]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
Merge branch 1.0-bugfix
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35
36 #ifdef HAVE_CONFIG_H
37 # include "config.h"
38 #endif
39
40 #include <vlc_common.h>
41 #include <vlc_plugin.h>
42 #include <vlc_aout.h>
43 #include <vlc_filter.h>
44 #include <vlc_block.h>
45
46 #include "bandlimited.h"
47
48 /*****************************************************************************
49  * Local prototypes
50  *****************************************************************************/
51 static int  Create    ( vlc_object_t * );
52 static void Close     ( vlc_object_t * );
53 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
54                         aout_buffer_t * );
55
56 /* audio filter2 */
57 static int  OpenFilter ( vlc_object_t * );
58 static void CloseFilter( vlc_object_t * );
59 static block_t *Resample( filter_t *, block_t * );
60
61
62 static void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing,
63                            float *f_in, float *f_out, uint32_t ui_remainder,
64                            uint32_t ui_output_rate, int16_t Inc,
65                            int i_nb_channels );
66
67 static void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing,
68                            float *f_in, float *f_out, uint32_t ui_remainder,
69                            uint32_t ui_output_rate, uint32_t ui_input_rate,
70                            int16_t Inc, int i_nb_channels );
71
72 /*****************************************************************************
73  * Local structures
74  *****************************************************************************/
75 struct filter_sys_t
76 {
77     int32_t *p_buf;                        /* this filter introduces a delay */
78     int i_buf_size;
79
80     int i_old_rate;
81     double d_old_factor;
82     int i_old_wing;
83
84     unsigned int i_remainder;                /* remainder of previous sample */
85
86     audio_date_t end_date;
87
88     bool b_first;
89     bool b_filter2;
90 };
91
92 /*****************************************************************************
93  * Module descriptor
94  *****************************************************************************/
95 vlc_module_begin ()
96     set_category( CAT_AUDIO )
97     set_subcategory( SUBCAT_AUDIO_MISC )
98     set_description( N_("Audio filter for band-limited interpolation resampling") )
99     set_capability( "audio filter", 20 )
100     set_callbacks( Create, Close )
101
102     add_submodule ()
103     set_description( N_("Audio filter for band-limited interpolation resampling") )
104     set_capability( "audio filter2", 20 )
105     set_callbacks( OpenFilter, CloseFilter )
106 vlc_module_end ()
107
108 /*****************************************************************************
109  * Create: allocate linear resampler
110  *****************************************************************************/
111 static int Create( vlc_object_t *p_this )
112 {
113     aout_filter_t * p_filter = (aout_filter_t *)p_this;
114     struct filter_sys_t * p_sys;
115     double d_factor;
116     int i_filter_wing;
117
118     if ( p_filter->input.i_rate == p_filter->output.i_rate
119           || p_filter->input.i_format != p_filter->output.i_format
120           || p_filter->input.i_physical_channels
121               != p_filter->output.i_physical_channels
122           || p_filter->input.i_original_channels
123               != p_filter->output.i_original_channels
124           || p_filter->input.i_format != VLC_CODEC_FL32 )
125     {
126         return VLC_EGENERIC;
127     }
128
129 #if !defined( __APPLE__ )
130     if( !config_GetInt( p_this, "hq-resampling" ) )
131     {
132         return VLC_EGENERIC;
133     }
134 #endif
135
136     /* Allocate the memory needed to store the module's structure */
137     p_sys = malloc( sizeof(filter_sys_t) );
138     if( p_sys == NULL )
139         return VLC_ENOMEM;
140     p_filter->p_sys = (struct aout_filter_sys_t *)p_sys;
141
142     /* Calculate worst case for the length of the filter wing */
143     d_factor = (double)p_filter->output.i_rate
144                         / p_filter->input.i_rate / AOUT_MAX_INPUT_RATE;
145     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
146                       * __MAX(1.0, 1.0/d_factor) + 10;
147     p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
148         sizeof(int32_t) * 2 * i_filter_wing;
149
150     /* Allocate enough memory to buffer previous samples */
151     p_sys->p_buf = malloc( p_sys->i_buf_size );
152     if( p_sys->p_buf == NULL )
153     {
154         free( p_sys );
155         return VLC_ENOMEM;
156     }
157
158     p_sys->i_old_wing = 0;
159     p_sys->b_filter2 = false;           /* It seams to be a good valuefor this module */
160     p_filter->pf_do_work = DoWork;
161
162     /* We don't want a new buffer to be created because we're not sure we'll
163      * actually need to resample anything. */
164     p_filter->b_in_place = true;
165
166     return VLC_SUCCESS;
167 }
168
169 /*****************************************************************************
170  * Close: free our resources
171  *****************************************************************************/
172 static void Close( vlc_object_t * p_this )
173 {
174     aout_filter_t * p_filter = (aout_filter_t *)p_this;
175     filter_sys_t *p_sys = (filter_sys_t *)p_filter->p_sys;
176     free( p_sys->p_buf );
177     free( p_sys );
178 }
179
180 /*****************************************************************************
181  * DoWork: convert a buffer
182  *****************************************************************************/
183 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
184                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
185 {
186     filter_sys_t *p_sys = (filter_sys_t *)p_filter->p_sys;
187     float *p_out = (float *)p_out_buf->p_buffer;
