]> git.sesse.net Git - ffmpeg/blob - libavcodec/adpcm.c
avcodec/webp: use av_packet_alloc() to allocate packets
[ffmpeg] / libavcodec / adpcm.c
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  *   by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  * Argonaut Games ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
16  * Simon & Schuster Interactive ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
17  * Ubisoft ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
18  * High Voltage Software ALP decoder by Zane van Iperen (zane@zanevaniperen.com)
19  * Cunning Developments decoder by Zane van Iperen (zane@zanevaniperen.com)
20  *
21  * This file is part of FFmpeg.
22  *
23  * FFmpeg is free software; you can redistribute it and/or
24  * modify it under the terms of the GNU Lesser General Public
25  * License as published by the Free Software Foundation; either
26  * version 2.1 of the License, or (at your option) any later version.
27  *
28  * FFmpeg is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31  * Lesser General Public License for more details.
32  *
33  * You should have received a copy of the GNU Lesser General Public
34  * License along with FFmpeg; if not, write to the Free Software
35  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
36  */
37 #include "avcodec.h"
38 #include "get_bits.h"
39 #include "bytestream.h"
40 #include "adpcm.h"
41 #include "adpcm_data.h"
42 #include "internal.h"
43
44 /**
45  * @file
46  * ADPCM decoders
47  * Features and limitations:
48  *
49  * Reference documents:
50  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
51  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
52  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
53  * http://openquicktime.sourceforge.net/
54  * XAnim sources (xa_codec.c) http://xanim.polter.net/
55  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
56  * SoX source code http://sox.sourceforge.net/
57  *
58  * CD-ROM XA:
59  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
60  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
61  * readstr http://www.geocities.co.jp/Playtown/2004/
62  */
63
64 /* These are for CD-ROM XA ADPCM */
65 static const int8_t xa_adpcm_table[5][2] = {
66     {   0,   0 },
67     {  60,   0 },
68     { 115, -52 },
69     {  98, -55 },
70     { 122, -60 }
71 };
72
73 static const int16_t ea_adpcm_table[] = {
74     0,  240,  460,  392,
75     0,    0, -208, -220,
76     0,    1,    3,    4,
77     7,    8,   10,   11,
78     0,   -1,   -3,   -4
79 };
80
81 // padded to zero where table size is less then 16
82 static const int8_t swf_index_tables[4][16] = {
83     /*2*/ { -1, 2 },
84     /*3*/ { -1, -1, 2, 4 },
85     /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
86     /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
87 };
88
89 static const int8_t zork_index_table[8] = {
90     -1, -1, -1, 1, 4, 7, 10, 12,
91 };
92
93 static const int8_t mtf_index_table[16] = {
94      8,  6,  4,  2, -1, -1, -1, -1,
95     -1, -1, -1, -1,  2,  4,  6,  8,
96 };
97
98 /* end of tables */
99
100 typedef struct ADPCMDecodeContext {
101     ADPCMChannelStatus status[14];
102     int vqa_version;                /**< VQA version. Used for ADPCM_IMA_WS */
103     int has_status;
104 } ADPCMDecodeContext;
105
106 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
107 {
108     ADPCMDecodeContext *c = avctx->priv_data;
109     unsigned int min_channels = 1;
110     unsigned int max_channels = 2;
111
112     switch(avctx->codec->id) {
113     case AV_CODEC_ID_ADPCM_IMA_AMV:
114     case AV_CODEC_ID_ADPCM_IMA_CUNNING:
115         max_channels = 1;
116         break;
117     case AV_CODEC_ID_ADPCM_DTK:
118     case AV_CODEC_ID_ADPCM_EA:
119         min_channels = 2;
120         break;
121     case AV_CODEC_ID_ADPCM_AFC:
122     case AV_CODEC_ID_ADPCM_EA_R1:
123     case AV_CODEC_ID_ADPCM_EA_R2:
124     case AV_CODEC_ID_ADPCM_EA_R3:
125     case AV_CODEC_ID_ADPCM_EA_XAS:
126     case AV_CODEC_ID_ADPCM_MS:
127         max_channels = 6;
128         break;
129     case AV_CODEC_ID_ADPCM_MTAF:
130         min_channels = 2;
131         max_channels = 8;
132         if (avctx->channels & 1) {
133             avpriv_request_sample(avctx, "channel count %d", avctx->channels);
134             return AVERROR_PATCHWELCOME;
135         }
136         break;
137     case AV_CODEC_ID_ADPCM_PSX:
138         max_channels = 8;
139         if (avctx->channels <= 0 || avctx->block_align % (16 * avctx->channels))
140             return AVERROR_INVALIDDATA;
141         break;
142     case AV_CODEC_ID_ADPCM_IMA_DAT4:
143     case AV_CODEC_ID_ADPCM_THP:
144     case AV_CODEC_ID_ADPCM_THP_LE:
145         max_channels = 14;
146         break;
147     }
148     if (avctx->channels < min_channels || avctx->channels > max_channels) {
149         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
150         return AVERROR(EINVAL);
151     }
152
153     switch(avctx->codec->id) {
154     case AV_CODEC_ID_ADPCM_CT:
155         c->status[0].step = c->status[1].step = 511;
156         break;
157     case AV_CODEC_ID_ADPCM_IMA_WAV:
158         if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
159             return AVERROR_INVALIDDATA;
160         break;
161     case AV_CODEC_ID_ADPCM_IMA_APC:
162         if (avctx->extradata && avctx->extradata_size >= 8) {
163             c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata    ), 18);
164             c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
165         }
166         break;
167     case AV_CODEC_ID_ADPCM_IMA_APM:
168         if (avctx->extradata) {
169             if (avctx->extradata_size >= 28) {
170                 c->status[0].predictor  = av_clip_intp2(AV_RL32(avctx->extradata + 16), 18);
171                 c->status[0].step_index = av_clip(AV_RL32(avctx->extradata + 20), 0, 88);
172                 c->status[1].predictor  = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
173                 c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 8), 0, 88);
174             } else if (avctx->extradata_size >= 16) {
175                 c->status[0].predictor  = av_clip_intp2(AV_RL32(avctx->extradata +  0), 18);
176                 c->status[0].step_index = av_clip(AV_RL32(avctx->extradata +  4), 0, 88);
177                 c->status[1].predictor  = av_clip_intp2(AV_RL32(avctx->extradata +  8), 18);
178                 c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 12), 0, 88);
179             }
180         }
181         break;
182     case AV_CODEC_ID_ADPCM_IMA_WS:
183         if (avctx->extradata && avctx->extradata_size >= 2)
184             c->vqa_version = AV_RL16(avctx->extradata);
185         break;
186     case AV_CODEC_ID_ADPCM_ARGO:
187         if (avctx->bits_per_coded_sample != 4 || avctx->block_align != 17 * avctx->channels)
188             return AVERROR_INVALIDDATA;
189         break;
190     case AV_CODEC_ID_ADPCM_ZORK:
191         if (avctx->bits_per_coded_sample != 8)
192             return AVERROR_INVALIDDATA;
193         break;
194     default:
195         break;
196     }
197
198     switch (avctx->codec->id) {
199     case AV_CODEC_ID_ADPCM_AICA:
200     case AV_CODEC_ID_ADPCM_IMA_DAT4:
201     case AV_CODEC_ID_ADPCM_IMA_QT:
202     case AV_CODEC_ID_ADPCM_IMA_WAV:
203     case AV_CODEC_ID_ADPCM_4XM:
204     case AV_CODEC_ID_ADPCM_XA:
205     case AV_CODEC_ID_ADPCM_EA_R1:
206     case AV_CODEC_ID_ADPCM_EA_R2:
207     case AV_CODEC_ID_ADPCM_EA_R3:
208     case AV_CODEC_ID_ADPCM_EA_XAS:
209     case AV_CODEC_ID_ADPCM_THP:
210     case AV_CODEC_ID_ADPCM_THP_LE:
211     case AV_CODEC_ID_ADPCM_AFC:
212     case AV_CODEC_ID_ADPCM_DTK:
213     case AV_CODEC_ID_ADPCM_PSX:
214     case AV_CODEC_ID_ADPCM_MTAF:
215     case AV_CODEC_ID_ADPCM_ARGO:
216     case AV_CODEC_ID_ADPCM_IMA_MOFLEX:
217         avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
218         break;
219     case AV_CODEC_ID_ADPCM_IMA_WS:
220         avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
221                                                   AV_SAMPLE_FMT_S16;
222         break;
223     case AV_CODEC_ID_ADPCM_MS:
224         avctx->sample_fmt = avctx->channels > 2 ? AV_SAMPLE_FMT_S16P :
225                                                   AV_SAMPLE_FMT_S16;
226         break;
227     default:
228         avctx->sample_fmt = AV_SAMPLE_FMT_S16;
229     }
230
231     return 0;
232 }
233
234 static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
235 {
236     int delta, pred, step, add;
237
238     pred = c->predictor;
239     delta = nibble & 7;
240     step = c->step;
241     add = (delta * 2 + 1) * step;
242     if (add < 0)
243         add = add + 7;
244
245     if ((nibble & 8) == 0)
246         pred = av_clip(pred + (add >> 3), -32767, 32767);
247     else
248         pred = av_clip(pred - (add >> 3), -32767, 32767);
249
250     switch (delta) {
251     case 7:
252         step *= 0x99;
253         break;
254     case 6:
255         c->step = av_clip(c->step * 2, 127, 24576);
256         c->predictor = pred;
257         return pred;
258     case 5:
259         step *= 0x66;
260         break;
261     case 4:
262         step *= 0x4d;
263         break;
264     default:
265         step *= 0x39;
266         break;
267     }
268
269     if (step < 0)
270         step += 0x3f;
271
272     c->step = step >> 6;
273     c->step = av_clip(c->step, 127, 24576);
274     c->predictor = pred;
275     return pred;
276 }
277
278 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
279 {
280     int step_index;
281     int predictor;
282     int sign, delta, diff, step;
283
284     step = ff_adpcm_step_table[c->step_index];
285     step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
286     step_index = av_clip(step_index, 0, 88);
287
288     sign = nibble & 8;
289     delta = nibble & 7;
290     /* perform direct multiplication instead of series of jumps proposed by
291      * the reference ADPCM implementation since modern CPUs can do the mults
292      * quickly enough */
293     diff = ((2 * delta + 1) * step) >> shift;
294     predictor = c->predictor;
295     if (sign) predictor -= diff;
296     else predictor += diff;
297
298     c->predictor = av_clip_int16(predictor);
299     c->step_index = step_index;
300
301     return (int16_t)c->predictor;
302 }
303
304 static inline int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
305 {
306     int step_index;
307     int predictor;
308     int sign, delta, diff, step;
309
310     step = ff_adpcm_step_table[c->step_index];
311     step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
312     step_index = av_clip(step_index, 0, 88);
313
314     sign = nibble & 8;
315     delta = nibble & 7;
316     diff = (delta * step) >> shift;
317     predictor = c->predictor;
318     if (sign) predictor -= diff;
319     else predictor += diff;
320
321     c->predictor = av_clip_int16(predictor);
322     c->step_index = step_index;
323
324     return (int16_t)c->predictor;
325 }
326
327 static inline int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble)
328 {
329     int step_index, step, delta, predictor;
330
331     step = ff_adpcm_step_table[c->step_index];
332
333     delta = step * (2 * nibble - 15);
334     predictor = c->predictor + delta;
335
336     step_index = c->step_index + mtf_index_table[(unsigned)nibble];
337     c->predictor = av_clip_int16(predictor >> 4);
338     c->step_index = av_clip(step_index, 0, 88);
339
340     return (int16_t)c->predictor;
341 }
342
343 static inline int16_t adpcm_ima_cunning_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
