]> git.sesse.net Git - ffmpeg/blob - libswscale/swscale_internal.h
swscale: aarch64: Add a NEON implementation of interleaveBytes
[ffmpeg] / libswscale / swscale_internal.h
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
23
24 #include "config.h"
25 #include "version.h"
26
27 #include "libavutil/avassert.h"
28 #include "libavutil/avutil.h"
29 #include "libavutil/common.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/log.h"
32 #include "libavutil/pixfmt.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/ppc/util_altivec.h"
35
36 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
37
38 #define YUVRGB_TABLE_HEADROOM 512
39 #define YUVRGB_TABLE_LUMA_HEADROOM 512
40
41 #define MAX_FILTER_SIZE SWS_MAX_FILTER_SIZE
42
43 #define DITHER1XBPP
44
45 #if HAVE_BIGENDIAN
46 #define ALT32_CORR (-1)
47 #else
48 #define ALT32_CORR   1
49 #endif
50
51 #if ARCH_X86_64
52 #   define APCK_PTR2  8
53 #   define APCK_COEF 16
54 #   define APCK_SIZE 24
55 #else
56 #   define APCK_PTR2  4
57 #   define APCK_COEF  8
58 #   define APCK_SIZE 16
59 #endif
60
61 #define RETCODE_USE_CASCADE -12345
62
63 struct SwsContext;
64
65 typedef enum SwsDither {
66     SWS_DITHER_NONE = 0,
67     SWS_DITHER_AUTO,
68     SWS_DITHER_BAYER,
69     SWS_DITHER_ED,
70     SWS_DITHER_A_DITHER,
71     SWS_DITHER_X_DITHER,
72     NB_SWS_DITHER,
73 } SwsDither;
74
75 typedef enum SwsAlphaBlend {
76     SWS_ALPHA_BLEND_NONE  = 0,
77     SWS_ALPHA_BLEND_UNIFORM,
78     SWS_ALPHA_BLEND_CHECKERBOARD,
79     SWS_ALPHA_BLEND_NB,
80 } SwsAlphaBlend;
81
82 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
83                        int srcStride[], int srcSliceY, int srcSliceH,
84                        uint8_t *dst[], int dstStride[]);
85
86 /**
87  * Write one line of horizontally scaled data to planar output
88  * without any additional vertical scaling (or point-scaling).
89  *
90  * @param src     scaled source data, 15 bits for 8-10-bit output,
91  *                19 bits for 16-bit output (in int32_t)
92  * @param dest    pointer to the output plane. For >8-bit
93  *                output, this is in uint16_t
94  * @param dstW    width of destination in pixels
95  * @param dither  ordered dither array of type int16_t and size 8
96  * @param offset  Dither offset
97  */
98 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
99                                const uint8_t *dither, int offset);
100
101 /**
102  * Write one line of horizontally scaled data to planar output
103  * with multi-point vertical scaling between input pixels.
104  *
105  * @param filter        vertical luma/alpha scaling coefficients, 12 bits [0,4096]
106  * @param src           scaled luma (Y) or alpha (A) source data, 15 bits for
107  *                      8-10-bit output, 19 bits for 16-bit output (in int32_t)
108  * @param filterSize    number of vertical input lines to scale
109  * @param dest          pointer to output plane. For >8-bit
110  *                      output, this is in uint16_t
111  * @param dstW          width of destination pixels
112  * @param offset        Dither offset
113  */
114 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
115                                const int16_t **src, uint8_t *dest, int dstW,
116                                const uint8_t *dither, int offset);
117
118 /**
119  * Write one line of horizontally scaled chroma to interleaved output
120  * with multi-point vertical scaling between input pixels.
121  *
122  * @param c             SWS scaling context
123  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
124  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit
125  *                      output, 19 bits for 16-bit output (in int32_t)
126  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit
127  *                      output, 19 bits for 16-bit output (in int32_t)
128  * @param chrFilterSize number of vertical chroma input lines to scale
129  * @param dest          pointer to the output plane. For >8-bit
130  *                      output, this is in uint16_t
131  * @param dstW          width of chroma planes
132  */
133 typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
134                                     const int16_t *chrFilter,
135                                     int chrFilterSize,
136                                     const int16_t **chrUSrc,
137                                     const int16_t **chrVSrc,
138                                     uint8_t *dest, int dstW);
139
140 /**
141  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
142  * output without any additional vertical scaling (or point-scaling). Note
143  * that this function may do chroma scaling, see the "uvalpha" argument.
144  *
145  * @param c       SWS scaling context
146  * @param lumSrc  scaled luma (Y) source data, 15 bits for 8-10-bit output,
147  *                19 bits for 16-bit output (in int32_t)
148  * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
149  *                19 bits for 16-bit output (in int32_t)
150  * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
151  *                19 bits for 16-bit output (in int32_t)
152  * @param alpSrc  scaled alpha (A) source data, 15 bits for 8-10-bit output,
153  *                19 bits for 16-bit output (in int32_t)
154  * @param dest    pointer to the output plane. For 16-bit output, this is
155  *                uint16_t
156  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
157  *                to write into dest[]
158  * @param uvalpha chroma scaling coefficient for the second line of chroma
159  *                pixels, either 2048 or 0. If 0, one chroma input is used
160  *                for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
161  *                is set, it generates 1 output pixel). If 2048, two chroma
162  *                input pixels should be averaged for 2 output pixels (this
163  *                only happens if SWS_FLAG_FULL_CHR_INT is not set)
164  * @param y       vertical line number for this output. This does not need
165  *                to be used to calculate the offset in the destination,
166  *                but can be used to generate comfort noise using dithering
167  *                for some output formats.
