]> git.sesse.net Git - ffmpeg/blob - libavcodec/magicyuvenc.c
avformat/alp: fix handling of TUN files
[ffmpeg] / libavcodec / magicyuvenc.c
1 /*
2  * MagicYUV encoder
3  * Copyright (c) 2017 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <stdlib.h>
23 #include <string.h>
24
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "libavutil/qsort.h"
28
29 #include "avcodec.h"
30 #include "bytestream.h"
31 #include "put_bits.h"
32 #include "internal.h"
33 #include "thread.h"
34 #include "lossless_videoencdsp.h"
35
36 typedef enum Prediction {
37     LEFT = 1,
38     GRADIENT,
39     MEDIAN,
40 } Prediction;
41
42 typedef struct HuffEntry {
43     uint8_t  len;
44     uint32_t code;
45 } HuffEntry;
46
47 typedef struct PTable {
48     int     value;  ///< input value
49     int64_t prob;   ///< number of occurences of this value in input
50 } PTable;
51
52 typedef struct MagicYUVContext {
53     const AVClass       *class;
54     int                  frame_pred;
55     PutBitContext        pb;
56     int                  planes;
57     uint8_t              format;
58     AVFrame             *p;
59     int                  slice_height;
60     int                  nb_slices;
61     int                  correlate;
62     int                  hshift[4];
63     int                  vshift[4];
64     uint8_t             *slices[4];
65     unsigned             slice_pos[4];
66     unsigned             tables_size;
67     HuffEntry            he[4][256];
68     LLVidEncDSPContext   llvidencdsp;
69     void (*predict)(struct MagicYUVContext *s, uint8_t *src, uint8_t *dst,
70                     ptrdiff_t stride, int width, int height);
71 } MagicYUVContext;
72
73 static void left_predict(MagicYUVContext *s,
74                          uint8_t *src, uint8_t *dst, ptrdiff_t stride,
75                          int width, int height)
76 {
77     uint8_t prev = 0;
78     int i, j;
79
80     for (i = 0; i < width; i++) {
81         dst[i] = src[i] - prev;
82         prev   = src[i];
83     }
84     dst += width;
85     src += stride;
86     for (j = 1; j < height; j++) {
87         prev = src[-stride];
88         for (i = 0; i < width; i++) {
89             dst[i] = src[i] - prev;
90             prev   = src[i];
91         }
92         dst += width;
93         src += stride;
94     }
95 }
96
97 static void gradient_predict(MagicYUVContext *s,
98                              uint8_t *src, uint8_t *dst, ptrdiff_t stride,
99                              int width, int height)
100 {
101     int left = 0, top, lefttop;
102     int i, j;
103
104     for (i = 0; i < width; i++) {
105         dst[i] = src[i] - left;
106         left   = src[i];
107     }
108     dst += width;
109     src += stride;
110     for (j = 1; j < height; j++) {
111         top = src[-stride];
112         left = src[0] - top;
113         dst[0] = left;
114         for (i = 1; i < width; i++) {
115             top = src[i - stride];
116             lefttop = src[i - (stride + 1)];
117             left = src[i-1];
118             dst[i] = (src[i] - top) - left + lefttop;
119         }
120         dst += width;
121         src += stride;
122     }
123 }
124
125 static void median_predict(MagicYUVContext *s,
126                            uint8_t *src, uint8_t *dst, ptrdiff_t stride,
127                            int width, int height)
128 {
129     int left = 0, lefttop;
130     int i, j;
131
132     for (i = 0; i < width; i++) {
133         dst[i] = src[i] - left;
134         left   = src[i];
135     }
136     dst += width;
137     src += stride;
138     for (j = 1; j < height; j++) {
139         left = lefttop = src[-stride];
140         s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
141         dst += width;
142         src += stride;
143     }
144 }
145
146 static av_cold int magy_encode_init(AVCodecContext *avctx)
147 {
148     MagicYUVContext *s = avctx->priv_data;
149     PutByteContext pb;
150     int i;
151
152     switch (avctx->pix_fmt) {
153     case AV_PIX_FMT_GBRP:
154         avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
155         s->correlate = 1;
156         s->format = 0x65;
157         break;
158     case AV_PIX_FMT_GBRAP:
159         avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
160         s->correlate = 1;
161         s->format = 0x66;
162         break;
163     case AV_PIX_FMT_YUV420P:
164         avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
165         s->hshift[1] =
166         s->vshift[1] =
167         s->hshift[2] =
168         s->vshift[2] = 1;
169         s->format = 0x69;
170         break;
171     case AV_PIX_FMT_YUV422P:
172         avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