344 {
345     int step_index;
346     int predictor;
347     int step;
348
349     nibble = sign_extend(nibble & 0xF, 4);
350
351     step = ff_adpcm_ima_cunning_step_table[c->step_index];
352     step_index = c->step_index + ff_adpcm_ima_cunning_index_table[abs(nibble)];
353     step_index = av_clip(step_index, 0, 60);
354
355     predictor = c->predictor + step * nibble;
356
357     c->predictor = av_clip_int16(predictor);
358     c->step_index = step_index;
359
360     return c->predictor;
361 }
362
363 static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
364 {
365     int nibble, step_index, predictor, sign, delta, diff, step, shift;
366
367     shift = bps - 1;
368     nibble = get_bits_le(gb, bps),
369     step = ff_adpcm_step_table[c->step_index];
370     step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
371     step_index = av_clip(step_index, 0, 88);
372
373     sign = nibble & (1 << shift);
374     delta = av_mod_uintp2(nibble, shift);
375     diff = ((2 * delta + 1) * step) >> shift;
376     predictor = c->predictor;
377     if (sign) predictor -= diff;
378     else predictor += diff;
379
380     c->predictor = av_clip_int16(predictor);
381     c->step_index = step_index;
382
383     return (int16_t)c->predictor;
384 }
385
386 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble)
387 {
388     int step_index;
389     int predictor;
390     int diff, step;
391
392     step = ff_adpcm_step_table[c->step_index];
393     step_index = c->step_index + ff_adpcm_index_table[nibble];
394     step_index = av_clip(step_index, 0, 88);
395
396     diff = step >> 3;
397     if (nibble & 4) diff += step;
398     if (nibble & 2) diff += step >> 1;
399     if (nibble & 1) diff += step >> 2;
400
401     if (nibble & 8)
402         predictor = c->predictor - diff;
403     else
404         predictor = c->predictor + diff;
405
406     c->predictor = av_clip_int16(predictor);
407     c->step_index = step_index;
408
409     return c->predictor;
410 }
411
412 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
413 {
414     int predictor;
415
416     predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
417     predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
418
419     c->sample2 = c->sample1;
420     c->sample1 = av_clip_int16(predictor);
421     c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
422     if (c->idelta < 16) c->idelta = 16;
423     if (c->idelta > INT_MAX/768) {
424         av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
425         c->idelta = INT_MAX/768;
426     }
427
428     return c->sample1;
429 }
430
431 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
432 {
433     int step_index, predictor, sign, delta, diff, step;
434
435     step = ff_adpcm_oki_step_table[c->step_index];
436     step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
437     step_index = av_clip(step_index, 0, 48);
438
439     sign = nibble & 8;
440     delta = nibble & 7;
441     diff = ((2 * delta + 1) * step) >> 3;
442     predictor = c->predictor;
443     if (sign) predictor -= diff;
444     else predictor += diff;
445
446     c->predictor = av_clip_intp2(predictor, 11);
447     c->step_index = step_index;
448
449     return c->predictor * 16;
450 }
451
452 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
453 {
454     int sign, delta, diff;
455     int new_step;
456
457     sign = nibble & 8;
458     delta = nibble & 7;
459     /* perform direct multiplication instead of series of jumps proposed by
460      * the reference ADPCM implementation since modern CPUs can do the mults
461      * quickly enough */
462     diff = ((2 * delta + 1) * c->step) >> 3;
463     /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
464     c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
465     c->predictor = av_clip_int16(c->predictor);
466     /* calculate new step and clamp it to range 511..32767 */
467     new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
468     c->step = av_clip(new_step, 511, 32767);
469
470     return (int16_t)c->predictor;
471 }
472
473 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
474 {
475     int sign, delta, diff;
476
477     sign = nibble & (1<<(size-1));
478     delta = nibble & ((1<<(size-1))-1);
479     diff = delta << (7 + c->step + shift);
480
481     /* clamp result */
482     c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
483
484     /* calculate new step */
485     if (delta >= (2*size - 3) && c->step < 3)
486         c->step++;
487     else if (delta == 0 && c->step > 0)
488         c->step--;
489
490     return (int16_t) c->predictor;
491 }
492
493 static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
494 {
495     if(!c->step) {
496         c->predictor = 0;
497         c->step = 127;
498     }
499
500     c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
501     c->predictor = av_clip_int16(c->predictor);
502     c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
503     c->step = av_clip(c->step, 127, 24576);
504     return c->predictor;
505 }
506
507 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
508 {
509     c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
510     c->predictor = av_clip_int16(c->predictor);
511     c->step += ff_adpcm_index_table[nibble];
512     c->step = av_clip_uintp2(c->step, 5);
513     return c->predictor;
514 }
515
516 static inline int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
517 {
518     int16_t index = c->step_index;
519     uint32_t lookup_sample = ff_adpcm_step_table[index];
520     int32_t sample = 0;
521
522     if (nibble & 0x40)
523         sample += lookup_sample;
524     if (nibble & 0x20)
525         sample += lookup_sample >> 1;
526     if (nibble & 0x10)
527         sample += lookup_sample >> 2;
528     if (nibble & 0x08)
529         sample += lookup_sample >> 3;
530     if (nibble & 0x04)
531         sample += lookup_sample >> 4;
532     if (nibble & 0x02)
533         sample += lookup_sample >> 5;
534     if (nibble & 0x01)
535         sample += lookup_sample >> 6;
536     if (nibble & 0x80)
537         sample = -sample;
538
539     sample += c->predictor;
540     sample = av_clip_int16(sample);
541
542     index += zork_index_table[(nibble >> 4) & 7];
543     index = av_clip(index, 0, 88);
544
545     c->predictor = sample;
546     c->step_index = index;
547
548     return sample;
549 }
550
551 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
552                      const uint8_t *in, ADPCMChannelStatus *left,
553                      ADPCMChannelStatus *right, int channels, int sample_offset)
554 {
555     int i, j;
556     int shift,filter,f0,f1;
557     int s_1,s_2;
558     int d,s,t;
559
560     out0 += sample_offset;
561     if (channels == 1)
562         out1 = out0 + 28;
563     else
564         out1 += sample_offset;
565
566     for(i=0;i<4;i++) {
567         shift  = 12 - (in[4+i*2] & 15);
568         filter = in[4+i*2] >> 4;
569         if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
570             avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
571             filter=0;
572         }
573         if (shift < 0) {
574             avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
575             shift = 0;
576         }
577         f0 = xa_adpcm_table[filter][0];
578         f1 = xa_adpcm_table[filter][1];
579
580         s_1 = left->sample1;
581         s_2 = left->sample2;
582
583         for(j=0;j<28;j++) {
584             d = in[16+i+j*4];
585
586             t = sign_extend(d, 4);
587             s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
588             s_2 = s_1;
589             s_1 = av_clip_int16(s);
590             out0[j] = s_1;
591         }
592
593         if (channels == 2) {
594             left->sample1 = s_1;
595             left->sample2 = s_2;
596             s_1 = right->sample1;
597             s_2 = right->sample2;
598         }
599
600         shift  = 12 - (in[5+i*2] & 15);
601         filter = in[5+i*2] >> 4;
602         if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table) || shift < 0) {
603             avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
604             filter=0;
605         }
606         if (shift < 0) {
607             avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift);
608             shift = 0;
609         }
610
611         f0 = xa_adpcm_table[filter][0];
612         f1 = xa_adpcm_table[filter][1];
613
614         for(j=0;j<28;j++) {
615             d = in[16+i+j*4];
616
617             t = sign_extend(d >> 4, 4);
618             s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
619             s_2 = s_1;
620             s_1 = av_clip_int16(s);
621             out1[j] = s_1;
622         }
623
624         if (channels == 2) {
625             right->sample1 = s_1;
626             right->sample2 = s_2;
627         } else {
628             left->sample1 = s_1;
629             left->sample2 = s_2;
630         }
631
632         out0 += 28 * (3 - channels);
633         out1 += 28 * (3 - channels);
634     }
635
636     return 0;
637 }
638
639 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
640 {
641     ADPCMDecodeContext *c = avctx->priv_data;
642     GetBitContext gb;
643     const int8_t *table;
644     int k0, signmask, nb_bits, count;
645     int size = buf_size*8;
646     int i;
647
648     init_get_bits(&gb, buf, size);
649
650     //read bits & initial values
651     nb_bits = get_bits(&gb, 2)+2;
652     table = swf_index_tables[nb_bits-2];
653     k0 = 1 << (nb_bits-2);
654     signmask = 1 << (nb_bits-1);
655
656     while (get_bits_count(&gb) <= size - 22*avctx->channels) {
657         for (i = 0; i < avctx->channels; i++) {
658             *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
659             c->status[i].step_index = get_bits(&gb, 6);
660         }
661
662         for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
663             int i;
664
665             for (i = 0; i < avctx->channels; i++) {
666                 // similar to IMA adpcm
667                 int delta = get_bits(&gb, nb_bits);
668                 int step = ff_adpcm_step_table[c->status[i].step_index];
669                 int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
670                 int k = k0;
671
672                 do {
673                     if (delta & k)
674                         vpdiff += step;
675                     step >>= 1;
676                     k >>= 1;
677                 } while(k);
678                 vpdiff += step;
679
680                 if (delta & signmask)
681                     c->status[i].predictor -= vpdiff;
682                 else
683                     c->status[i].predictor += vpdiff;
684
685                 c->status[i].step_index += table[delta & (~signmask)];
686
687                 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
688                 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
689
690                 *samples++ = c->status[i].predictor;
691             }
692         }
693     }
694 }
695
696 int16_t ff_adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int shift, int flag)
697 {
698     int sample = sign_extend(nibble, 4) * (1 << shift);
699
700     if (flag)
701         sample += (8 * cs->sample1) - (4 * cs->sample2);
702     else
703         sample += 4 * cs->sample1;
704
705     sample = av_clip_int16(sample >> 2);
706
707     cs->sample2 = cs->sample1;
708     cs->sample1 = sample;
709
710     return sample;
711 }
712
713 /**
714  * Get the number of samples (per channel) that will be decoded from the packet.