168  */
169 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
170                                const int16_t *chrUSrc[2],
171                                const int16_t *chrVSrc[2],
172                                const int16_t *alpSrc, uint8_t *dest,
173                                int dstW, int uvalpha, int y);
174 /**
175  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
176  * output by doing bilinear scaling between two input lines.
177  *
178  * @param c       SWS scaling context
179  * @param lumSrc  scaled luma (Y) source data, 15 bits for 8-10-bit output,
180  *                19 bits for 16-bit output (in int32_t)
181  * @param chrUSrc scaled chroma (U) source data, 15 bits for 8-10-bit output,
182  *                19 bits for 16-bit output (in int32_t)
183  * @param chrVSrc scaled chroma (V) source data, 15 bits for 8-10-bit output,
184  *                19 bits for 16-bit output (in int32_t)
185  * @param alpSrc  scaled alpha (A) source data, 15 bits for 8-10-bit output,
186  *                19 bits for 16-bit output (in int32_t)
187  * @param dest    pointer to the output plane. For 16-bit output, this is
188  *                uint16_t
189  * @param dstW    width of lumSrc and alpSrc in pixels, number of pixels
190  *                to write into dest[]
191  * @param yalpha  luma/alpha scaling coefficients for the second input line.
192  *                The first line's coefficients can be calculated by using
193  *                4096 - yalpha
194  * @param uvalpha chroma scaling coefficient for the second input line. The
195  *                first line's coefficients can be calculated by using
196  *                4096 - uvalpha
197  * @param y       vertical line number for this output. This does not need
198  *                to be used to calculate the offset in the destination,
199  *                but can be used to generate comfort noise using dithering
200  *                for some output formats.
201  */
202 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
203                                const int16_t *chrUSrc[2],
204                                const int16_t *chrVSrc[2],
205                                const int16_t *alpSrc[2],
206                                uint8_t *dest,
207                                int dstW, int yalpha, int uvalpha, int y);
208 /**
209  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
210  * output by doing multi-point vertical scaling between input pixels.
211  *
212  * @param c             SWS scaling context
213  * @param lumFilter     vertical luma/alpha scaling coefficients, 12 bits [0,4096]
214  * @param lumSrc        scaled luma (Y) source data, 15 bits for 8-10-bit output,
215  *                      19 bits for 16-bit output (in int32_t)
216  * @param lumFilterSize number of vertical luma/alpha input lines to scale
217  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
218  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit output,
219  *                      19 bits for 16-bit output (in int32_t)
220  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit output,
221  *                      19 bits for 16-bit output (in int32_t)
222  * @param chrFilterSize number of vertical chroma input lines to scale
223  * @param alpSrc        scaled alpha (A) source data, 15 bits for 8-10-bit output,
224  *                      19 bits for 16-bit output (in int32_t)
225  * @param dest          pointer to the output plane. For 16-bit output, this is
226  *                      uint16_t
227  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
228  *                      to write into dest[]
229  * @param y             vertical line number for this output. This does not need
230  *                      to be used to calculate the offset in the destination,
231  *                      but can be used to generate comfort noise using dithering
232  *                      or some output formats.
233  */
234 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
235                                const int16_t **lumSrc, int lumFilterSize,
236                                const int16_t *chrFilter,
237                                const int16_t **chrUSrc,
238                                const int16_t **chrVSrc, int chrFilterSize,
239                                const int16_t **alpSrc, uint8_t *dest,
240                                int dstW, int y);
241
242 /**
243  * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
244  * output by doing multi-point vertical scaling between input pixels.
245  *
246  * @param c             SWS scaling context
247  * @param lumFilter     vertical luma/alpha scaling coefficients, 12 bits [0,4096]
248  * @param lumSrc        scaled luma (Y) source data, 15 bits for 8-10-bit output,
249  *                      19 bits for 16-bit output (in int32_t)
250  * @param lumFilterSize number of vertical luma/alpha input lines to scale
251  * @param chrFilter     vertical chroma scaling coefficients, 12 bits [0,4096]
252  * @param chrUSrc       scaled chroma (U) source data, 15 bits for 8-10-bit output,
253  *                      19 bits for 16-bit output (in int32_t)
254  * @param chrVSrc       scaled chroma (V) source data, 15 bits for 8-10-bit output,
255  *                      19 bits for 16-bit output (in int32_t)
256  * @param chrFilterSize number of vertical chroma input lines to scale
257  * @param alpSrc        scaled alpha (A) source data, 15 bits for 8-10-bit output,
258  *                      19 bits for 16-bit output (in int32_t)
259  * @param dest          pointer to the output planes. For 16-bit output, this is
260  *                      uint16_t
261  * @param dstW          width of lumSrc and alpSrc in pixels, number of pixels
262  *                      to write into dest[]
263  * @param y             vertical line number for this output. This does not need
264  *                      to be used to calculate the offset in the destination,
265  *                      but can be used to generate comfort noise using dithering
266  *                      or some output formats.