173         s->hshift[1] =
174         s->hshift[2] = 1;
175         s->format = 0x68;
176         break;
177     case AV_PIX_FMT_YUV444P:
178         avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
179         s->format = 0x67;
180         break;
181     case AV_PIX_FMT_YUVA444P:
182         avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
183         s->format = 0x6a;
184         break;
185     case AV_PIX_FMT_GRAY8:
186         avctx->codec_tag = MKTAG('M', '8', 'G', '0');
187         s->format = 0x6b;
188         break;
189     default:
190         av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format: %d\n",
191                avctx->pix_fmt);
192         return AVERROR_INVALIDDATA;
193     }
194
195     ff_llvidencdsp_init(&s->llvidencdsp);
196
197     s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
198
199     s->nb_slices = 1;
200
201     for (i = 0; i < s->planes; i++) {
202         s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) +
203                                  AV_INPUT_BUFFER_PADDING_SIZE);
204         if (!s->slices[i]) {
205             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
206             return AVERROR(ENOMEM);
207         }
208     }
209
210     switch (s->frame_pred) {
211     case LEFT:     s->predict = left_predict;     break;
212     case GRADIENT: s->predict = gradient_predict; break;
213     case MEDIAN:   s->predict = median_predict;   break;
214     }
215
216     avctx->extradata_size = 32;
217
218     avctx->extradata = av_mallocz(avctx->extradata_size +
219                                   AV_INPUT_BUFFER_PADDING_SIZE);
220
221     if (!avctx->extradata) {
222         av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
223         return AVERROR(ENOMEM);
224     }
225
226     bytestream2_init_writer(&pb, avctx->extradata, avctx->extradata_size);
227     bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
228     bytestream2_put_le32(&pb, 32);
229     bytestream2_put_byte(&pb, 7);
230     bytestream2_put_byte(&pb, s->format);
231     bytestream2_put_byte(&pb, 12);
232     bytestream2_put_byte(&pb, 0);
233
234     bytestream2_put_byte(&pb, 0);
235     bytestream2_put_byte(&pb, 0);
236     bytestream2_put_byte(&pb, 32);
237     bytestream2_put_byte(&pb, 0);
238
239     bytestream2_put_le32(&pb, avctx->width);
240     bytestream2_put_le32(&pb, avctx->height);
241     bytestream2_put_le32(&pb, avctx->width);
242     bytestream2_put_le32(&pb, avctx->height);
243
244     return 0;
245 }
246
247 static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
248 {
249     for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
250         uint16_t curr = codes_count[i];   // # of leafs of length i
251         codes_count[i] = nb_codes / 2;    // # of non-leaf nodes on level i
252         nb_codes = codes_count[i] + curr; // # of nodes on level i
253     }
254
255     for (unsigned i = 0; i < 256; i++) {
256         he[i].code = codes_count[he[i].len];
257         codes_count[he[i].len]++;
258     }
259 }
260
261 static void count_usage(uint8_t *src, int width,
262                         int height, PTable *counts)
263 {
264     int i, j;
265
266     for (j = 0; j < height; j++) {
267         for (i = 0; i < width; i++) {
268             counts[src[i]].prob++;
269         }
270         src += width;
271     }
272 }
273
274 typedef struct PackageMergerList {
275     int nitems;             ///< number of items in the list and probability      ex. 4
276     int item_idx[515];      ///< index range for each item in items                   0, 2, 5, 9, 13
277     int probability[514];   ///< probability of each item                             3, 8, 18, 46
278     int items[257 * 16];    ///< chain of all individual values that make up items    A, B, A, B, C, A, B, C, D, C, D, D, E
279 } PackageMergerList;
280
281 static int compare_by_prob(const void *a, const void *b)
282 {
283     const PTable *a2 = a;
284     const PTable *b2 = b;
285     return a2->prob - b2->prob;
286 }
287
288 static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
289                                       uint16_t codes_counts[33],
290                                       int size, int max_length)
291 {
292     PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
293     int times, i, j, k;
294     int nbits[257] = {0};
295     int min;
296
297     av_assert0(max_length > 0);
298
299     to->nitems = 0;
300     from->nitems = 0;
301     to->item_idx[0] = 0;
302     from->item_idx[0] = 0;
303     AV_QSORT(prob_table, size, PTable, compare_by_prob);
304
305     for (times = 0; times <= max_length; times++) {
306         to->nitems = 0;