715  * In one case, this is actually the maximum number of samples possible to
716  * decode with the given buf_size.
717  *
718  * @param[out] coded_samples set to the number of samples as coded in the
719  *                           packet, or 0 if the codec does not encode the
720  *                           number of samples in each frame.
721  * @param[out] approx_nb_samples set to non-zero if the number of samples
722  *                               returned is an approximation.
723  */
724 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
725                           int buf_size, int *coded_samples, int *approx_nb_samples)
726 {
727     ADPCMDecodeContext *s = avctx->priv_data;
728     int nb_samples        = 0;
729     int ch                = avctx->channels;
730     int has_coded_samples = 0;
731     int header_size;
732
733     *coded_samples = 0;
734     *approx_nb_samples = 0;
735
736     if(ch <= 0)
737         return 0;
738
739     switch (avctx->codec->id) {
740     /* constant, only check buf_size */
741     case AV_CODEC_ID_ADPCM_EA_XAS:
742         if (buf_size < 76 * ch)
743             return 0;
744         nb_samples = 128;
745         break;
746     case AV_CODEC_ID_ADPCM_IMA_QT:
747         if (buf_size < 34 * ch)
748             return 0;
749         nb_samples = 64;
750         break;
751     /* simple 4-bit adpcm */
752     case AV_CODEC_ID_ADPCM_CT:
753     case AV_CODEC_ID_ADPCM_IMA_APC:
754     case AV_CODEC_ID_ADPCM_IMA_CUNNING:
755     case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
756     case AV_CODEC_ID_ADPCM_IMA_OKI:
757     case AV_CODEC_ID_ADPCM_IMA_WS:
758     case AV_CODEC_ID_ADPCM_YAMAHA:
759     case AV_CODEC_ID_ADPCM_AICA:
760     case AV_CODEC_ID_ADPCM_IMA_SSI:
761     case AV_CODEC_ID_ADPCM_IMA_APM:
762     case AV_CODEC_ID_ADPCM_IMA_ALP:
763     case AV_CODEC_ID_ADPCM_IMA_MTF:
764         nb_samples = buf_size * 2 / ch;
765         break;
766     }
767     if (nb_samples)
768         return nb_samples;
769
770     /* simple 4-bit adpcm, with header */
771     header_size = 0;
772     switch (avctx->codec->id) {
773         case AV_CODEC_ID_ADPCM_4XM:
774         case AV_CODEC_ID_ADPCM_AGM:
775         case AV_CODEC_ID_ADPCM_IMA_DAT4:
776         case AV_CODEC_ID_ADPCM_IMA_MOFLEX:
777         case AV_CODEC_ID_ADPCM_IMA_ISS:     header_size = 4 * ch;      break;
778         case AV_CODEC_ID_ADPCM_IMA_SMJPEG:  header_size = 4 * ch;      break;
779     }
780     if (header_size > 0)
781         return (buf_size - header_size) * 2 / ch;
782
783     /* more complex formats */
784     switch (avctx->codec->id) {
785     case AV_CODEC_ID_ADPCM_IMA_AMV:
786         bytestream2_skip(gb, 4);
787         has_coded_samples  = 1;
788         *coded_samples     = bytestream2_get_le32u(gb);
789         nb_samples         = FFMIN((buf_size - 8) * 2, *coded_samples);
790         bytestream2_seek(gb, -8, SEEK_CUR);
791         break;
792     case AV_CODEC_ID_ADPCM_EA:
793         has_coded_samples = 1;
794         *coded_samples  = bytestream2_get_le32(gb);
795         *coded_samples -= *coded_samples % 28;
796         nb_samples      = (buf_size - 12) / 30 * 28;
797         break;
798     case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
799         has_coded_samples = 1;
800         *coded_samples = bytestream2_get_le32(gb);
801         nb_samples     = (buf_size - (4 + 8 * ch)) * 2 / ch;
802         break;
803     case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
804         nb_samples = (buf_size - ch) / ch * 2;
805         break;
806     case AV_CODEC_ID_ADPCM_EA_R1:
807     case AV_CODEC_ID_ADPCM_EA_R2:
808     case AV_CODEC_ID_ADPCM_EA_R3:
809         /* maximum number of samples */
810         /* has internal offsets and a per-frame switch to signal raw 16-bit */
811         has_coded_samples = 1;
812         switch (avctx->codec->id) {
813         case AV_CODEC_ID_ADPCM_EA_R1:
814             header_size    = 4 + 9 * ch;
815             *coded_samples = bytestream2_get_le32(gb);
816             break;
817         case AV_CODEC_ID_ADPCM_EA_R2:
818             header_size    = 4 + 5 * ch;
819             *coded_samples = bytestream2_get_le32(gb);
820             break;
821         case AV_CODEC_ID_ADPCM_EA_R3:
822             header_size    = 4 + 5 * ch;
823             *coded_samples = bytestream2_get_be32(gb);
824             break;
825         }
826         *coded_samples -= *coded_samples % 28;
827         nb_samples      = (buf_size - header_size) * 2 / ch;
828         nb_samples     -= nb_samples % 28;
829         *approx_nb_samples = 1;
830         break;
831     case AV_CODEC_ID_ADPCM_IMA_DK3:
832         if (avctx->block_align > 0)
833             buf_size = FFMIN(buf_size, avctx->block_align);
834         nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
835         break;
836     case AV_CODEC_ID_ADPCM_IMA_DK4:
837         if (avctx->block_align > 0)
838             buf_size = FFMIN(buf_size, avctx->block_align);
839         if (buf_size < 4 * ch)
840             return AVERROR_INVALIDDATA;
841         nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
842         break;
843     case AV_CODEC_ID_ADPCM_IMA_RAD:
844         if (avctx->block_align > 0)
845             buf_size = FFMIN(buf_size, avctx->block_align);
846         nb_samples = (buf_size - 4 * ch) * 2 / ch;
847         break;
848     case AV_CODEC_ID_ADPCM_IMA_WAV:
849     {
850         int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
851         int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
852         if (avctx->block_align > 0)
853             buf_size = FFMIN(buf_size, avctx->block_align);
854         if (buf_size < 4 * ch)
855             return AVERROR_INVALIDDATA;
856         nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
857         break;
858     }
859     case AV_CODEC_ID_ADPCM_MS:
860         if (avctx->block_align > 0)
861             buf_size = FFMIN(buf_size, avctx->block_align);
862         nb_samples = (buf_size - 6 * ch) * 2 / ch;
863         break;
864     case AV_CODEC_ID_ADPCM_MTAF:
865         if (avctx->block_align > 0)
866             buf_size = FFMIN(buf_size, avctx->block_align);
867         nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
868         break;
869     case AV_CODEC_ID_ADPCM_SBPRO_2:
870     case AV_CODEC_ID_ADPCM_SBPRO_3:
871     case AV_CODEC_ID_ADPCM_SBPRO_4:
872     {
873         int samples_per_byte;
874         switch (avctx->codec->id) {
875         case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
876         case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
877         case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
878         }
879         if (!s->status[0].step_index) {
880             if (buf_size < ch)
881                 return AVERROR_INVALIDDATA;
882             nb_samples++;
883             buf_size -= ch;
884         }
885         nb_samples += buf_size * samples_per_byte / ch;
886         break;
887     }
888     case AV_CODEC_ID_ADPCM_SWF:
889     {
890         int buf_bits       = buf_size * 8 - 2;
891         int nbits          = (bytestream2_get_byte(gb) >> 6) + 2;
892         int block_hdr_size = 22 * ch;
893         int block_size     = block_hdr_size + nbits * ch * 4095;
894         int nblocks        = buf_bits / block_size;
895         int bits_left      = buf_bits - nblocks * block_size;
896         nb_samples         = nblocks * 4096;
897         if (bits_left >= block_hdr_size)
898             nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
899         break;
900     }
901     case AV_CODEC_ID_ADPCM_THP:
902     case AV_CODEC_ID_ADPCM_THP_LE:
903         if (avctx->extradata) {
904             nb_samples = buf_size * 14 / (8 * ch);
905             break;
906         }
907         has_coded_samples = 1;
908         bytestream2_skip(gb, 4); // channel size
909         *coded_samples  = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
910                           bytestream2_get_le32(gb) :
911                           bytestream2_get_be32(gb);
912         buf_size       -= 8 + 36 * ch;
913         buf_size       /= ch;
914         nb_samples      = buf_size / 8 * 14;
915         if (buf_size % 8 > 1)
916             nb_samples     += (buf_size % 8 - 1) * 2;
917         *approx_nb_samples = 1;
918         break;
919     case AV_CODEC_ID_ADPCM_AFC:
920         nb_samples = buf_size / (9 * ch) * 16;
921         break;
922     case AV_CODEC_ID_ADPCM_XA:
923         nb_samples = (buf_size / 128) * 224 / ch;
924         break;
925     case AV_CODEC_ID_ADPCM_DTK:
926     case AV_CODEC_ID_ADPCM_PSX:
927         nb_samples = buf_size / (16 * ch) * 28;
928         break;
929     case AV_CODEC_ID_ADPCM_ARGO:
930         nb_samples = buf_size / avctx->block_align * 32;
931         break;
932     case AV_CODEC_ID_ADPCM_ZORK:
933         nb_samples = buf_size / ch;
934         break;
935     }
936
937     /* validate coded sample count */
938     if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
939         return AVERROR_INVALIDDATA;
940
941     return nb_samples;
942 }
943
944 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
945                               int *got_frame_ptr, AVPacket *avpkt)
946 {
947     AVFrame *frame     = data;
948     const uint8_t *buf = avpkt->data;
949     int buf_size = avpkt->size;
950     ADPCMDecodeContext *c = avctx->priv_data;
951     ADPCMChannelStatus *cs;
952     int n, m, channel, i;
953     int16_t *samples;
954     int16_t **samples_p;
955     int st; /* stereo */
956     int count1, count2;
957     int nb_samples, coded_samples, approx_nb_samples, ret;
958     GetByteContext gb;
959
960     bytestream2_init(&gb, buf, buf_size);
961     nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
962     if (nb_samples <= 0) {
963         av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
964         return AVERROR_INVALIDDATA;
965     }
966
967     /* get output buffer */
968     frame->nb_samples = nb_samples;
969     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
970         return ret;
971     samples = (int16_t *)frame->data[0];
972     samples_p = (int16_t **)frame->extended_data;
973
974     /* use coded_samples when applicable */
975     /* it is always <= nb_samples, so the output buffer will be large enough */
976     if (coded_samples) {
977         if (!approx_nb_samples && coded_samples != nb_samples)
978             av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
979         frame->nb_samples = nb_samples = coded_samples;
980     }
981
982     st = avctx->channels == 2 ? 1 : 0;
983
984     switch(avctx->codec->id) {
985     case AV_CODEC_ID_ADPCM_IMA_QT:
986         /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
987            Channel data is interleaved per-chunk. */
988         for (channel = 0; channel < avctx->channels; channel++) {
989             int predictor;
990             int step_index;
991             cs = &(c->status[channel]);
992             /* (pppppp) (piiiiiii) */
993
994             /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
995             predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