267  */
268 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
269                             const int16_t **lumSrc, int lumFilterSize,
270                             const int16_t *chrFilter,
271                             const int16_t **chrUSrc,
272                             const int16_t **chrVSrc, int chrFilterSize,
273                             const int16_t **alpSrc, uint8_t **dest,
274                             int dstW, int y);
275
276 struct SwsSlice;
277 struct SwsFilterDescriptor;
278
279 /* This struct should be aligned on at least a 32-byte boundary. */
280 typedef struct SwsContext {
281     /**
282      * info on struct for av_log
283      */
284     const AVClass *av_class;
285
286     /**
287      * Note that src, dst, srcStride, dstStride will be copied in the
288      * sws_scale() wrapper so they can be freely modified here.
289      */
290     SwsFunc swscale;
291     int srcW;                     ///< Width  of source      luma/alpha planes.
292     int srcH;                     ///< Height of source      luma/alpha planes.
293     int dstH;                     ///< Height of destination luma/alpha planes.
294     int chrSrcW;                  ///< Width  of source      chroma     planes.
295     int chrSrcH;                  ///< Height of source      chroma     planes.
296     int chrDstW;                  ///< Width  of destination chroma     planes.
297     int chrDstH;                  ///< Height of destination chroma     planes.
298     int lumXInc, chrXInc;
299     int lumYInc, chrYInc;
300     enum AVPixelFormat dstFormat; ///< Destination pixel format.
301     enum AVPixelFormat srcFormat; ///< Source      pixel format.
302     int dstFormatBpp;             ///< Number of bits per pixel of the destination pixel format.
303     int srcFormatBpp;             ///< Number of bits per pixel of the source      pixel format.
304     int dstBpc, srcBpc;
305     int chrSrcHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source      image.
306     int chrSrcVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in source      image.
307     int chrDstHSubSample;         ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
308     int chrDstVSubSample;         ///< Binary logarithm of vertical   subsampling factor between luma/alpha and chroma planes in destination image.
309     int vChrDrop;                 ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
310     int sliceDir;                 ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
311     double param[2];              ///< Input parameters for scaling algorithms that need them.
312
313     /* The cascaded_* fields allow spliting a scaler task into multiple
314      * sequential steps, this is for example used to limit the maximum
315      * downscaling factor that needs to be supported in one scaler.
316      */
317     struct SwsContext *cascaded_context[3];
318     int cascaded_tmpStride[4];
319     uint8_t *cascaded_tmp[4];
320     int cascaded1_tmpStride[4];
321     uint8_t *cascaded1_tmp[4];
322     int cascaded_mainindex;
323
324     double gamma_value;
325     int gamma_flag;
326     int is_internal_gamma;
327     uint16_t *gamma;
328     uint16_t *inv_gamma;
329
330     int numDesc;
331     int descIndex[2];
332     int numSlice;
333     struct SwsSlice *slice;
334     struct SwsFilterDescriptor *desc;
335
336     uint32_t pal_yuv[256];
337     uint32_t pal_rgb[256];
338
339     float uint2float_lut[256];
340
341     /**
342      * @name Scaled horizontal lines ring buffer.
343      * The horizontal scaler keeps just enough scaled lines in a ring buffer
344      * so they may be passed to the vertical scaler. The pointers to the
345      * allocated buffers for each line are duplicated in sequence in the ring
346      * buffer to simplify indexing and avoid wrapping around between lines
347      * inside the vertical scaler code. The wrapping is done before the
348      * vertical scaler is called.
349      */
350     //@{
351     int lastInLumBuf;             ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
352     int lastInChrBuf;             ///< Last scaled horizontal chroma     line from source in the ring buffer.
353     //@}
354
355     uint8_t *formatConvBuffer;
356     int needAlpha;
357
358     /**
359      * @name Horizontal and vertical filters.
360      * To better understand the following fields, here is a pseudo-code of
361      * their usage in filtering a horizontal line:
362      * @code
363      * for (i = 0; i < width; i++) {
364      *     dst[i] = 0;
365      *     for (j = 0; j < filterSize; j++)
366      *         dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
367      *     dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
368      * }
369      * @endcode
370      */
371     //@{
372     int16_t *hLumFilter;          ///< Array of horizontal filter coefficients for luma/alpha planes.
373     int16_t *hChrFilter;          ///< Array of horizontal filter coefficients for chroma     planes.
374     int16_t *vLumFilter;          ///< Array of vertical   filter coefficients for luma/alpha planes.
375     int16_t *vChrFilter;          ///< Array of vertical   filter coefficients for chroma     planes.
376     int32_t *hLumFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
377     int32_t *hChrFilterPos;       ///< Array of horizontal filter starting positions for each dst[i] for chroma     planes.
378     int32_t *vLumFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for luma/alpha planes.
379     int32_t *vChrFilterPos;       ///< Array of vertical   filter starting positions for each dst[i] for chroma     planes.
380     int hLumFilterSize;           ///< Horizontal filter size for luma/alpha pixels.
381     int hChrFilterSize;           ///< Horizontal filter size for chroma     pixels.