307         to->item_idx[0] = 0;
308
309         j = 0;
310         k = 0;
311
312         if (times < max_length) {
313             i = 0;
314         }
315         while (i < size || j + 1 < from->nitems) {
316             to->nitems++;
317             to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
318             if (i < size &&
319                 (j + 1 >= from->nitems ||
320                  prob_table[i].prob <
321                      from->probability[j] + from->probability[j + 1])) {
322                 to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
323                 to->probability[to->nitems - 1] = prob_table[i].prob;
324                 i++;
325             } else {
326                 for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
327                     to->items[to->item_idx[to->nitems]++] = from->items[k];
328                 }
329                 to->probability[to->nitems - 1] =
330                     from->probability[j] + from->probability[j + 1];
331                 j += 2;
332             }
333         }
334         temp = to;
335         to = from;
336         from = temp;
337     }
338
339     min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
340     for (i = 0; i < from->item_idx[min]; i++) {
341         nbits[from->items[i]]++;
342     }
343
344     for (i = 0; i < size; i++) {
345         distincts[i].len = nbits[i];
346         codes_counts[nbits[i]]++;
347     }
348 }
349
350 static int encode_table(AVCodecContext *avctx, uint8_t *dst,
351                         int width, int height,
352                         PutBitContext *pb, HuffEntry *he)
353 {
354     PTable counts[256] = { {0} };
355     uint16_t codes_counts[33] = { 0 };
356     int i;
357
358     count_usage(dst, width, height, counts);
359
360     for (i = 0; i < 256; i++) {
361         counts[i].prob++;
362         counts[i].value = i;
363     }
364
365     magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
366
367     calculate_codes(he, codes_counts);
368
369     for (i = 0; i < 256; i++) {
370         put_bits(pb, 1, 0);
371         put_bits(pb, 7, he[i].len);
372     }
373
374     return 0;
375 }
376
377 static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size,
378                         int width, int height, HuffEntry *he, int prediction)
379 {
380     PutBitContext pb;
381     int i, j;
382     int count;
383
384     init_put_bits(&pb, dst, dst_size);
385
386     put_bits(&pb, 8, 0);
387     put_bits(&pb, 8, prediction);
388
389     for (j = 0; j < height; j++) {
390         for (i = 0; i < width; i++) {
391             const int idx = src[i];
392             put_bits(&pb, he[idx].len, he[idx].code);
393         }
394
395         src += width;
396     }
397
398     count = put_bits_count(&pb) & 0x1F;
399
400     if (count)
401         put_bits(&pb, 32 - count, 0);
402
403     count = put_bits_count(&pb);
404
405     flush_put_bits(&pb);
406
407     return count >> 3;
408 }
409
410 static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
411                              const AVFrame *frame, int *got_packet)
412 {
413     MagicYUVContext *s = avctx->priv_data;
414     PutByteContext pb;
415     const int width = avctx->width, height = avctx->height;
416     int pos, slice, i, j, ret = 0;
417
418     ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
419                            s->planes + 256, 0);
420     if (ret < 0)
421         return ret;
422
423     bytestream2_init_writer(&pb, pkt->data, pkt->size);
424     bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
425     bytestream2_put_le32(&pb, 32); // header size
426     bytestream2_put_byte(&pb, 7);  // version
427     bytestream2_put_byte(&pb, s->format);
428     bytestream2_put_byte(&pb, 12); // max huffman length
429     bytestream2_put_byte(&pb, 0);
430
431     bytestream2_put_byte(&pb, 0);
432     bytestream2_put_byte(&pb, 0);
433     bytestream2_put_byte(&pb, 32); // coder type
434     bytestream2_put_byte(&pb, 0);
435
436     bytestream2_put_le32(&pb, avctx->width);
437     bytestream2_put_le32(&pb, avctx->height);
438     bytestream2_put_le32(&pb, avctx->width);
439     bytestream2_put_le32(&pb, avctx->height);
440     bytestream2_put_le32(&pb, 0);
441
442     for (i = 0; i < s->planes; i++) {
443         bytestream2_put_le32(&pb, 0);
444         for (j = 1; j < s->nb_slices; j++) {
445             bytestream2_put_le32(&pb, 0);
446         }
447     }
448
449     bytestream2_put_byte(&pb, s->planes);
450
451     for (i = 0; i < s->planes; i++) {
452         for (slice = 0; slice < s->nb_slices; slice++) {
453             bytestream2_put_byte(&pb, i);
454         }
455     }
456
457     if (s->correlate) {