996             step_index = predictor & 0x7F;
997             predictor &= ~0x7F;
998
999             if (cs->step_index == step_index) {
1000                 int diff = predictor - cs->predictor;
1001                 if (diff < 0)
1002                     diff = - diff;
1003                 if (diff > 0x7f)
1004                     goto update;
1005             } else {
1006             update:
1007                 cs->step_index = step_index;
1008                 cs->predictor = predictor;
1009             }
1010
1011             if (cs->step_index > 88u){
1012                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1013                        channel, cs->step_index);
1014                 return AVERROR_INVALIDDATA;
1015             }
1016
1017             samples = samples_p[channel];
1018
1019             for (m = 0; m < 64; m += 2) {
1020                 int byte = bytestream2_get_byteu(&gb);
1021                 samples[m    ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F);
1022                 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4  );
1023             }
1024         }
1025         break;
1026     case AV_CODEC_ID_ADPCM_IMA_WAV:
1027         for(i=0; i<avctx->channels; i++){
1028             cs = &(c->status[i]);
1029             cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
1030
1031             cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1032             if (cs->step_index > 88u){
1033                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1034                        i, cs->step_index);
1035                 return AVERROR_INVALIDDATA;
1036             }
1037         }
1038
1039         if (avctx->bits_per_coded_sample != 4) {
1040             int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
1041             int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
1042             uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
1043             GetBitContext g;
1044
1045             for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
1046                 for (i = 0; i < avctx->channels; i++) {
1047                     int j;
1048
1049                     cs = &c->status[i];
1050                     samples = &samples_p[i][1 + n * samples_per_block];
1051                     for (j = 0; j < block_size; j++) {
1052                         temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
1053                                         (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
1054                     }
1055                     ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
1056                     if (ret < 0)
1057                         return ret;
1058                     for (m = 0; m < samples_per_block; m++) {
1059                         samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
1060                                           avctx->bits_per_coded_sample);
1061                     }
1062                 }
1063             }
1064             bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
1065         } else {
1066         for (n = 0; n < (nb_samples - 1) / 8; n++) {
1067             for (i = 0; i < avctx->channels; i++) {
1068                 cs = &c->status[i];
1069                 samples = &samples_p[i][1 + n * 8];
1070                 for (m = 0; m < 8; m += 2) {
1071                     int v = bytestream2_get_byteu(&gb);
1072                     samples[m    ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1073                     samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
1074                 }
1075             }
1076         }
1077         }
1078         break;
1079     case AV_CODEC_ID_ADPCM_4XM:
1080         for (i = 0; i < avctx->channels; i++)
1081             c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1082
1083         for (i = 0; i < avctx->channels; i++) {
1084             c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1085             if (c->status[i].step_index > 88u) {
1086                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1087                        i, c->status[i].step_index);
1088                 return AVERROR_INVALIDDATA;
1089             }
1090         }
1091
1092         for (i = 0; i < avctx->channels; i++) {
1093             samples = (int16_t *)frame->data[i];
1094             cs = &c->status[i];
1095             for (n = nb_samples >> 1; n > 0; n--) {
1096                 int v = bytestream2_get_byteu(&gb);
1097                 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
1098                 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 4);
1099             }
1100         }
1101         break;
1102     case AV_CODEC_ID_ADPCM_AGM:
1103         for (i = 0; i < avctx->channels; i++)
1104             c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1105         for (i = 0; i < avctx->channels; i++)
1106             c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
1107
1108         for (n = 0; n < nb_samples >> (1 - st); n++) {
1109             int v = bytestream2_get_byteu(&gb);
1110             *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
1111             *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
1112         }
1113         break;
1114     case AV_CODEC_ID_ADPCM_MS:
1115     {
1116         int block_predictor;
1117
1118         if (avctx->channels > 2) {
1119             for (channel = 0; channel < avctx->channels; channel++) {
1120                 samples = samples_p[channel];
1121                 block_predictor = bytestream2_get_byteu(&gb);
1122                 if (block_predictor > 6) {
1123                     av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n",
1124                            channel, block_predictor);
1125                     return AVERROR_INVALIDDATA;
1126                 }
1127                 c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1128                 c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1129                 c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1130                 c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1131                 c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1132                 *samples++ = c->status[channel].sample2;
1133                 *samples++ = c->status[channel].sample1;
1134                 for(n = (nb_samples - 2) >> 1; n > 0; n--) {
1135                     int byte = bytestream2_get_byteu(&gb);
1136                     *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4  );
1137                     *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F);
1138                 }
1139             }
1140         } else {
1141             block_predictor = bytestream2_get_byteu(&gb);
1142             if (block_predictor > 6) {
1143                 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
1144                        block_predictor);
1145                 return AVERROR_INVALIDDATA;
1146             }
1147             c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1148             c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1149             if (st) {
1150                 block_predictor = bytestream2_get_byteu(&gb);
1151                 if (block_predictor > 6) {
1152                     av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
1153                            block_predictor);
1154                     return AVERROR_INVALIDDATA;
1155                 }
1156                 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1157                 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1158             }
1159             c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1160             if (st){
1161                 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1162             }
1163
1164             c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1165             if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1166             c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1167             if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1168
1169             *samples++ = c->status[0].sample2;
1170             if (st) *samples++ = c->status[1].sample2;
1171             *samples++ = c->status[0].sample1;
1172             if (st) *samples++ = c->status[1].sample1;
1173             for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
1174                 int byte = bytestream2_get_byteu(&gb);
1175                 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4  );
1176                 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
1177             }
1178         }
1179         break;
1180     }
1181     case AV_CODEC_ID_ADPCM_MTAF:
1182         for (channel = 0; channel < avctx->channels; channel+=2) {
1183             bytestream2_skipu(&gb, 4);
1184             c->status[channel    ].step      = bytestream2_get_le16u(&gb) & 0x1f;
1185             c->status[channel + 1].step      = bytestream2_get_le16u(&gb) & 0x1f;
1186             c->status[channel    ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1187             bytestream2_skipu(&gb, 2);
1188             c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1189             bytestream2_skipu(&gb, 2);
1190             for (n = 0; n < nb_samples; n+=2) {
1191                 int v = bytestream2_get_byteu(&gb);
1192                 samples_p[channel][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
1193                 samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4  );
1194             }
1195             for (n = 0; n < nb_samples; n+=2) {
1196                 int v = bytestream2_get_byteu(&gb);
1197                 samples_p[channel + 1][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
1198                 samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4  );
1199             }
1200         }
1201         break;
1202     case AV_CODEC_ID_ADPCM_IMA_DK4:
1203         for (channel = 0; channel < avctx->channels; channel++) {
1204             cs = &c->status[channel];
1205             cs->predictor  = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
1206             cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1207             if (cs->step_index > 88u){
1208                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1209                        channel, cs->step_index);
1210                 return AVERROR_INVALIDDATA;
1211             }
1212         }
1213         for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
1214             int v = bytestream2_get_byteu(&gb);
1215             *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4  , 3);
1216             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1217         }
1218         break;
1219     case AV_CODEC_ID_ADPCM_IMA_DK3:
1220     {
1221         int last_byte = 0;
1222         int nibble;
1223         int decode_top_nibble_next = 0;
1224         int diff_channel;
1225         const int16_t *samples_end = samples + avctx->channels * nb_samples;
1226