382     int vLumFilterSize;           ///< Vertical   filter size for luma/alpha pixels.
383     int vChrFilterSize;           ///< Vertical   filter size for chroma     pixels.
384     //@}
385
386     int lumMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
387     int chrMmxextFilterCodeSize;  ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
388     uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
389     uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
390
391     int canMMXEXTBeUsed;
392     int warned_unuseable_bilinear;
393
394     int dstY;                     ///< Last destination vertical line output from last slice.
395     int flags;                    ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
396     void *yuvTable;             // pointer to the yuv->rgb table start so it can be freed()
397     // alignment ensures the offset can be added in a single
398     // instruction on e.g. ARM
399     DECLARE_ALIGNED(16, int, table_gV)[256 + 2*YUVRGB_TABLE_HEADROOM];
400     uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
401     uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
402     uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
403     DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, the C vales are always at the XY_IDX points
404 #define RY_IDX 0
405 #define GY_IDX 1
406 #define BY_IDX 2
407 #define RU_IDX 3
408 #define GU_IDX 4
409 #define BU_IDX 5
410 #define RV_IDX 6
411 #define GV_IDX 7
412 #define BV_IDX 8
413 #define RGB2YUV_SHIFT 15
414
415     int *dither_error[4];
416
417     //Colorspace stuff
418     int contrast, brightness, saturation;    // for sws_getColorspaceDetails
419     int srcColorspaceTable[4];
420     int dstColorspaceTable[4];
421     int srcRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (source      image).
422     int dstRange;                 ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
423     int src0Alpha;
424     int dst0Alpha;
425     int srcXYZ;
426     int dstXYZ;
427     int src_h_chr_pos;
428     int dst_h_chr_pos;
429     int src_v_chr_pos;
430     int dst_v_chr_pos;
431     int yuv2rgb_y_offset;
432     int yuv2rgb_y_coeff;
433     int yuv2rgb_v2r_coeff;
434     int yuv2rgb_v2g_coeff;
435     int yuv2rgb_u2g_coeff;
436     int yuv2rgb_u2b_coeff;
437
438 #define RED_DITHER            "0*8"
439 #define GREEN_DITHER          "1*8"
440 #define BLUE_DITHER           "2*8"
441 #define Y_COEFF               "3*8"
442 #define VR_COEFF              "4*8"
443 #define UB_COEFF              "5*8"
444 #define VG_COEFF              "6*8"
445 #define UG_COEFF              "7*8"
446 #define Y_OFFSET              "8*8"
447 #define U_OFFSET              "9*8"
448 #define V_OFFSET              "10*8"
449 #define LUM_MMX_FILTER_OFFSET "11*8"
450 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)
451 #define DSTW_OFFSET           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2"
452 #define ESP_OFFSET            "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+8"
453 #define VROUNDER_OFFSET       "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+16"
454 #define U_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+24"
455 #define V_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+32"
456 #define Y_TEMP                "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+40"
457 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*2+48"
458 #define UV_OFF_PX             "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+48"
459 #define UV_OFF_BYTE           "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+56"
460 #define DITHER16              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+64"
461 #define DITHER32              "11*8+4*4*"AV_STRINGIFY(MAX_FILTER_SIZE)"*3+80"
462 #define DITHER32_INT          (11*8+4*4*MAX_FILTER_SIZE*3+80) // value equal to above, used for checking that the struct hasn't been changed by mistake
463
464     DECLARE_ALIGNED(8, uint64_t, redDither);
465     DECLARE_ALIGNED(8, uint64_t, greenDither);
466     DECLARE_ALIGNED(8, uint64_t, blueDither);
467
468     DECLARE_ALIGNED(8, uint64_t, yCoeff);
469     DECLARE_ALIGNED(8, uint64_t, vrCoeff);
470     DECLARE_ALIGNED(8, uint64_t, ubCoeff);
471     DECLARE_ALIGNED(8, uint64_t, vgCoeff);
472     DECLARE_ALIGNED(8, uint64_t, ugCoeff);
473     DECLARE_ALIGNED(8, uint64_t, yOffset);
474     DECLARE_ALIGNED(8, uint64_t, uOffset);
475     DECLARE_ALIGNED(8, uint64_t, vOffset);
476     int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
477     int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
478     int dstW;                     ///< Width  of destination luma/alpha planes.
479     DECLARE_ALIGNED(8, uint64_t, esp);
480     DECLARE_ALIGNED(8, uint64_t, vRounder);
481     DECLARE_ALIGNED(8, uint64_t, u_temp);
482     DECLARE_ALIGNED(8, uint64_t, v_temp);
483     DECLARE_ALIGNED(8, uint64_t, y_temp);
484     int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
485     // alignment of these values is not necessary, but merely here
486     // to maintain the same offset across x8632 and x86-64. Once we
487     // use proper offset macros in the asm, they can be removed.
