]> git.sesse.net Git - ffmpeg/blob - libavcodec/ac3enc_template.c
avformat/argo_brp: allow v1.1 ASF streams to have a non-22050 sample rate in certain...
[ffmpeg] / libavcodec / ac3enc_template.c
1 /*
2  * AC-3 encoder float/fixed template
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 /**
25  * @file
26  * AC-3 encoder float/fixed template
27  */
28
29 #include <stdint.h>
30
31 #include "libavutil/attributes.h"
32 #include "libavutil/internal.h"
33
34 #include "audiodsp.h"
35 #include "internal.h"
36 #include "ac3enc.h"
37 #include "eac3enc.h"
38
39
40 int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
41 {
42     int ch;
43
44     if (!FF_ALLOC_TYPED_ARRAY(s->windowed_samples, AC3_WINDOW_SIZE) ||
45         !FF_ALLOCZ_TYPED_ARRAY(s->planar_samples,  s->channels))
46         return AVERROR(ENOMEM);
47
48     for (ch = 0; ch < s->channels; ch++) {
49         if (!(s->planar_samples[ch] = av_mallocz((AC3_FRAME_SIZE + AC3_BLOCK_SIZE) *
50                                                   sizeof(**s->planar_samples))))
51             return AVERROR(ENOMEM);
52     }
53     return 0;
54 }
55
56
57 /*
58  * Copy input samples.
59  * Channels are reordered from FFmpeg's default order to AC-3 order.
60  */
61 static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
62 {
63     int ch;
64
65     /* copy and remap input samples */
66     for (ch = 0; ch < s->channels; ch++) {
67         /* copy last 256 samples of previous frame to the start of the current frame */
68         memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
69                AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
70
71         /* copy new samples for current frame */
72         memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
73                samples[s->channel_map[ch]],
74                AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
75     }
76 }
77
78
79 /*
80  * Apply the MDCT to input samples to generate frequency coefficients.
81  * This applies the KBD window and normalizes the input to reduce precision
82  * loss due to fixed-point calculations.
83  */
84 static void apply_mdct(AC3EncodeContext *s)
85 {
86     int blk, ch;
87
88     for (ch = 0; ch < s->channels; ch++) {
89         for (blk = 0; blk < s->num_blocks; blk++) {
90             AC3Block *block = &s->blocks[blk];
91             const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
92
93 #if CONFIG_AC3ENC_FLOAT
94             s->fdsp->vector_fmul(s->windowed_samples, input_samples,
95                                 s->mdct_window, AC3_WINDOW_SIZE);
96 #else
97             s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
98                                          s->mdct_window, AC3_WINDOW_SIZE);
99
100             if (s->fixed_point)
101                 block->coeff_shift[ch+1] = normalize_samples(s);
102 #endif
103
104             s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
105                                s->windowed_samples);
106         }
107     }
108 }
109
110
111 /*
112  * Calculate coupling channel and coupling coordinates.
113  */
114 static void apply_channel_coupling(AC3EncodeContext *s)
115 {
116     LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
117 #if CONFIG_AC3ENC_FLOAT
118     LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
119 #else
120     int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
121 #endif
122     int av_uninit(blk), ch, bnd, i, j;
123     CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
124     int cpl_start, num_cpl_coefs;
125
126     memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
127 #if CONFIG_AC3ENC_FLOAT
128     memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
129 #endif
130
131     /* align start to 16-byte boundary. align length to multiple of 32.