1227         bytestream2_skipu(&gb, 10);
1228         c->status[0].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1229         c->status[1].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1230         c->status[0].step_index = bytestream2_get_byteu(&gb);
1231         c->status[1].step_index = bytestream2_get_byteu(&gb);
1232         if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
1233             av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
1234                    c->status[0].step_index, c->status[1].step_index);
1235             return AVERROR_INVALIDDATA;
1236         }
1237         /* sign extend the predictors */
1238         diff_channel = c->status[1].predictor;
1239
1240         /* DK3 ADPCM support macro */
1241 #define DK3_GET_NEXT_NIBBLE() \
1242     if (decode_top_nibble_next) { \
1243         nibble = last_byte >> 4; \
1244         decode_top_nibble_next = 0; \
1245     } else { \
1246         last_byte = bytestream2_get_byteu(&gb); \
1247         nibble = last_byte & 0x0F; \
1248         decode_top_nibble_next = 1; \
1249     }
1250
1251         while (samples < samples_end) {
1252
1253             /* for this algorithm, c->status[0] is the sum channel and
1254              * c->status[1] is the diff channel */
1255
1256             /* process the first predictor of the sum channel */
1257             DK3_GET_NEXT_NIBBLE();
1258             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1259
1260             /* process the diff channel predictor */
1261             DK3_GET_NEXT_NIBBLE();
1262             adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1263
1264             /* process the first pair of stereo PCM samples */
1265             diff_channel = (diff_channel + c->status[1].predictor) / 2;
1266             *samples++ = c->status[0].predictor + c->status[1].predictor;
1267             *samples++ = c->status[0].predictor - c->status[1].predictor;
1268
1269             /* process the second predictor of the sum channel */
1270             DK3_GET_NEXT_NIBBLE();
1271             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1272
1273             /* process the second pair of stereo PCM samples */
1274             diff_channel = (diff_channel + c->status[1].predictor) / 2;
1275             *samples++ = c->status[0].predictor + c->status[1].predictor;
1276             *samples++ = c->status[0].predictor - c->status[1].predictor;
1277         }
1278
1279         if ((bytestream2_tell(&gb) & 1))
1280             bytestream2_skip(&gb, 1);
1281         break;
1282     }
1283     case AV_CODEC_ID_ADPCM_IMA_ISS:
1284         for (channel = 0; channel < avctx->channels; channel++) {
1285             cs = &c->status[channel];
1286             cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1287             cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1288             if (cs->step_index > 88u){
1289                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1290                        channel, cs->step_index);
1291                 return AVERROR_INVALIDDATA;
1292             }
1293         }
1294
1295         for (n = nb_samples >> (1 - st); n > 0; n--) {
1296             int v1, v2;
1297             int v = bytestream2_get_byteu(&gb);
1298             /* nibbles are swapped for mono */
1299             if (st) {
1300                 v1 = v >> 4;
1301                 v2 = v & 0x0F;
1302             } else {
1303                 v2 = v >> 4;
1304                 v1 = v & 0x0F;
1305             }
1306             *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1307             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1308         }
1309         break;
1310     case AV_CODEC_ID_ADPCM_IMA_MOFLEX:
1311         for (channel = 0; channel < avctx->channels; channel++) {
1312             cs = &c->status[channel];
1313             cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1314             cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1315             if (cs->step_index > 88u){
1316                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1317                        channel, cs->step_index);
1318                 return AVERROR_INVALIDDATA;
1319             }
1320         }
1321
1322         for (int subframe = 0; subframe < nb_samples / 256; subframe++) {
1323             for (channel = 0; channel < avctx->channels; channel++) {
1324                 samples = samples_p[channel] + 256 * subframe;
1325                 for (n = 0; n < 256; n += 2) {
1326                     int v = bytestream2_get_byteu(&gb);
1327                     *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1328                     *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1329                 }
1330             }
1331         }
1332         break;
1333     case AV_CODEC_ID_ADPCM_IMA_DAT4:
1334         for (channel = 0; channel < avctx->channels; channel++) {
1335             cs = &c->status[channel];
1336             samples = samples_p[channel];
1337             bytestream2_skip(&gb, 4);
1338             for (n = 0; n < nb_samples; n += 2) {
1339                 int v = bytestream2_get_byteu(&gb);
1340                 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
1341                 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1342             }
1343         }
1344         break;
1345     case AV_CODEC_ID_ADPCM_IMA_APC:
1346         for (n = nb_samples >> (1 - st); n > 0; n--) {
1347             int v = bytestream2_get_byteu(&gb);
1348             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  v >> 4  , 3);
1349             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1350         }
1351         break;
1352     case AV_CODEC_ID_ADPCM_IMA_SSI:
1353         for (n = nb_samples >> (1 - st); n > 0; n--) {
1354             int v = bytestream2_get_byteu(&gb);
1355             *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0],  v >> 4  );
1356             *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0x0F);
1357         }
1358         break;
1359     case AV_CODEC_ID_ADPCM_IMA_APM:
1360         for (n = nb_samples / 2; n > 0; n--) {
1361             for (channel = 0; channel < avctx->channels; channel++) {
1362                 int v = bytestream2_get_byteu(&gb);
1363                 *samples++  = adpcm_ima_qt_expand_nibble(&c->status[channel], v >> 4  );
1364                 samples[st] = adpcm_ima_qt_expand_nibble(&c->status[channel], v & 0x0F);
1365             }
1366             samples += avctx->channels;
1367         }
1368         break;
1369     case AV_CODEC_ID_ADPCM_IMA_ALP:
1370         for (n = nb_samples / 2; n > 0; n--) {
1371             for (channel = 0; channel < avctx->channels; channel++) {
1372                 int v = bytestream2_get_byteu(&gb);
1373                 *samples++  = adpcm_ima_alp_expand_nibble(&c->status[channel], v >> 4  , 2);
1374                 samples[st] = adpcm_ima_alp_expand_nibble(&c->status[channel], v & 0x0F, 2);
1375             }
1376             samples += avctx->channels;
1377         }
1378         break;
1379     case AV_CODEC_ID_ADPCM_IMA_CUNNING:
1380         for (n = 0; n < nb_samples / 2; n++) {
1381             int v = bytestream2_get_byteu(&gb);
1382             *samples++ = adpcm_ima_cunning_expand_nibble(&c->status[0], v & 0x0F);
1383             *samples++ = adpcm_ima_cunning_expand_nibble(&c->status[0], v >> 4);
1384         }
1385         break;
1386     case AV_CODEC_ID_ADPCM_IMA_OKI:
1387         for (n = nb_samples >> (1 - st); n > 0; n--) {
1388             int v = bytestream2_get_byteu(&gb);
1389             *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0],  v >> 4  );
1390             *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1391         }
1392         break;
1393     case AV_CODEC_ID_ADPCM_IMA_RAD:
1394         for (channel = 0; channel < avctx->channels; channel++) {
1395             cs = &c->status[channel];
1396             cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1397             cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1398             if (cs->step_index > 88u){
1399                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1400                        channel, cs->step_index);
1401                 return AVERROR_INVALIDDATA;
1402             }
1403         }
1404         for (n = 0; n < nb_samples / 2; n++) {
1405             int byte[2];
1406
1407             byte[0] = bytestream2_get_byteu(&gb);
1408             if (st)
1409                 byte[1] = bytestream2_get_byteu(&gb);
1410             for(channel = 0; channel < avctx->channels; channel++) {
1411                 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1412             }
1413             for(channel = 0; channel < avctx->channels; channel++) {
1414                 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4  , 3);
1415             }
1416         }
1417         break;
1418     case AV_CODEC_ID_ADPCM_IMA_WS:
1419         if (c->vqa_version == 3) {
1420             for (channel = 0; channel < avctx->channels; channel++) {
1421                 int16_t *smp = samples_p[channel];
1422
1423                 for (n = nb_samples / 2; n > 0; n--) {
1424                     int v = bytestream2_get_byteu(&gb);
1425                     *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1426                     *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1427                 }
1428             }
1429         } else {
1430             for (n = nb_samples / 2; n > 0; n--) {
1431                 for (channel = 0; channel < avctx->channels; channel++) {
1432                     int v = bytestream2_get_byteu(&gb);
1433                     *samples++  = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1434                     samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1435                 }
1436                 samples += avctx->channels;
1437             }
1438         }
1439         bytestream2_seek(&gb, 0, SEEK_END);
1440         break;
1441     case AV_CODEC_ID_ADPCM_XA:
1442     {
1443         int16_t *out0 = samples_p[0];
1444         int16_t *out1 = samples_p[1];
1445         int samples_per_block = 28 * (3 - avctx->channels) * 4;
1446         int sample_offset = 0;
1447         int bytes_remaining;
1448         while (bytestream2_get_bytes_left(&gb) >= 128) {
1449             if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1450                                  &c->status[0], &c->status[1],
1451                                  avctx->channels, sample_offset)) < 0)
1452                 return ret;
1453             bytestream2_skipu(&gb, 128);
1454             sample_offset += samples_per_block;
1455         }
1456         /* Less than a full block of data left, e.g. when reading from
1457          * 2324 byte per sector XA; the remainder is padding */
1458         bytes_remaining = bytestream2_get_bytes_left(&gb);
1459         if (bytes_remaining > 0) {
1460             bytestream2_skip(&gb, bytes_remaining);
1461         }
1462         break;
1463     }