458         uint8_t *r, *g, *b;
459         AVFrame *p = av_frame_clone(frame);
460
461         g = p->data[0];
462         b = p->data[1];
463         r = p->data[2];
464
465         for (i = 0; i < height; i++) {
466             s->llvidencdsp.diff_bytes(b, b, g, width);
467             s->llvidencdsp.diff_bytes(r, r, g, width);
468             g += p->linesize[0];
469             b += p->linesize[1];
470             r += p->linesize[2];
471         }
472
473         FFSWAP(uint8_t*, p->data[0], p->data[1]);
474         FFSWAP(int, p->linesize[0], p->linesize[1]);
475
476         for (i = 0; i < s->planes; i++) {
477             for (slice = 0; slice < s->nb_slices; slice++) {
478                 s->predict(s, p->data[i], s->slices[i], p->linesize[i],
479                                p->width, p->height);
480             }
481         }
482
483         av_frame_free(&p);
484     } else {
485         for (i = 0; i < s->planes; i++) {
486             for (slice = 0; slice < s->nb_slices; slice++) {
487                 s->predict(s, frame->data[i], s->slices[i], frame->linesize[i],
488                            AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
489                            AV_CEIL_RSHIFT(frame->height, s->vshift[i]));
490             }
491         }
492     }
493
494     init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));
495
496     for (i = 0; i < s->planes; i++) {
497         encode_table(avctx, s->slices[i],
498                      AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
499                      AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
500                      &s->pb, s->he[i]);
501     }
502     s->tables_size = (put_bits_count(&s->pb) + 7) >> 3;
503     bytestream2_skip_p(&pb, s->tables_size);
504
505     for (i = 0; i < s->planes; i++) {
506         unsigned slice_size;
507
508         s->slice_pos[i] = bytestream2_tell_p(&pb);
509         slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb),
510                                   bytestream2_get_bytes_left_p(&pb),
511                                   AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
512                                   AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
513                                   s->he[i], s->frame_pred);
514         bytestream2_skip_p(&pb, slice_size);
515     }
516
517     pos = bytestream2_tell_p(&pb);
518     bytestream2_seek_p(&pb, 32, SEEK_SET);
519     bytestream2_put_le32(&pb, s->slice_pos[0] - 32);
520     for (i = 0; i < s->planes; i++) {
521         bytestream2_put_le32(&pb, s->slice_pos[i] - 32);
522     }
523     bytestream2_seek_p(&pb, pos, SEEK_SET);
524
525     pkt->size   = bytestream2_tell_p(&pb);
526     pkt->flags |= AV_PKT_FLAG_KEY;
527
528     *got_packet = 1;
529
530     return 0;
531 }
532
533 static av_cold int magy_encode_close(AVCodecContext *avctx)
534 {
535     MagicYUVContext *s = avctx->priv_data;
536     int i;
537
538     for (i = 0; i < s->planes; i++)
539         av_freep(&s->slices[i]);
540
541     return 0;
542 }
543
544 #define OFFSET(x) offsetof(MagicYUVContext, x)
545 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
546 static const AVOption options[] = {
547     { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" },
548     { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT },     0, 0, VE, "pred" },
549     { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" },
550     { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN },   0, 0, VE, "pred" },
551     { NULL},
552 };
553
554 static const AVClass magicyuv_class = {
555     .class_name = "magicyuv",
556     .item_name  = av_default_item_name,
557     .option     = options,
558     .version    = LIBAVUTIL_VERSION_INT,
559 };
560
561 AVCodec ff_magicyuv_encoder = {
562     .name             = "magicyuv",
563     .long_name        = NULL_IF_CONFIG_SMALL("MagicYUV video"),
564     .type             = AVMEDIA_TYPE_VIDEO,
565     .id               = AV_CODEC_ID_MAGICYUV,
566     .priv_data_size   = sizeof(MagicYUVContext),
567     .priv_class       = &magicyuv_class,
568     .init             = magy_encode_init,
569     .close            = magy_encode_close,
570     .encode2          = magy_encode_frame,
571     .capabilities     = AV_CODEC_CAP_FRAME_THREADS,
572     .pix_fmts         = (const enum AVPixelFormat[]) {
573                           AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
574                           AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
575                           AV_PIX_FMT_NONE
576                       },
577     .caps_internal    = FF_CODEC_CAP_INIT_CLEANUP,
578 };