132         note: coupling start bin % 4 will always be 1 */
133     cpl_start     = s->start_freq[CPL_CH] - 1;
134     num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
135     cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
136
137     /* calculate coupling channel from fbw channels */
138     for (blk = 0; blk < s->num_blocks; blk++) {
139         AC3Block *block = &s->blocks[blk];
140         CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
141         if (!block->cpl_in_use)
142             continue;
143         memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
144         for (ch = 1; ch <= s->fbw_channels; ch++) {
145             CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
146             if (!block->channel_in_cpl[ch])
147                 continue;
148             for (i = 0; i < num_cpl_coefs; i++)
149                 cpl_coef[i] += ch_coef[i];
150         }
151
152         /* coefficients must be clipped in order to be encoded */
153         clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
154     }
155
156     /* calculate energy in each band in coupling channel and each fbw channel */
157     /* TODO: possibly use SIMD to speed up energy calculation */
158     bnd = 0;
159     i = s->start_freq[CPL_CH];
160     while (i < s->cpl_end_freq) {
161         int band_size = s->cpl_band_sizes[bnd];
162         for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
163             for (blk = 0; blk < s->num_blocks; blk++) {
164                 AC3Block *block = &s->blocks[blk];
165                 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
166                     continue;
167                 for (j = 0; j < band_size; j++) {
168                     CoefType v = block->mdct_coef[ch][i+j];
169                     MAC_COEF(energy[blk][ch][bnd], v, v);
170                 }
171             }
172         }
173         i += band_size;
174         bnd++;
175     }
176
177     /* calculate coupling coordinates for all blocks for all channels */
178     for (blk = 0; blk < s->num_blocks; blk++) {
179         AC3Block *block  = &s->blocks[blk];
180         if (!block->cpl_in_use)
181             continue;
182         for (ch = 1; ch <= s->fbw_channels; ch++) {
183             if (!block->channel_in_cpl[ch])
184                 continue;
185             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
186                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
187                                                           energy[blk][CPL_CH][bnd]);
188             }
189         }
190     }
191
192     /* determine which blocks to send new coupling coordinates for */
193     for (blk = 0; blk < s->num_blocks; blk++) {
194         AC3Block *block  = &s->blocks[blk];
195         AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
196
197         memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
198
199         if (block->cpl_in_use) {
200             /* send new coordinates if this is the first block, if previous
201              * block did not use coupling but this block does, the channels
202              * using coupling has changed from the previous block, or the
203              * coordinate difference from the last block for any channel is
204              * greater than a threshold value. */
205             if (blk == 0 || !block0->cpl_in_use) {
206                 for (ch = 1; ch <= s->fbw_channels; ch++)
207                     block->new_cpl_coords[ch] = 1;
208             } else {
209                 for (ch = 1; ch <= s->fbw_channels; ch++) {
210                     if (!block->channel_in_cpl[ch])
211                         continue;
212                     if (!block0->channel_in_cpl[ch]) {
213                         block->new_cpl_coords[ch] = 1;
214                     } else {
215                         CoefSumType coord_diff = 0;
216                         for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
217                             coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
218                                                 cpl_coords[blk  ][ch][bnd]);
219                         }
220                         coord_diff /= s->num_cpl_bands;
221                         if (coord_diff > NEW_CPL_COORD_THRESHOLD)
222                             block->new_cpl_coords[ch] = 1;
223                     }
224                 }
225             }
226         }
227     }
228
229     /* calculate final coupling coordinates, taking into account reusing of
230        coordinates in successive blocks */
231     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
232         blk = 0;
233         while (blk < s->num_blocks) {
234             int av_uninit(blk1);
235             AC3Block *block  = &s->blocks[blk];
236
237             if (!block->cpl_in_use) {
238                 blk++;
239                 continue;
240             }
241
242             for (ch = 1; ch <= s->fbw_channels; ch++) {
243                 CoefSumType energy_ch, energy_cpl;
244                 if (!block->channel_in_cpl[ch])
245                     continue;
246                 energy_cpl = energy[blk][CPL_CH][bnd];
247                 energy_ch = energy[blk][ch][bnd];
248                 blk1 = blk+1;
249                 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
250                     if (s->blocks[blk1].cpl_in_use) {
251                         energy_cpl += energy[blk1][CPL_CH][bnd];
252                         energy_ch += energy[blk1][ch][bnd];
253                     }
254                     blk1++;
255                 }
256                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
257             }
258             blk = blk1;
259         }
260     }
261
262     /* calculate exponents/mantissas for coupling coordinates */
263     for (blk = 0; blk < s->num_blocks; blk++) {
264         AC3Block *block = &s->blocks[blk];
265         if (!block->cpl_in_use)
266             continue;
267
268 #if CONFIG_AC3ENC_FLOAT
269         s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
270                                    cpl_coords[blk][1],
271                                    s->fbw_channels * 16);
272 #endif
273         s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
274                                     fixed_cpl_coords[blk][1],
275                                     s->fbw_channels * 16);
276
277         for (ch = 1; ch <= s->fbw_channels; ch++) {
278             int bnd, min_exp, max_exp, master_exp;
279
280             if (!block->new_cpl_coords[ch])
281                 continue;
282
283             /* determine master exponent */
284             min_exp = max_exp = block->cpl_coord_exp[ch][0];
285             for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
286                 int exp = block->cpl_coord_exp[ch][bnd];
287                 min_exp = FFMIN(exp, min_exp);
288                 max_exp = FFMAX(exp, max_exp);
289             }
290             master_exp = ((max_exp - 15) + 2) / 3;
291             master_exp = FFMAX(master_exp, 0);
292             while (min_exp < master_exp * 3)
293                 master_exp--;
294             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
295                 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
296                                                         master_exp * 3, 0, 15);
297             }
298             block->cpl_master_exp[ch] = master_exp;
299
300             /* quantize mantissas */
301             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
302                 int cpl_exp  = block->cpl_coord_exp[ch][bnd];
303                 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
304                 if (cpl_exp == 15)
305                     cpl_mant >>= 1;
306                 else
307                     cpl_mant -= 16;
308
309                 block->cpl_coord_mant[ch][bnd] = cpl_mant;
310             }
311         }
312     }
313
314     if (CONFIG_EAC3_ENCODER && s->eac3)
315         ff_eac3_set_cpl_states(s);
316 }
317
318
319 /*
320  * Determine rematrixing flags for each block and band.