488     DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
489     DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
490     DECLARE_ALIGNED(8, uint16_t, dither16)[8];
491     DECLARE_ALIGNED(8, uint32_t, dither32)[8];
492
493     const uint8_t *chrDither8, *lumDither8;
494
495 #if HAVE_ALTIVEC
496     vector signed short   CY;
497     vector signed short   CRV;
498     vector signed short   CBU;
499     vector signed short   CGU;
500     vector signed short   CGV;
501     vector signed short   OY;
502     vector unsigned short CSHIFT;
503     vector signed short  *vYCoeffsBank, *vCCoeffsBank;
504 #endif
505
506     int use_mmx_vfilter;
507
508 /* pre defined color-spaces gamma */
509 #define XYZ_GAMMA (2.6f)
510 #define RGB_GAMMA (2.2f)
511     int16_t *xyzgamma;
512     int16_t *rgbgamma;
513     int16_t *xyzgammainv;
514     int16_t *rgbgammainv;
515     int16_t xyz2rgb_matrix[3][4];
516     int16_t rgb2xyz_matrix[3][4];
517
518     /* function pointers for swscale() */
519     yuv2planar1_fn yuv2plane1;
520     yuv2planarX_fn yuv2planeX;
521     yuv2interleavedX_fn yuv2nv12cX;
522     yuv2packed1_fn yuv2packed1;
523     yuv2packed2_fn yuv2packed2;
524     yuv2packedX_fn yuv2packedX;
525     yuv2anyX_fn yuv2anyX;
526
527     /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
528     void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
529                       int width, uint32_t *pal);
530     /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
531     void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
532                       int width, uint32_t *pal);
533     /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
534     void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
535                       const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
536                       int width, uint32_t *pal);
537
538     /**
539      * Functions to read planar input, such as planar RGB, and convert
540      * internally to Y/UV/A.
541      */
542     /** @{ */
543     void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
544     void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
545                           int width, int32_t *rgb2yuv);
546     void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
547     /** @} */
548
549     /**
550      * Scale one horizontal line of input data using a bilinear filter
551      * to produce one line of output data. Compared to SwsContext->hScale(),
552      * please take note of the following caveats when using these:
553      * - Scaling is done using only 7 bits instead of 14-bit coefficients.
554      * - You can use no more than 5 input pixels to produce 4 output
555      *   pixels. Therefore, this filter should not be used for downscaling
556      *   by more than ~20% in width (because that equals more than 5/4th
557      *   downscaling and thus more than 5 pixels input per 4 pixels output).
558      * - In general, bilinear filters create artifacts during downscaling
559      *   (even when <20%), because one output pixel will span more than one
560      *   input pixel, and thus some pixels will need edges of both neighbor
561      *   pixels to interpolate the output pixel. Since you can use at most
562      *   two input pixels per output pixel in bilinear scaling, this is
563      *   impossible and thus downscaling by any size will create artifacts.
564      * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
565      * in SwsContext->flags.
566      */
567     /** @{ */
568     void (*hyscale_fast)(struct SwsContext *c,
569                          int16_t *dst, int dstWidth,
570                          const uint8_t *src, int srcW, int xInc);
571     void (*hcscale_fast)(struct SwsContext *c,
572                          int16_t *dst1, int16_t *dst2, int dstWidth,
573                          const uint8_t *src1, const uint8_t *src2,
574                          int srcW, int xInc);
575     /** @} */
576
577     /**
578      * Scale one horizontal line of input data using a filter over the input
579      * lines, to produce one (differently sized) line of output data.
580      *
581      * @param dst        pointer to destination buffer for horizontally scaled
582      *                   data. If the number of bits per component of one
583      *                   destination pixel (SwsContext->dstBpc) is <= 10, data
584      *                   will be 15 bpc in 16 bits (int16_t) width. Else (i.e.
585      *                   SwsContext->dstBpc == 16), data will be 19bpc in
586      *                   32 bits (int32_t) width.
587      * @param dstW       width of destination image
588      * @param src        pointer to source data to be scaled. If the number of
589      *                   bits per component of a source pixel (SwsContext->srcBpc)
590      *                   is 8, this is 8bpc in 8 bits (uint8_t) width. Else
591      *                   (i.e. SwsContext->dstBpc > 8), this is native depth
592      *                   in 16 bits (uint16_t) width. In other words, for 9-bit
593      *                   YUV input, this is 9bpc, for 10-bit YUV input, this is
594      *                   10bpc, and for 16-bit RGB or YUV, this is 16bpc.
595      * @param filter     filter coefficients to be used per output pixel for
596      *                   scaling. This contains 14bpp filtering coefficients.
597      *                   Guaranteed to contain dstW * filterSize entries.
598      * @param filterPos  position of the first input pixel to be used for
599      *                   each output pixel during scaling. Guaranteed to
600      *                   contain dstW entries.
601      * @param filterSize the number of input coefficients to be used (and
602      *                   thus the number of input pixels to be used) for
603      *                   creating a single output pixel. Is aligned to 4
604      *                   (and input coefficients thus padded with zeroes)
605      *                   to simplify creating SIMD code.
606      */
607     /** @{ */
608     void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
609                     const uint8_t *src, const int16_t *filter,
610                     const int32_t *filterPos, int filterSize);
611     void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
612                     const uint8_t *src, const int16_t *filter,
613                     const int32_t *filterPos, int filterSize);
614     /** @} */
615
616     /// Color range conversion function for luma plane if needed.
617     void (*lumConvertRange)(int16_t *dst, int width);
618     /// Color range conversion function for chroma planes if needed.