1464     case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1465         for (i=0; i<=st; i++) {
1466             c->status[i].step_index = bytestream2_get_le32u(&gb);
1467             if (c->status[i].step_index > 88u) {
1468                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1469                        i, c->status[i].step_index);
1470                 return AVERROR_INVALIDDATA;
1471             }
1472         }
1473         for (i=0; i<=st; i++) {
1474             c->status[i].predictor  = bytestream2_get_le32u(&gb);
1475             if (FFABS((int64_t)c->status[i].predictor) > (1<<16))
1476                 return AVERROR_INVALIDDATA;
1477         }
1478
1479         for (n = nb_samples >> (1 - st); n > 0; n--) {
1480             int byte   = bytestream2_get_byteu(&gb);
1481             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   3);
1482             *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1483         }
1484         break;
1485     case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1486         for (n = nb_samples >> (1 - st); n > 0; n--) {
1487             int byte = bytestream2_get_byteu(&gb);
1488             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   6);
1489             *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1490         }
1491         break;
1492     case AV_CODEC_ID_ADPCM_EA:
1493     {
1494         int previous_left_sample, previous_right_sample;
1495         int current_left_sample, current_right_sample;
1496         int next_left_sample, next_right_sample;
1497         int coeff1l, coeff2l, coeff1r, coeff2r;
1498         int shift_left, shift_right;
1499
1500         /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1501            each coding 28 stereo samples. */
1502
1503         if(avctx->channels != 2)
1504             return AVERROR_INVALIDDATA;
1505
1506         current_left_sample   = sign_extend(bytestream2_get_le16u(&gb), 16);
1507         previous_left_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1508         current_right_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1509         previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1510
1511         for (count1 = 0; count1 < nb_samples / 28; count1++) {
1512             int byte = bytestream2_get_byteu(&gb);
1513             coeff1l = ea_adpcm_table[ byte >> 4       ];
1514             coeff2l = ea_adpcm_table[(byte >> 4  ) + 4];
1515             coeff1r = ea_adpcm_table[ byte & 0x0F];
1516             coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1517
1518             byte = bytestream2_get_byteu(&gb);
1519             shift_left  = 20 - (byte >> 4);
1520             shift_right = 20 - (byte & 0x0F);
1521
1522             for (count2 = 0; count2 < 28; count2++) {
1523                 byte = bytestream2_get_byteu(&gb);
1524                 next_left_sample  = sign_extend(byte >> 4, 4) * (1 << shift_left);
1525                 next_right_sample = sign_extend(byte,      4) * (1 << shift_right);
1526
1527                 next_left_sample = (next_left_sample +
1528                     (current_left_sample * coeff1l) +
1529                     (previous_left_sample * coeff2l) + 0x80) >> 8;
1530                 next_right_sample = (next_right_sample +
1531                     (current_right_sample * coeff1r) +
1532                     (previous_right_sample * coeff2r) + 0x80) >> 8;
1533
1534                 previous_left_sample = current_left_sample;
1535                 current_left_sample = av_clip_int16(next_left_sample);
1536                 previous_right_sample = current_right_sample;
1537                 current_right_sample = av_clip_int16(next_right_sample);
1538                 *samples++ = current_left_sample;
1539                 *samples++ = current_right_sample;
1540             }
1541         }
1542
1543         bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1544
1545         break;
1546     }
1547     case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1548     {
1549         int coeff[2][2], shift[2];
1550
1551         for(channel = 0; channel < avctx->channels; channel++) {
1552             int byte = bytestream2_get_byteu(&gb);
1553             for (i=0; i<2; i++)
1554                 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1555             shift[channel] = 20 - (byte & 0x0F);
1556         }
1557         for (count1 = 0; count1 < nb_samples / 2; count1++) {
1558             int byte[2];
1559
1560             byte[0] = bytestream2_get_byteu(&gb);
1561             if (st) byte[1] = bytestream2_get_byteu(&gb);
1562             for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1563                 for(channel = 0; channel < avctx->channels; channel++) {
1564                     int sample = sign_extend(byte[channel] >> i, 4) * (1 << shift[channel]);
1565                     sample = (sample +
1566                              c->status[channel].sample1 * coeff[channel][0] +
1567                              c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1568                     c->status[channel].sample2 = c->status[channel].sample1;
1569                     c->status[channel].sample1 = av_clip_int16(sample);
1570                     *samples++ = c->status[channel].sample1;
1571                 }
1572             }
1573         }
1574         bytestream2_seek(&gb, 0, SEEK_END);
1575         break;
1576     }
1577     case AV_CODEC_ID_ADPCM_EA_R1:
1578     case AV_CODEC_ID_ADPCM_EA_R2:
1579     case AV_CODEC_ID_ADPCM_EA_R3: {
1580         /* channel numbering
1581            2chan: 0=fl, 1=fr
1582            4chan: 0=fl, 1=rl, 2=fr, 3=rr
1583            6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1584         const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1585         int previous_sample, current_sample, next_sample;
1586         int coeff1, coeff2;
1587         int shift;
1588         unsigned int channel;
1589         uint16_t *samplesC;
1590         int count = 0;
1591         int offsets[6];
1592
1593         for (channel=0; channel<avctx->channels; channel++)
1594             offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1595                                              bytestream2_get_le32(&gb)) +
1596                                (avctx->channels + 1) * 4;
1597
1598         for (channel=0; channel<avctx->channels; channel++) {
1599             bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1600             samplesC = samples_p[channel];
1601
1602             if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1603                 current_sample  = sign_extend(bytestream2_get_le16(&gb), 16);
1604                 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1605             } else {
1606                 current_sample  = c->status[channel].predictor;
1607                 previous_sample = c->status[channel].prev_sample;
1608             }
1609
1610             for (count1 = 0; count1 < nb_samples / 28; count1++) {
1611                 int byte = bytestream2_get_byte(&gb);
1612                 if (byte == 0xEE) {  /* only seen in R2 and R3 */
1613                     current_sample  = sign_extend(bytestream2_get_be16(&gb), 16);
1614                     previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1615
1616                     for (count2=0; count2<28; count2++)
1617                         *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1618                 } else {
1619                     coeff1 = ea_adpcm_table[ byte >> 4     ];
1620                     coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1621                     shift = 20 - (byte & 0x0F);
1622
1623                     for (count2=0; count2<28; count2++) {
1624                         if (count2 & 1)
1625                             next_sample = (unsigned)sign_extend(byte,    4) << shift;
1626                         else {
1627                             byte = bytestream2_get_byte(&gb);
1628                             next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift;
1629                         }
1630
1631                         next_sample += (current_sample  * coeff1) +
1632                                        (previous_sample * coeff2);
1633                         next_sample = av_clip_int16(next_sample >> 8);
1634
1635                         previous_sample = current_sample;
1636                         current_sample  = next_sample;
1637                         *samplesC++ = current_sample;
1638                     }
1639                 }
1640             }
1641             if (!count) {
1642                 count = count1;
1643             } else if (count != count1) {
1644                 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1645                 count = FFMAX(count, count1);
1646             }
1647
1648             if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1649                 c->status[channel].predictor   = current_sample;
1650                 c->status[channel].prev_sample = previous_sample;
1651             }
1652         }
1653
1654         frame->nb_samples = count * 28;
1655         bytestream2_seek(&gb, 0, SEEK_END);
1656         break;
1657     }
1658     case AV_CODEC_ID_ADPCM_EA_XAS:
1659         for (channel=0; channel<avctx->channels; channel++) {
1660             int coeff[2][4], shift[4];
1661             int16_t *s = samples_p[channel];
1662             for (n = 0; n < 4; n++, s += 32) {
1663                 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1664                 for (i=0; i<2; i++)
1665                     coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1666                 s[0] = val & ~0x0F;
1667
1668                 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1669                 shift[n] = 20 - (val & 0x0F);
1670                 s[1] = val & ~0x0F;
1671             }
1672
1673             for (m=2; m<32; m+=2) {
1674                 s = &samples_p[channel][m];
1675                 for (n = 0; n < 4; n++, s += 32) {
1676                     int level, pred;
1677                     int byte = bytestream2_get_byteu(&gb);
1678
1679                     level = sign_extend(byte >> 4, 4) * (1 << shift[n]);
1680                     pred  = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1681                     s[0]  = av_clip_int16((level + pred + 0x80) >> 8);
1682
1683                     level = sign_extend(byte, 4) * (1 << shift[n]);
1684                     pred  = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1685                     s[1]  = av_clip_int16((level + pred + 0x80) >> 8);
1686                 }
1687             }
1688         }
1689         break;
1690     case AV_CODEC_ID_ADPCM_IMA_AMV:
1691         av_assert0(avctx->channels == 1);
1692
1693         /*
1694          * Header format:
1695          *   int16_t  predictor;
1696          *   uint8_t  step_index;
1697          *   uint8_t  reserved;
1698          *   uint32_t frame_size;
1699          *
1700          * Some implementations have step_index as 16-bits, but others
1701          * only use the lower 8 and store garbage in the upper 8.
