]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
Merge branch 'master' of git@git.videolan.org:vlc
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35
36 #ifdef HAVE_CONFIG_H
37 # include "config.h"
38 #endif
39
40 #include <vlc/vlc.h>
41 #include <vlc_aout.h>
42
43 #include "bandlimited.h"
44
45 /*****************************************************************************
46  * Local prototypes
47  *****************************************************************************/
48 static int  Create    ( vlc_object_t * );
49 static void Close     ( vlc_object_t * );
50 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
51                         aout_buffer_t * );
52
53 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
54                            float *f_in, float *f_out, uint32_t ui_remainder,
55                            uint32_t ui_output_rate, int16_t Inc,
56                            int i_nb_channels );
57
58 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
59                            float *f_in, float *f_out, uint32_t ui_remainder,
60                            uint32_t ui_output_rate, uint32_t ui_input_rate,
61                            int16_t Inc, int i_nb_channels );
62
63 /*****************************************************************************
64  * Local structures
65  *****************************************************************************/
66 struct aout_filter_sys_t
67 {
68     int32_t *p_buf;                        /* this filter introduces a delay */
69     int i_buf_size;
70
71     int i_old_rate;
72     double d_old_factor;
73     int i_old_wing;
74
75     unsigned int i_remainder;                /* remainder of previous sample */
76
77     audio_date_t end_date;
78 };
79
80 /*****************************************************************************
81  * Module descriptor
82  *****************************************************************************/
83 vlc_module_begin();
84     set_category( CAT_AUDIO );
85     set_subcategory( SUBCAT_AUDIO_MISC );
86     set_description( _("Audio filter for band-limited interpolation resampling") );
87     set_capability( "audio filter", 20 );
88     set_callbacks( Create, Close );
89 vlc_module_end();
90
91 /*****************************************************************************
92  * Create: allocate linear resampler
93  *****************************************************************************/
94 static int Create( vlc_object_t *p_this )
95 {
96     aout_filter_t * p_filter = (aout_filter_t *)p_this;
97     double d_factor;
98     int i_filter_wing;
99
100     if ( p_filter->input.i_rate == p_filter->output.i_rate
101           || p_filter->input.i_format != p_filter->output.i_format
102           || p_filter->input.i_physical_channels
103               != p_filter->output.i_physical_channels
104           || p_filter->input.i_original_channels
105               != p_filter->output.i_original_channels
106           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
107     {
108         return VLC_EGENERIC;
109     }
110
111 #if !defined( __APPLE__ )
112     if( !config_GetInt( p_this, "hq-resampling" ) )
113     {
114         return VLC_EGENERIC;
115     }
116 #endif
117
118     /* Allocate the memory needed to store the module's structure */
119     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
120     if( p_filter->p_sys == NULL )
121     {
122         msg_Err( p_filter, "out of memory" );
123         return VLC_ENOMEM;
124     }
125
126     /* Calculate worst case for the length of the filter wing */
127     d_factor = (double)p_filter->output.i_rate
128                         / p_filter->input.i_rate / AOUT_MAX_INPUT_RATE;
129     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
130                       * __MAX(1.0, 1.0/d_factor) + 10;
131     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
132         sizeof(int32_t) * 2 * i_filter_wing;
133
134     /* Allocate enough memory to buffer previous samples */
135     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
136     if( p_filter->p_sys->p_buf == NULL )
137     {
138         msg_Err( p_filter, "out of memory" );
139         return VLC_ENOMEM;
140     }
141
142     p_filter->p_sys->i_old_wing = 0;
143     p_filter->pf_do_work = DoWork;
144
145     /* We don't want a new buffer to be created because we're not sure we'll
146      * actually need to resample anything. */
147     p_filter->b_in_place = true;
148
149     return VLC_SUCCESS;
150 }
151
152 /*****************************************************************************
153  * Close: free our resources
154  *****************************************************************************/
155 static void Close( vlc_object_t * p_this )
156 {
157     aout_filter_t * p_filter = (aout_filter_t *)p_this;
158     free( p_filter->p_sys->p_buf );
159     free( p_filter->p_sys );
160 }
161
162 /*****************************************************************************
163  * DoWork: convert a buffer
164  *****************************************************************************/
165 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
166                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
167 {
168     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
169
170     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
171     int i_in_nb = p_in_buf->i_nb_samples;