619     void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
620
621     int needs_hcscale; ///< Set if there are chroma planes to be converted.
622
623     SwsDither dither;
624
625     SwsAlphaBlend alphablend;
626 } SwsContext;
627 //FIXME check init (where 0)
628
629 SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
630 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
631                              int fullRange, int brightness,
632                              int contrast, int saturation);
633 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
634                                 int brightness, int contrast, int saturation);
635
636 void ff_updateMMXDitherTables(SwsContext *c, int dstY);
637
638 av_cold void ff_sws_init_range_convert(SwsContext *c);
639
640 SwsFunc ff_yuv2rgb_init_x86(SwsContext *c);
641 SwsFunc ff_yuv2rgb_init_ppc(SwsContext *c);
642
643 static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
644 {
645     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
646     av_assert0(desc);
647     return desc->comp[0].depth == 16;
648 }
649
650 static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
651 {
652     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
653     av_assert0(desc);
654     return desc->comp[0].depth == 32;
655 }
656
657 static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
658 {
659     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
660     av_assert0(desc);
661     return desc->comp[0].depth >= 9 && desc->comp[0].depth <= 14;
662 }
663
664 static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
665 {
666     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
667     av_assert0(desc);
668     return desc->flags & AV_PIX_FMT_FLAG_BE;
669 }
670
671 static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
672 {
673     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
674     av_assert0(desc);
675     return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
676 }
677
678 static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
679 {
680     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
681     av_assert0(desc);
682     return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
683 }
684
685 /*
686  * Identity semi-planar YUV formats. Specifically, those are YUV formats
687  * where the second and third components (U & V) are on the same plane.
688  */
689 static av_always_inline int isSemiPlanarYUV(enum AVPixelFormat pix_fmt)
690 {
691     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
692     av_assert0(desc);
693     return (isPlanarYUV(pix_fmt) && desc->comp[1].plane == desc->comp[2].plane);
694 }
695
696 static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
697 {
698     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
699     av_assert0(desc);
700     return (desc->flags & AV_PIX_FMT_FLAG_RGB);
701 }
702
703 static av_always_inline int isGray(enum AVPixelFormat pix_fmt)
704 {
705     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
706     av_assert0(desc);
707     return !(desc->flags & AV_PIX_FMT_FLAG_PAL) &&
708            !(desc->flags & AV_PIX_FMT_FLAG_HWACCEL) &&
709            desc->nb_components <= 2 &&
710            pix_fmt != AV_PIX_FMT_MONOBLACK &&
711            pix_fmt != AV_PIX_FMT_MONOWHITE;
712 }
713
714 static av_always_inline int isRGBinInt(enum AVPixelFormat pix_fmt)
715 {
716     return pix_fmt == AV_PIX_FMT_RGB48BE     ||
717            pix_fmt == AV_PIX_FMT_RGB48LE     ||
718            pix_fmt == AV_PIX_FMT_RGB32       ||
719            pix_fmt == AV_PIX_FMT_RGB32_1     ||
720            pix_fmt == AV_PIX_FMT_RGB24       ||
721            pix_fmt == AV_PIX_FMT_RGB565BE    ||
722            pix_fmt == AV_PIX_FMT_RGB565LE    ||
723            pix_fmt == AV_PIX_FMT_RGB555BE    ||
724            pix_fmt == AV_PIX_FMT_RGB555LE    ||
725            pix_fmt == AV_PIX_FMT_RGB444BE    ||
726            pix_fmt == AV_PIX_FMT_RGB444LE    ||
727            pix_fmt == AV_PIX_FMT_RGB8        ||
728            pix_fmt == AV_PIX_FMT_RGB4        ||
729            pix_fmt == AV_PIX_FMT_RGB4_BYTE   ||
730            pix_fmt == AV_PIX_FMT_RGBA64BE    ||
731            pix_fmt == AV_PIX_FMT_RGBA64LE    ||
732            pix_fmt == AV_PIX_FMT_MONOBLACK   ||
733            pix_fmt == AV_PIX_FMT_MONOWHITE;
734 }
735
736 static av_always_inline int isBGRinInt(enum AVPixelFormat pix_fmt)
737 {
738     return pix_fmt == AV_PIX_FMT_BGR48BE     ||
739            pix_fmt == AV_PIX_FMT_BGR48LE     ||
740            pix_fmt == AV_PIX_FMT_BGR32       ||
741            pix_fmt == AV_PIX_FMT_BGR32_1     ||
742            pix_fmt == AV_PIX_FMT_BGR24       ||
743            pix_fmt == AV_PIX_FMT_BGR565BE    ||
744            pix_fmt == AV_PIX_FMT_BGR565LE    ||
745            pix_fmt == AV_PIX_FMT_BGR555BE    ||
746            pix_fmt == AV_PIX_FMT_BGR555LE    ||
747            pix_fmt == AV_PIX_FMT_BGR444BE    ||
748            pix_fmt == AV_PIX_FMT_BGR444LE    ||
749            pix_fmt == AV_PIX_FMT_BGR8        ||
750            pix_fmt == AV_PIX_FMT_BGR4        ||
751            pix_fmt == AV_PIX_FMT_BGR4_BYTE   ||
752            pix_fmt == AV_PIX_FMT_BGRA64BE    ||
753            pix_fmt == AV_PIX_FMT_BGRA64LE    ||
754            pix_fmt == AV_PIX_FMT_MONOBLACK   ||
755            pix_fmt == AV_PIX_FMT_MONOWHITE;
756 }
757
758 static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
759 {