1702          */
1703         c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1704         c->status[0].step_index = bytestream2_get_byteu(&gb);
1705         bytestream2_skipu(&gb, 5);
1706         if (c->status[0].step_index > 88u) {
1707             av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1708                    c->status[0].step_index);
1709             return AVERROR_INVALIDDATA;
1710         }
1711
1712         for (n = nb_samples >> 1; n > 0; n--) {
1713             int v = bytestream2_get_byteu(&gb);
1714
1715             *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1716             *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1717         }
1718
1719         if (nb_samples & 1) {
1720             int v = bytestream2_get_byteu(&gb);
1721             *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1722
1723             if (v & 0x0F) {
1724                 /* Holds true on all the http://samples.mplayerhq.hu/amv samples. */
1725                 av_log(avctx, AV_LOG_WARNING, "Last nibble set on packet with odd sample count.\n");
1726                 av_log(avctx, AV_LOG_WARNING, "Sample will be skipped.\n");
1727             }
1728         }
1729         break;
1730     case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1731         for (i = 0; i < avctx->channels; i++) {
1732             c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1733             c->status[i].step_index = bytestream2_get_byteu(&gb);
1734             bytestream2_skipu(&gb, 1);
1735             if (c->status[i].step_index > 88u) {
1736                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1737                        c->status[i].step_index);
1738                 return AVERROR_INVALIDDATA;
1739             }
1740         }
1741
1742         for (n = nb_samples >> (1 - st); n > 0; n--) {
1743             int v = bytestream2_get_byteu(&gb);
1744
1745             *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4 );
1746             *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf);
1747         }
1748         break;
1749     case AV_CODEC_ID_ADPCM_CT:
1750         for (n = nb_samples >> (1 - st); n > 0; n--) {
1751             int v = bytestream2_get_byteu(&gb);
1752             *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4  );
1753             *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1754         }
1755         break;
1756     case AV_CODEC_ID_ADPCM_SBPRO_4:
1757     case AV_CODEC_ID_ADPCM_SBPRO_3:
1758     case AV_CODEC_ID_ADPCM_SBPRO_2:
1759         if (!c->status[0].step_index) {
1760             /* the first byte is a raw sample */
1761             *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1762             if (st)
1763                 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1764             c->status[0].step_index = 1;
1765             nb_samples--;
1766         }
1767         if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1768             for (n = nb_samples >> (1 - st); n > 0; n--) {
1769                 int byte = bytestream2_get_byteu(&gb);
1770                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1771                                                        byte >> 4,   4, 0);
1772                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1773                                                        byte & 0x0F, 4, 0);
1774             }
1775         } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1776             for (n = (nb_samples<<st) / 3; n > 0; n--) {
1777                 int byte = bytestream2_get_byteu(&gb);
1778                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1779                                                         byte >> 5        , 3, 0);
1780                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1781                                                        (byte >> 2) & 0x07, 3, 0);
1782                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1783                                                         byte & 0x03,       2, 0);
1784             }
1785         } else {
1786             for (n = nb_samples >> (2 - st); n > 0; n--) {
1787                 int byte = bytestream2_get_byteu(&gb);
1788                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1789                                                         byte >> 6        , 2, 2);
1790                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1791                                                        (byte >> 4) & 0x03, 2, 2);
1792                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1793                                                        (byte >> 2) & 0x03, 2, 2);
1794                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1795                                                         byte & 0x03,       2, 2);
1796             }
1797         }
1798         break;
1799     case AV_CODEC_ID_ADPCM_SWF:
1800         adpcm_swf_decode(avctx, buf, buf_size, samples);
1801         bytestream2_seek(&gb, 0, SEEK_END);
1802         break;
1803     case AV_CODEC_ID_ADPCM_YAMAHA:
1804         for (n = nb_samples >> (1 - st); n > 0; n--) {
1805             int v = bytestream2_get_byteu(&gb);
1806             *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1807             *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4  );
1808         }
1809         break;
1810     case AV_CODEC_ID_ADPCM_AICA:
1811         if (!c->has_status) {
1812             for (channel = 0; channel < avctx->channels; channel++)
1813                 c->status[channel].step = 0;
1814             c->has_status = 1;
1815         }
1816         for (channel = 0; channel < avctx->channels; channel++) {
1817             samples = samples_p[channel];
1818             for (n = nb_samples >> 1; n > 0; n--) {
1819                 int v = bytestream2_get_byteu(&gb);
1820                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1821                 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4  );
1822             }
1823         }
1824         break;
1825     case AV_CODEC_ID_ADPCM_AFC:
1826     {
1827         int samples_per_block;
1828         int blocks;
1829
1830         if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1831             samples_per_block = avctx->extradata[0] / 16;
1832             blocks = nb_samples / avctx->extradata[0];
1833         } else {
1834             samples_per_block = nb_samples / 16;
1835             blocks = 1;
1836         }
1837
1838         for (m = 0; m < blocks; m++) {
1839         for (channel = 0; channel < avctx->channels; channel++) {
1840             int prev1 = c->status[channel].sample1;
1841             int prev2 = c->status[channel].sample2;
1842
1843             samples = samples_p[channel] + m * 16;
1844             /* Read in every sample for this channel.  */
1845             for (i = 0; i < samples_per_block; i++) {
1846                 int byte = bytestream2_get_byteu(&gb);
1847                 int scale = 1 << (byte >> 4);
1848                 int index = byte & 0xf;
1849                 int factor1 = ff_adpcm_afc_coeffs[0][index];
1850                 int factor2 = ff_adpcm_afc_coeffs[1][index];
1851
1852                 /* Decode 16 samples.  */
1853                 for (n = 0; n < 16; n++) {
1854                     int32_t sampledat;
1855
1856                     if (n & 1) {
1857                         sampledat = sign_extend(byte, 4);
1858                     } else {
1859                         byte = bytestream2_get_byteu(&gb);
1860                         sampledat = sign_extend(byte >> 4, 4);
1861                     }
1862
1863                     sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) +
1864                                 sampledat * scale;
1865                     *samples = av_clip_int16(sampledat);
1866                     prev2 = prev1;
1867                     prev1 = *samples++;
1868                 }
1869             }
1870
1871             c->status[channel].sample1 = prev1;
1872             c->status[channel].sample2 = prev2;
1873         }
1874         }
1875         bytestream2_seek(&gb, 0, SEEK_END);
1876         break;
1877     }
1878     case AV_CODEC_ID_ADPCM_THP:
1879     case AV_CODEC_ID_ADPCM_THP_LE:
1880     {
1881         int table[14][16];
1882         int ch;
1883
1884 #define THP_GET16(g) \
1885     sign_extend( \
1886         avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1887         bytestream2_get_le16u(&(g)) : \
1888         bytestream2_get_be16u(&(g)), 16)
1889
1890         if (avctx->extradata) {
1891             GetByteContext tb;
1892             if (avctx->extradata_size < 32 * avctx->channels) {
1893                 av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1894                 return AVERROR_INVALIDDATA;
1895             }
1896
1897             bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1898             for (i = 0; i < avctx->channels; i++)
1899                 for (n = 0; n < 16; n++)
1900                     table[i][n] = THP_GET16(tb);
1901         } else {
1902             for (i = 0; i < avctx->channels; i++)
1903                 for (n = 0; n < 16; n++)
1904                     table[i][n] = THP_GET16(gb);
1905
1906             if (!c->has_status) {
1907                 /* Initialize the previous sample.  */
1908                 for (i = 0; i < avctx->channels; i++) {
1909                     c->status[i].sample1 = THP_GET16(gb);
1910                     c->status[i].sample2 = THP_GET16(gb);
1911                 }
1912                 c->has_status = 1;
1913             } else {
1914                 bytestream2_skip(&gb, avctx->channels * 4);
1915             }
1916         }
1917
1918         for (ch = 0; ch < avctx->channels; ch++) {
1919             samples = samples_p[ch];
1920
1921             /* Read in every sample for this channel.  */
1922             for (i = 0; i < (nb_samples + 13) / 14; i++) {
1923                 int byte = bytestream2_get_byteu(&gb);
1924                 int index = (byte >> 4) & 7;
1925                 unsigned int exp = byte & 0x0F;
1926                 int64_t factor1 = table[ch][index * 2];
1927                 int64_t factor2 = table[ch][index * 2 + 1];
1928
1929                 /* Decode 14 samples.  */
1930                 for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1931                     int32_t sampledat;
1932
1933                     if (n & 1) {
1934                         sampledat = sign_extend(byte, 4);
1935                     } else {
1936                         byte = bytestream2_get_byteu(&gb);
1937                         sampledat = sign_extend(byte >> 4, 4);
1938                     }
1939
1940                     sampledat = ((c->status[ch].sample1 * factor1
1941                                 + c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 << exp);
1942                     *samples = av_clip_int16(sampledat);
1943                     c->status[ch].sample2 = c->status[ch].sample1;
1944                     c->status[ch].sample1 = *samples++;
1945                 }
1946             }
1947         }
1948         break;
1949     }
1950     case AV_CODEC_ID_ADPCM_DTK:
1951         for (channel = 0; channel < avctx->channels; channel++) {
1952             samples = samples_p[channel];
1953
1954             /* Read in every sample for this channel.  */
1955             for (i = 0; i < nb_samples / 28; i++) {
1956                 int byte, header;
1957                 if (channel)
1958                     bytestream2_skipu(&gb, 1);
1959                 header = bytestream2_get_byteu(&gb);
1960                 bytestream2_skipu(&gb, 3 - channel);
1961
1962                 /* Decode 28 samples.  */
1963                 for (n = 0; n < 28; n++) {
1964                     int32_t sampledat, prev;
1965
1966                     switch (header >> 4) {
1967                     case 1:
1968                         prev = (c->status[channel].sample1 * 0x3c);
1969                         break;
1970                     case 2:
1971                         prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1972                         break;
1973                     case 3:
1974                         prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1975                         break;
1976                     default:
1977                         prev = 0;
1978                     }
1979
1980                     prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1981
1982                     byte = bytestream2_get_byteu(&gb);
1983                     if (!channel)
1984                         sampledat = sign_extend(byte, 4);
1985                     else
1986                         sampledat = sign_extend(byte >> 4, 4);
1987
1988                     sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev;
1989                     *samples++ = av_clip_int16(sampledat >> 6);
1990                     c->status[channel].sample2 = c->status[channel].sample1;
1991                     c->status[channel].sample1 = sampledat;
1992                 }
1993             }
1994             if (!channel)
1995                 bytestream2_seek(&gb, 0, SEEK_SET);
1996         }
1997         break;
1998     case AV_CODEC_ID_ADPCM_PSX:
1999         for (int block = 0; block < avpkt->size / FFMAX(avctx->block_align, 16 * avctx->channels); block++) {
2000             int nb_samples_per_block = 28 * FFMAX(avctx->block_align, 16 * avctx->channels) / (16 * avctx->channels);
2001             for (channel = 0; channel < avctx->channels; channel++) {
2002                 samples = samples_p[channel] + block * nb_samples_per_block;
2003                 av_assert0((block + 1) * nb_samples_per_block <= nb_samples);
2004
2005                 /* Read in every sample for this channel.  */
2006                 for (i = 0; i < nb_samples_per_block / 28; i++) {
2007                     int filter, shift, flag, byte;
2008
2009                     filter = bytestream2_get_byteu(&gb);
2010                     shift  = filter & 0xf;
2011                     filter = filter >> 4;
2012                     if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
2013                         return AVERROR_INVALIDDATA;
2014                     flag   = bytestream2_get_byteu(&gb);
2015
2016                     /* Decode 28 samples.  */
2017                     for (n = 0; n < 28; n++) {
2018                         int sample = 0, scale;
2019
2020                         if (flag < 0x07) {
2021                             if (n & 1) {
2022                                 scale = sign_extend(byte >> 4, 4);
2023                             } else {
2024                                 byte  = bytestream2_get_byteu(&gb);
2025                                 scale = sign_extend(byte, 4);
2026                             }
2027
2028                             scale  = scale * (1 << 12);
2029                             sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
2030                         }
2031                         *samples++ = av_clip_int16(sample);
2032                         c->status[channel].sample2 = c->status[channel].sample1;
2033                         c->status[channel].sample1 = sample;
2034                     }
2035                 }
2036             }
2037         }
2038         break;
2039     case AV_CODEC_ID_ADPCM_ARGO:
2040         /*
2041          * The format of each block:
2042          *   uint8_t left_control;
2043          *   uint4_t left_samples[nb_samples];
2044          *   ---- and if stereo ----
2045          *   uint8_t right_control;
2046          *   uint4_t right_samples[nb_samples];
2047          *
2048          * Format of the control byte:
2049          * MSB [SSSSRDRR] LSB
2050          *   S = (Shift Amount - 2)
2051          *   D = Decoder flag.