321  */
322 static void compute_rematrixing_strategy(AC3EncodeContext *s)
323 {
324     int nb_coefs;
325     int blk, bnd;
326     AC3Block *block, *block0 = NULL;
327
328     if (s->channel_mode != AC3_CHMODE_STEREO)
329         return;
330
331     for (blk = 0; blk < s->num_blocks; blk++) {
332         block = &s->blocks[blk];
333         block->new_rematrixing_strategy = !blk;
334
335         block->num_rematrixing_bands = 4;
336         if (block->cpl_in_use) {
337             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
338             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
339             if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
340                 block->new_rematrixing_strategy = 1;
341         }
342         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
343
344         if (!s->rematrixing_enabled) {
345             block0 = block;
346             continue;
347         }
348
349         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
350             /* calculate sum of squared coeffs for one band in one block */
351             int start = ff_ac3_rematrix_band_tab[bnd];
352             int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
353             CoefSumType sum[4];
354             sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
355                                  block->mdct_coef[2] + start, end - start);
356
357             /* compare sums to determine if rematrixing will be used for this band */
358             if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
359                 block->rematrixing_flags[bnd] = 1;
360             else
361                 block->rematrixing_flags[bnd] = 0;
362
363             /* determine if new rematrixing flags will be sent */
364             if (blk &&
365                 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
366                 block->new_rematrixing_strategy = 1;
367             }
368         }
369         block0 = block;
370     }
371 }
372
373
374 int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
375                            const AVFrame *frame, int *got_packet_ptr)
376 {
377     AC3EncodeContext *s = avctx->priv_data;
378     int ret;
379
380     if (s->options.allow_per_frame_metadata) {
381         ret = ff_ac3_validate_metadata(s);
382         if (ret)
383             return ret;
384     }
385
386     if (s->bit_alloc.sr_code == 1 || s->eac3)
387         ff_ac3_adjust_frame_size(s);
388
389     copy_input_samples(s, (SampleType **)frame->extended_data);
390
391     apply_mdct(s);
392
393     if (s->fixed_point)
394         scale_coefficients(s);
395
396     clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
397                       AC3_MAX_COEFS * s->num_blocks * s->channels);
398
399     s->cpl_on = s->cpl_enabled;
400     ff_ac3_compute_coupling_strategy(s);
401
402     if (s->cpl_on)
403         apply_channel_coupling(s);
404
405     compute_rematrixing_strategy(s);
406
407     if (!s->fixed_point)
408         scale_coefficients(s);
409
410     ff_ac3_apply_rematrixing(s);
411
412     ff_ac3_process_exponents(s);
413
414     ret = ff_ac3_compute_bit_allocation(s);
415     if (ret) {
416         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
417         return ret;
418     }
419
420     ff_ac3_group_exponents(s);
421
422     ff_ac3_quantize_mantissas(s);
423
424     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size, 0)) < 0)
425         return ret;
426     ff_ac3_output_frame(s, avpkt->data);
427
428     if (frame->pts != AV_NOPTS_VALUE)
429         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
430
431     *got_packet_ptr = 1;
432     return 0;
433 }