172     int i_in, i_out = 0;
173     double d_factor, d_scale_factor, d_old_scale_factor;
174     int i_filter_wing;
175 #if 0
176     int i;
177 #endif
178
179     /* Check if we really need to run the resampler */
180     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
181     {
182         if( /*p_filter->b_continuity && /--* What difference does it make ? :) */
183             p_filter->p_sys->i_old_wing &&
184             p_in_buf->i_size >=
185               p_in_buf->i_nb_bytes + p_filter->p_sys->i_old_wing *
186               p_filter->input.i_bytes_per_frame )
187         {
188             /* output the whole thing with the samples from last time */
189             memmove( ((float *)(p_in_buf->p_buffer)) +
190                      i_nb_channels * p_filter->p_sys->i_old_wing,
191                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
192             memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
193                     i_nb_channels * p_filter->p_sys->i_old_wing,
194                     p_filter->p_sys->i_old_wing *
195                     p_filter->input.i_bytes_per_frame );
196
197             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
198                 p_filter->p_sys->i_old_wing;
199
200             p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
201             p_out_buf->end_date =
202                 aout_DateIncrement( &p_filter->p_sys->end_date,
203                                     p_out_buf->i_nb_samples );
204
205             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
206                 p_filter->input.i_bytes_per_frame;
207         }
208         p_filter->b_continuity = false;
209         p_filter->p_sys->i_old_wing = 0;
210         return;
211     }
212
213     if( !p_filter->b_continuity )
214     {
215         /* Continuity in sound samples has been broken, we'd better reset
216          * everything. */
217         p_filter->b_continuity = true;
218         p_filter->p_sys->i_remainder = 0;
219         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
220         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
221         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
222         p_filter->p_sys->d_old_factor = 1;
223         p_filter->p_sys->i_old_wing   = 0;
224     }
225
226 #if 0
227     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
228              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
229              p_filter->p_sys->i_old_wing, i_in_nb );
230 #endif
231
232     /* Prepare the source buffer */
233     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
234 #ifdef HAVE_ALLOCA
235     p_in = p_in_orig = (float *)alloca( i_in_nb *
236                                         p_filter->input.i_bytes_per_frame );
237 #else
238     p_in = p_in_orig = (float *)malloc( i_in_nb *
239                                         p_filter->input.i_bytes_per_frame );
240 #endif
241     if( p_in == NULL )
242     {
243         return;
244     }
245
246     /* Copy all our samples in p_in */
247     if( p_filter->p_sys->i_old_wing )
248     {
249         p_aout->p_libvlc->pf_memcpy( p_in, p_filter->p_sys->p_buf,
250                                   p_filter->p_sys->i_old_wing * 2 *
251                                   p_filter->input.i_bytes_per_frame );
252     }
253     p_aout->p_libvlc->pf_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 *
254                               i_nb_channels, p_in_buf->p_buffer,
255                               p_in_buf->i_nb_samples *
256                               p_filter->input.i_bytes_per_frame );
257
258     /* Make sure the output buffer is reset */
259     memset( p_out, 0, p_out_buf->i_size );
260
261     /* Calculate the new length of the filter wing */
262     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
263     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
264
265     /* Account for increased filter gain when using factors less than 1 */
266     d_old_scale_factor = SMALL_FILTER_SCALE *
267         p_filter->p_sys->d_old_factor + 0.5;
268     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
269
270     /* Apply the old rate until we have enough samples for the new one */
271     i_in = p_filter->p_sys->i_old_wing;
272     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
273     for( ; i_in < i_filter_wing &&
274            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
275     {
276         if( p_filter->p_sys->d_old_factor == 1 )
277         {
278             /* Just copy the samples */
279             memcpy( p_out, p_in,
280                     p_filter->input.i_bytes_per_frame );
281             p_in += i_nb_channels;
282             p_out += i_nb_channels;
283             i_out++;
284             continue;
285         }
286
287         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
288         {
289
290             if( p_filter->p_sys->d_old_factor >= 1 )
291             {
292                 /* FilterFloatUP() is faster if we can use it */
293
294                 /* Perform left-wing inner product */
295                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
296                                SMALL_FILTER_NWING, p_in, p_out,
297                                p_filter->p_sys->i_remainder,
298                                p_filter->output.i_rate,