2052          *   R = Reserved
2053          *
2054          * Each block relies on the previous two samples of each channel.
2055          * They should be 0 initially.
2056          */
2057         for (int block = 0; block < avpkt->size / avctx->block_align; block++) {
2058             for (channel = 0; channel < avctx->channels; channel++) {
2059                 int control, shift;
2060
2061                 samples = samples_p[channel] + block * 32;
2062                 cs = c->status + channel;
2063
2064                 /* Get the control byte and decode the samples, 2 at a time. */
2065                 control = bytestream2_get_byteu(&gb);
2066                 shift = (control >> 4) + 2;
2067
2068                 for (n = 0; n < 16; n++) {
2069                     int sample = bytestream2_get_byteu(&gb);
2070                     *samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 4, shift, control & 0x04);
2071                     *samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 0, shift, control & 0x04);
2072                 }
2073             }
2074         }
2075         break;
2076     case AV_CODEC_ID_ADPCM_ZORK:
2077         if (!c->has_status) {
2078             for (channel = 0; channel < avctx->channels; channel++) {
2079                 c->status[channel].predictor  = 0;
2080                 c->status[channel].step_index = 0;
2081             }
2082             c->has_status = 1;
2083         }
2084         for (n = 0; n < nb_samples * avctx->channels; n++) {
2085             int v = bytestream2_get_byteu(&gb);
2086             *samples++ = adpcm_zork_expand_nibble(&c->status[n % avctx->channels], v);
2087         }
2088         break;
2089     case AV_CODEC_ID_ADPCM_IMA_MTF:
2090         for (n = nb_samples / 2; n > 0; n--) {
2091             for (channel = 0; channel < avctx->channels; channel++) {
2092                 int v = bytestream2_get_byteu(&gb);
2093                 *samples++  = adpcm_ima_mtf_expand_nibble(&c->status[channel], v >> 4);
2094                 samples[st] = adpcm_ima_mtf_expand_nibble(&c->status[channel], v & 0x0F);
2095             }
2096             samples += avctx->channels;
2097         }
2098         break;
2099     default:
2100         av_assert0(0); // unsupported codec_id should not happen
2101     }
2102
2103     if (avpkt->size && bytestream2_tell(&gb) == 0) {
2104         av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
2105         return AVERROR_INVALIDDATA;
2106     }
2107
2108     *got_frame_ptr = 1;
2109
2110     if (avpkt->size < bytestream2_tell(&gb)) {
2111         av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
2112         return avpkt->size;
2113     }
2114
2115     return bytestream2_tell(&gb);
2116 }
2117
2118 static void adpcm_flush(AVCodecContext *avctx)
2119 {
2120     ADPCMDecodeContext *c = avctx->priv_data;
2121     c->has_status = 0;
2122 }
2123
2124
2125 static const enum AVSampleFormat sample_fmts_s16[]  = { AV_SAMPLE_FMT_S16,
2126                                                         AV_SAMPLE_FMT_NONE };
2127 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
2128                                                         AV_SAMPLE_FMT_NONE };
2129 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
2130                                                         AV_SAMPLE_FMT_S16P,
2131                                                         AV_SAMPLE_FMT_NONE };
2132
2133 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
2134 AVCodec ff_ ## name_ ## _decoder = {                        \
2135     .name           = #name_,                               \
2136     .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
2137     .type           = AVMEDIA_TYPE_AUDIO,                   \
2138     .id             = id_,                                  \
2139     .priv_data_size = sizeof(ADPCMDecodeContext),           \
2140     .init           = adpcm_decode_init,                    \
2141     .decode         = adpcm_decode_frame,                   \
2142     .flush          = adpcm_flush,                          \
2143     .capabilities   = AV_CODEC_CAP_DR1,                     \
2144     .sample_fmts    = sample_fmts_,                         \
2145     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,         \
2146 }
2147
2148 /* Note: Do not forget to add new entries to the Makefile as well. */
2149 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM,         sample_fmts_s16p, adpcm_4xm,         "ADPCM 4X Movie");
2150 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC,         sample_fmts_s16p, adpcm_afc,         "ADPCM Nintendo Gamecube AFC");
2151 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM,         sample_fmts_s16,  adpcm_agm,         "ADPCM AmuseGraphics Movie");
2152 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA,        sample_fmts_s16p, adpcm_aica,        "ADPCM Yamaha AICA");
2153 ADPCM_DECODER(AV_CODEC_ID_ADPCM_ARGO,        sample_fmts_s16p, adpcm_argo,        "ADPCM Argonaut Games");
2154 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT,          sample_fmts_s16,  adpcm_ct,          "ADPCM Creative Technology");
2155 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK,         sample_fmts_s16p, adpcm_dtk,         "ADPCM Nintendo Gamecube DTK");
2156 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA,          sample_fmts_s16,  adpcm_ea,          "ADPCM Electronic Arts");
2157 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16,  adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
2158 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1,       sample_fmts_s16p, adpcm_ea_r1,       "ADPCM Electronic Arts R1");
2159 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2,       sample_fmts_s16p, adpcm_ea_r2,       "ADPCM Electronic Arts R2");
2160 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3,       sample_fmts_s16p, adpcm_ea_r3,       "ADPCM Electronic Arts R3");
2161 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS,      sample_fmts_s16p, adpcm_ea_xas,      "ADPCM Electronic Arts XAS");
2162 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV,     sample_fmts_s16,  adpcm_ima_amv,     "ADPCM IMA AMV");
2163 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC,     sample_fmts_s16,  adpcm_ima_apc,     "ADPCM IMA CRYO APC");
2164 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APM,     sample_fmts_s16,  adpcm_ima_apm,     "ADPCM IMA Ubisoft APM");
2165 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_CUNNING, sample_fmts_s16,  adpcm_ima_cunning, "ADPCM IMA Cunning Developments");
2166 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4,    sample_fmts_s16,  adpcm_ima_dat4,    "ADPCM IMA Eurocom DAT4");
2167 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3,     sample_fmts_s16,  adpcm_ima_dk3,     "ADPCM IMA Duck DK3");
2168 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4,     sample_fmts_s16,  adpcm_ima_dk4,     "ADPCM IMA Duck DK4");
2169 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16,  adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
2170 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16,  adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
2171 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS,     sample_fmts_s16,  adpcm_ima_iss,     "ADPCM IMA Funcom ISS");
2172 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MOFLEX,  sample_fmts_s16p, adpcm_ima_moflex,  "ADPCM IMA MobiClip MOFLEX");
2173 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MTF,     sample_fmts_s16,  adpcm_ima_mtf,     "ADPCM IMA Capcom's MT Framework");
2174 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI,     sample_fmts_s16,  adpcm_ima_oki,     "ADPCM IMA Dialogic OKI");
2175 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT,      sample_fmts_s16p, adpcm_ima_qt,      "ADPCM IMA QuickTime");
2176 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD,     sample_fmts_s16,  adpcm_ima_rad,     "ADPCM IMA Radical");
2177 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SSI,     sample_fmts_s16,  adpcm_ima_ssi,     "ADPCM IMA Simon & Schuster Interactive");
2178 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG,  sample_fmts_s16,  adpcm_ima_smjpeg,  "ADPCM IMA Loki SDL MJPEG");
2179 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ALP,     sample_fmts_s16,  adpcm_ima_alp,     "ADPCM IMA High Voltage Software ALP");
2180 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV,     sample_fmts_s16p, adpcm_ima_wav,     "ADPCM IMA WAV");
2181 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS,      sample_fmts_both, adpcm_ima_ws,      "ADPCM IMA Westwood");
2182 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS,          sample_fmts_both, adpcm_ms,          "ADPCM Microsoft");
2183 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF,        sample_fmts_s16p, adpcm_mtaf,        "ADPCM MTAF");
2184 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX,         sample_fmts_s16p, adpcm_psx,         "ADPCM Playstation");
2185 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2,     sample_fmts_s16,  adpcm_sbpro_2,     "ADPCM Sound Blaster Pro 2-bit");
2186 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3,     sample_fmts_s16,  adpcm_sbpro_3,     "ADPCM Sound Blaster Pro 2.6-bit");
2187 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4,     sample_fmts_s16,  adpcm_sbpro_4,     "ADPCM Sound Blaster Pro 4-bit");
2188 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF,         sample_fmts_s16,  adpcm_swf,         "ADPCM Shockwave Flash");
2189 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE,      sample_fmts_s16p, adpcm_thp_le,      "ADPCM Nintendo THP (little-endian)");
2190 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP,         sample_fmts_s16p, adpcm_thp,         "ADPCM Nintendo THP");
2191 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA,          sample_fmts_s16p, adpcm_xa,          "ADPCM CDROM XA");
2192 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA,      sample_fmts_s16,  adpcm_yamaha,      "ADPCM Yamaha");
2193 ADPCM_DECODER(AV_CODEC_ID_ADPCM_ZORK,        sample_fmts_s16,  adpcm_zork,        "ADPCM Zork");