760     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
761     av_assert0(desc);
762     return !!(desc->flags & AV_PIX_FMT_FLAG_BAYER);
763 }
764
765 static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
766 {
767     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
768     av_assert0(desc);
769     return (desc->flags & AV_PIX_FMT_FLAG_RGB) ||
770             pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
771 }
772
773 static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
774 {
775     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
776     av_assert0(desc);
777     return desc->flags & AV_PIX_FMT_FLAG_FLOAT;
778 }
779
780 static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
781 {
782     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
783     av_assert0(desc);
784     if (pix_fmt == AV_PIX_FMT_PAL8)
785         return 1;
786     return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
787 }
788
789 static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
790 {
791     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
792     av_assert0(desc);
793     return (desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
794             pix_fmt == AV_PIX_FMT_PAL8 ||
795             pix_fmt == AV_PIX_FMT_MONOBLACK || pix_fmt == AV_PIX_FMT_MONOWHITE;
796 }
797
798 static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
799 {
800     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
801     av_assert0(desc);
802     return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
803 }
804
805 static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
806 {
807     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
808     av_assert0(desc);
809     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
810 }
811
812 static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
813 {
814     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
815     av_assert0(desc);
816     return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
817             (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
818 }
819
820 static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
821 {
822     switch (pix_fmt) {
823     case AV_PIX_FMT_PAL8:
824     case AV_PIX_FMT_BGR4_BYTE:
825     case AV_PIX_FMT_BGR8:
826     case AV_PIX_FMT_GRAY8:
827     case AV_PIX_FMT_RGB4_BYTE:
828     case AV_PIX_FMT_RGB8:
829         return 1;
830     default:
831         return 0;
832     }
833 }
834
835 extern const uint64_t ff_dither4[2];
836 extern const uint64_t ff_dither8[2];
837
838 extern const uint8_t ff_dither_2x2_4[3][8];
839 extern const uint8_t ff_dither_2x2_8[3][8];
840 extern const uint8_t ff_dither_4x4_16[5][8];
841 extern const uint8_t ff_dither_8x8_32[9][8];
842 extern const uint8_t ff_dither_8x8_73[9][8];
843 extern const uint8_t ff_dither_8x8_128[9][8];
844 extern const uint8_t ff_dither_8x8_220[9][8];
845
846 extern const int32_t ff_yuv2rgb_coeffs[11][4];
847
848 extern const AVClass ff_sws_context_class;
849
850 /**
851  * Set c->swscale to an unscaled converter if one exists for the specific
852  * source and destination formats, bit depths, flags, etc.
853  */
854 void ff_get_unscaled_swscale(SwsContext *c);
855 void ff_get_unscaled_swscale_ppc(SwsContext *c);
856 void ff_get_unscaled_swscale_arm(SwsContext *c);
857 void ff_get_unscaled_swscale_aarch64(SwsContext *c);
858
859 /**
860  * Return function pointer to fastest main scaler path function depending
861  * on architecture and available optimizations.
862  */
863 SwsFunc ff_getSwsFunc(SwsContext *c);
864
865 void ff_sws_init_input_funcs(SwsContext *c);
866 void ff_sws_init_output_funcs(SwsContext *c,
867                               yuv2planar1_fn *yuv2plane1,
868                               yuv2planarX_fn *yuv2planeX,
869                               yuv2interleavedX_fn *yuv2nv12cX,
870                               yuv2packed1_fn *yuv2packed1,
871                               yuv2packed2_fn *yuv2packed2,
872                               yuv2packedX_fn *yuv2packedX,
873                               yuv2anyX_fn *yuv2anyX);
874 void ff_sws_init_swscale_ppc(SwsContext *c);
875 void ff_sws_init_swscale_vsx(SwsContext *c);
876 void ff_sws_init_swscale_x86(SwsContext *c);
877 void ff_sws_init_swscale_aarch64(SwsContext *c);
878 void ff_sws_init_swscale_arm(SwsContext *c);
879
880 void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth,
881                        const uint8_t *src, int srcW, int xInc);
882 void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2,
883                        int dstWidth, const uint8_t *src1,
884                        const uint8_t *src2, int srcW, int xInc);
885 int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
886                            int16_t *filter, int32_t *filterPos,
887                            int numSplits);
888 void ff_hyscale_fast_mmxext(SwsContext *c, int16_t *dst,
889                             int dstWidth, const uint8_t *src,
890                             int srcW, int xInc);
891 void ff_hcscale_fast_mmxext(SwsContext *c, int16_t *dst1, int16_t *dst2,
892                             int dstWidth, const uint8_t *src1,
893                             const uint8_t *src2, int srcW, int xInc);
894
895 /**
896  * Allocate and return an SwsContext.
897  * This is like sws_getContext() but does not perform the init step, allowing
898  * the user to set additional AVOptions.