299                                -1, i_nb_channels );
300                 /* Perform right-wing inner product */
301                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
302                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
303                                p_filter->output.i_rate -
304                                p_filter->p_sys->i_remainder,
305                                p_filter->output.i_rate,
306                                1, i_nb_channels );
307
308 #if 0
309                 /* Normalize for unity filter gain */
310                 for( i = 0; i < i_nb_channels; i++ )
311                 {
312                     *(p_out+i) *= d_old_scale_factor;
313                 }
314 #endif
315
316                 /* Sanity check */
317                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
318                     <= (unsigned int)i_out+1 )
319                 {
320                     p_out += i_nb_channels;
321                     i_out++;
322                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
323                     break;
324                 }
325             }
326             else
327             {
328                 /* Perform left-wing inner product */
329                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
330                                SMALL_FILTER_NWING, p_in, p_out,
331                                p_filter->p_sys->i_remainder,
332                                p_filter->output.i_rate, p_filter->input.i_rate,
333                                -1, i_nb_channels );
334                 /* Perform right-wing inner product */
335                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
336                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
337                                p_filter->output.i_rate -
338                                p_filter->p_sys->i_remainder,
339                                p_filter->output.i_rate, p_filter->input.i_rate,
340                                1, i_nb_channels );
341             }
342
343             p_out += i_nb_channels;
344             i_out++;
345
346             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
347         }
348
349         p_in += i_nb_channels;
350         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
351     }
352
353     /* Apply the new rate for the rest of the samples */
354     if( i_in < i_in_nb - i_filter_wing )
355     {
356         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
357         p_filter->p_sys->d_old_factor = d_factor;
358         p_filter->p_sys->i_old_wing   = i_filter_wing;
359     }
360     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
361     {
362         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
363         {
364
365             if( d_factor >= 1 )
366             {
367                 /* FilterFloatUP() is faster if we can use it */
368
369                 /* Perform left-wing inner product */
370                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
371                                SMALL_FILTER_NWING, p_in, p_out,
372                                p_filter->p_sys->i_remainder,
373                                p_filter->output.i_rate,
374                                -1, i_nb_channels );
375
376                 /* Perform right-wing inner product */
377                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
378                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
379                                p_filter->output.i_rate -
380                                p_filter->p_sys->i_remainder,
381                                p_filter->output.i_rate,
382                                1, i_nb_channels );
383
384 #if 0
385                 /* Normalize for unity filter gain */
386                 for( i = 0; i < i_nb_channels; i++ )
387                 {
388                     *(p_out+i) *= d_old_scale_factor;
389                 }
390 #endif
391                 /* Sanity check */
392                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
393                     <= (unsigned int)i_out+1 )
394                 {
395                     p_out += i_nb_channels;
396                     i_out++;
397                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
398                     break;
399                 }
400             }
401             else
402             {
403                 /* Perform left-wing inner product */
404                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
405                                SMALL_FILTER_NWING, p_in, p_out,
406                                p_filter->p_sys->i_remainder,
407                                p_filter->output.i_rate, p_filter->input.i_rate,
408                                -1, i_nb_channels );
409                 /* Perform right-wing inner product */
410                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
411                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
412                                p_filter->output.i_rate -
413                                p_filter->p_sys->i_remainder,
414                                p_filter->output.i_rate, p_filter->input.i_rate,
415                                1, i_nb_channels );
416             }
417
418             p_out += i_nb_channels;
419             i_out++;
