     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
209         for (g = 0; g < sce->ics.num_swb; g++) {
210             if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
211                 prevband = nextband[prevband] = w*16+g;
212         }
213     }
214     nextband[prevband] = prevband; /* terminate */
215 }
216
217 /*
218  * Updates nextband to reflect a removed band (equivalent to
219  * calling ff_init_nextband_map after marking a band as zero)
220  */
221 static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
222 {
223     nextband[prevband] = nextband[band];
224 }
225
226 /*
227  * Checks whether the specified band could be removed without inducing
228  * scalefactor delta that violates SF delta encoding constraints.
229  * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
230  * band, in encoding order, or negative if there was no such band.
231  */
232 static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
233     const uint8_t *nextband, int prev_sf, int band)
234 {
235     return prev_sf >= 0
236         && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
237         && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
238 }
239
240 /*
241  * Checks whether the specified band's scalefactor could be replaced
242  * with another one without violating SF delta encoding constraints.
243  * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
244  * band, in encoding order, or negative if there was no such band.
245  */
246 static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
247     const uint8_t *nextband, int prev_sf, int new_sf, int band)
248 {
249     return new_sf >= (prev_sf - SCALE_MAX_DIFF)
250         && new_sf <= (prev_sf + SCALE_MAX_DIFF)
251         && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
252         && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
253 }
254
255 /**
256  * linear congruential pseudorandom number generator
257  *
258  * @param   previous_val    pointer to the current state of the generator
259  *
260  * @return  Returns a 32-bit pseudorandom integer
261  */
262 static av_always_inline int lcg_random(unsigned previous_val)
263 {
264     union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
265     return v.s;
266 }
267
268 #define ERROR_IF(cond, ...) \
269     if (cond) { \
270         av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
271         return AVERROR(EINVAL); \
272     }
273
274 #define WARN_IF(cond, ...) \
275     if (cond) { \
276         av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
277     }
278
279 #endif /* AVCODEC_AACENC_UTILS_H */