899  *
900  * @see sws_getContext()
901  */
902 struct SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
903                                       int dstW, int dstH, enum AVPixelFormat dstFormat,
904                                       int flags, const double *param);
905
906 int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[],
907                           int srcStride[], int srcSliceY, int srcSliceH,
908                           uint8_t *dst[], int dstStride[]);
909
910 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
911                                int alpha, int bits, const int big_endian)
912 {
913     int i, j;
914     uint8_t *ptr = plane + stride * y;
915     int v = alpha ? 0xFFFF>>(16-bits) : (1<<(bits-1));
916     for (i = 0; i < height; i++) {
917 #define FILL(wfunc) \
918         for (j = 0; j < width; j++) {\
919             wfunc(ptr+2*j, v);\
920         }
921         if (big_endian) {
922             FILL(AV_WB16);
923         } else {
924             FILL(AV_WL16);
925         }
926         ptr += stride;
927     }
928 #undef FILL
929 }
930
931 static inline void fillPlane32(uint8_t *plane, int stride, int width, int height, int y,
932                                int alpha, int bits, const int big_endian, int is_float)
933 {
934     int i, j;
935     uint8_t *ptr = plane + stride * y;
936     uint32_t v;
937     uint32_t onef32 = 0x3f800000;
938     if (is_float)
939         v = alpha ? onef32 : 0;
940     else
941         v = alpha ? 0xFFFFFFFF>>(32-bits) : (1<<(bits-1));
942
943     for (i = 0; i < height; i++) {
944 #define FILL(wfunc) \
945         for (j = 0; j < width; j++) {\
946             wfunc(ptr+4*j, v);\
947         }
948         if (big_endian) {
949             FILL(AV_WB32);
950         } else {
951             FILL(AV_WL32);
952         }
953         ptr += stride;
954     }
955 #undef FILL
956 }
957
958
959 #define MAX_SLICE_PLANES 4
960
961 /// Slice plane
962 typedef struct SwsPlane
963 {
964     int available_lines;    ///< max number of lines that can be hold by this plane
965     int sliceY;             ///< index of first line
966     int sliceH;             ///< number of lines
967     uint8_t **line;         ///< line buffer
968     uint8_t **tmp;          ///< Tmp line buffer used by mmx code
969 } SwsPlane;
970
971 /**
972  * Struct which defines a slice of an image to be scaled or an output for
973  * a scaled slice.
974  * A slice can also be used as intermediate ring buffer for scaling steps.
975  */
976 typedef struct SwsSlice
977 {
978     int width;              ///< Slice line width
979     int h_chr_sub_sample;   ///< horizontal chroma subsampling factor
980     int v_chr_sub_sample;   ///< vertical chroma subsampling factor
981     int is_ring;            ///< flag to identify if this slice is a ring buffer
982     int should_free_lines;  ///< flag to identify if there are dynamic allocated lines
983     enum AVPixelFormat fmt; ///< planes pixel format
984     SwsPlane plane[MAX_SLICE_PLANES];   ///< color planes
985 } SwsSlice;
986
987 /**
988  * Struct which holds all necessary data for processing a slice.
989  * A processing step can be a color conversion or horizontal/vertical scaling.
990  */
991 typedef struct SwsFilterDescriptor
992 {
993     SwsSlice *src;  ///< Source slice
994     SwsSlice *dst;  ///< Output slice
995
996     int alpha;      ///< Flag for processing alpha channel
997     void *instance; ///< Filter instance data
998
999     /// Function for processing input slice sliceH lines starting from line sliceY
1000     int (*process)(SwsContext *c, struct SwsFilterDescriptor *desc, int sliceY, int sliceH);
1001 } SwsFilterDescriptor;
1002
1003 // warp input lines in the form (src + width*i + j) to slice format (line[i][j])
1004 // relative=true means first line src[x][0] otherwise first line is src[x][lum/crh Y]
1005 int ff_init_slice_from_src(SwsSlice * s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative);
1006
1007 // Initialize scaler filter descriptor chain
1008 int ff_init_filters(SwsContext *c);
1009
1010 // Free all filter data
1011 int ff_free_filters(SwsContext *c);
1012
1013 /*
1014  function for applying ring buffer logic into slice s
1015  It checks if the slice can hold more @lum lines, if yes
1016  do nothing otherwise remove @lum least used lines.
1017  It applies the same procedure for @chr lines.
1018 */
1019 int ff_rotate_slice(SwsSlice *s, int lum, int chr);
1020
1021 /// initializes gamma conversion descriptor
1022 int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice * src, uint16_t *table);
1023
1024 /// initializes lum pixel format conversion descriptor
1025 int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1026
1027 /// initializes lum horizontal scaling descriptor
1028 int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1029
1030 /// initializes chr pixel format conversion descriptor
1031 int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst, uint32_t *pal);
1032
1033 /// initializes chr horizontal scaling descriptor
1034 int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int * filter_pos, int filter_size, int xInc);
1035
1036 int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice * src, SwsSlice *dst);
1037
1038 /// initializes vertical scaling descriptors
1039 int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst);
1040
1041 /// setup vertical scaler functions
1042 void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX,
1043     yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2,
1044     yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx);
1045
1046 //number of extra lines to process
1047 #define MAX_LINES_AHEAD 4
1048
1049 #endif /* SWSCALE_SWSCALE_INTERNAL_H */