420
421             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
422         }
423
424         p_in += i_nb_channels;
425         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
426     }
427
428     /* Buffer i_filter_wing * 2 samples for next time */
429     if( p_filter->p_sys->i_old_wing )
430     {
431         memcpy( p_filter->p_sys->p_buf,
432                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
433                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
434                 p_filter->input.i_bytes_per_frame );
435     }
436
437 #if 0
438     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
439              i_out * p_filter->input.i_bytes_per_frame );
440 #endif
441
442     /* Free the temp buffer */
443 #ifndef HAVE_ALLOCA
444     free( p_in_orig );
445 #endif
446
447     /* Finalize aout buffer */
448     p_out_buf->i_nb_samples = i_out;
449     p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
450     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
451                                               p_out_buf->i_nb_samples );
452
453     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
454         i_nb_channels * sizeof(int32_t);
455
456 }
457
458 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
459                     float *p_out, uint32_t ui_remainder,
460                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
461 {
462     float *Hp, *Hdp, *End;
463     float t, temp;
464     uint32_t ui_linear_remainder;
465     int i;
466
467     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
468     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
469
470     End = &Imp[Nwing];
471
472     ui_linear_remainder = (ui_remainder<<Nhc) -
473                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
474
475     if (Inc == 1)               /* If doing right wing...              */
476     {                           /* ...drop extra coeff, so when Ph is  */
477         End--;                  /*    0.5, we don't do too many mult's */
478         if (ui_remainder == 0)  /* If the phase is zero...           */
479         {                       /* ...then we've already skipped the */
480             Hp += Npc;          /*    first sample, so we must also  */
481             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
482         }
483     }
484
485     while (Hp < End) {
486         t = *Hp;                /* Get filter coeff */
487                                 /* t is now interp'd filter coeff */
488         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
489         for( i = 0; i < i_nb_channels; i++ )
490         {
491             temp = t;
492             temp *= *(p_in+i);  /* Mult coeff by input sample */
493             *(p_out+i) += temp; /* The filter output */
494         }
495         Hdp += Npc;             /* Filter coeff differences step */
496         Hp += Npc;              /* Filter coeff step */
497         p_in += (Inc * i_nb_channels); /* Input signal step */
498     }
499 }
500
501 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
502                     float *p_out, uint32_t ui_remainder,
503                     uint32_t ui_output_rate, uint32_t ui_input_rate,
504                     int16_t Inc, int i_nb_channels )
505 {
506     float *Hp, *Hdp, *End;
507     float t, temp;
508     uint32_t ui_linear_remainder;
509     int i, ui_counter = 0;
510
511     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
512     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
513
514     End = &Imp[Nwing];
515
516     if (Inc == 1)               /* If doing right wing...              */
517     {                           /* ...drop extra coeff, so when Ph is  */
518         End--;                  /*    0.5, we don't do too many mult's */
519         if (ui_remainder == 0)  /* If the phase is zero...           */
520         {                       /* ...then we've already skipped the */
521             Hp = Imp +          /* first sample, so we must also  */
522                   (ui_output_rate << Nhc) / ui_input_rate;
523             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
524                   (ui_output_rate << Nhc) / ui_input_rate;
525             ui_counter++;
526         }
527     }
528
529     while (Hp < End) {
530         t = *Hp;                /* Get filter coeff */
531                                 /* t is now interp'd filter coeff */
532         ui_linear_remainder =
533           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
534           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
535           ui_input_rate * ui_input_rate;
536         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
537         for( i = 0; i < i_nb_channels; i++ )
538         {
539             temp = t;
540             temp *= *(p_in+i);  /* Mult coeff by input sample */
541             *(p_out+i) += temp; /* The filter output */
542         }
543
544         ui_counter++;
545
546         /* Filter coeff step */
547         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
548                     / ui_input_rate;
549         /* Filter coeff differences step */
550         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
551                      / ui_input_rate;
552
553         p_in += (Inc * i_nb_channels); /* Input signal step */
554     }
555 }