188
189     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
190     int i_in_nb = p_in_buf->i_nb_samples;
191     int i_in, i_out = 0;
192     unsigned int i_out_rate;
193     double d_factor, d_scale_factor, d_old_scale_factor;
194     int i_filter_wing;
195
196     if( p_sys->b_filter2 )
197         i_out_rate = p_filter->output.i_rate;
198     else
199         i_out_rate = p_aout->mixer.mixer.i_rate;
200
201     /* Check if we really need to run the resampler */
202     if( i_out_rate == p_filter->input.i_rate )
203     {
204         if( /*p_filter->b_continuity && /--* What difference does it make ? :) */
205             p_sys->i_old_wing &&
206             p_in_buf->i_size >=
207               p_in_buf->i_nb_bytes + p_sys->i_old_wing *
208               p_filter->input.i_bytes_per_frame )
209         {
210             /* output the whole thing with the samples from last time */
211             memmove( ((float *)(p_in_buf->p_buffer)) +
212                      i_nb_channels * p_sys->i_old_wing,
213                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
214             memcpy( p_in_buf->p_buffer, p_sys->p_buf +
215                     i_nb_channels * p_sys->i_old_wing,
216                     p_sys->i_old_wing *
217                     p_filter->input.i_bytes_per_frame );
218
219             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
220                 p_sys->i_old_wing;
221
222             p_out_buf->start_date = aout_DateGet( &p_sys->end_date );
223             p_out_buf->end_date =
224                 aout_DateIncrement( &p_sys->end_date,
225                                     p_out_buf->i_nb_samples );
226
227             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
228                 p_filter->input.i_bytes_per_frame;
229         }
230         p_filter->b_continuity = false;
231         p_sys->i_old_wing = 0;
232         return;
233     }
234
235     if( !p_filter->b_continuity )
236     {
237         /* Continuity in sound samples has been broken, we'd better reset
238          * everything. */
239         p_filter->b_continuity = true;
240         p_sys->i_remainder = 0;
241         aout_DateInit( &p_sys->end_date, i_out_rate );
242         aout_DateSet( &p_sys->end_date, p_in_buf->start_date );
243         p_sys->i_old_rate   = p_filter->input.i_rate;
244         p_sys->d_old_factor = 1;
245         p_sys->i_old_wing   = 0;
246     }
247
248 #if 0
249     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
250              p_sys->i_old_rate, p_sys->d_old_factor,
251              p_sys->i_old_wing, i_in_nb );
252 #endif
253
254     /* Prepare the source buffer */
255     i_in_nb += (p_sys->i_old_wing * 2);
256
257     float p_in_orig[i_in_nb * p_filter->input.i_bytes_per_frame / 4],
258          *p_in = p_in_orig;
259
260     /* Copy all our samples in p_in */
261     if( p_sys->i_old_wing )
262     {
263         vlc_memcpy( p_in, p_sys->p_buf,
264                     p_sys->i_old_wing * 2 *
265                       p_filter->input.i_bytes_per_frame );
266     }
267     vlc_memcpy( p_in + p_sys->i_old_wing * 2 * i_nb_channels,
268                 p_in_buf->p_buffer,
269                 p_in_buf->i_nb_samples * p_filter->input.i_bytes_per_frame );
270
271     /* Make sure the output buffer is reset */
272     memset( p_out, 0, p_out_buf->i_size );
273
274     /* Calculate the new length of the filter wing */
275     d_factor = (double)i_out_rate / p_filter->input.i_rate;
276     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
277
278     /* Account for increased filter gain when using factors less than 1 */
279     d_old_scale_factor = SMALL_FILTER_SCALE *
280         p_sys->d_old_factor + 0.5;
281     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
282
283     /* Apply the old rate until we have enough samples for the new one */
284     i_in = p_sys->i_old_wing;
285     p_in += p_sys->i_old_wing * i_nb_channels;
286     for( ; i_in < i_filter_wing &&
287            (i_in + p_sys->i_old_wing) < i_in_nb; i_in++ )
288     {
289         if( p_sys->d_old_factor == 1 )
290         {
291             /* Just copy the samples */
292             memcpy( p_out, p_in,
293                     p_filter->input.i_bytes_per_frame );
294             p_in += i_nb_channels;
295             p_out += i_nb_channels;
296             i_out++;
297             continue;
298         }
299
300         while( p_sys->i_remainder < p_filter->output.i_rate )
301         {
302
303             if( p_sys->d_old_factor >= 1 )
304             {
305                 /* FilterFloatUP() is faster if we can use it */
306
307                 /* Perform left-wing inner product */
308                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
309                                SMALL_FILTER_NWING, p_in, p_out,
310                                p_sys->i_remainder,
311                                p_filter->output.i_rate,
312                                -1, i_nb_channels );
313                 /* Perform right-wing inner product */
314                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
315                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
316                                p_filter->output.i_rate -
317                                p_sys->i_remainder,
318                                p_filter->output.i_rate,
319                                1, i_nb_channels );
320
321 #if 0
322                 /* Normalize for unity filter gain */
323                 for( i = 0; i < i_nb_channels; i++ )
324                 {
325                     *(p_out+i) *= d_old_scale_factor;
326                 }
327 #endif
328
329                 /* Sanity check */
330                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
331                     <= (unsigned int)i_out+1 )
332                 {
333                     p_out += i_nb_channels;
334                     i_out++;
335                     p_sys->i_remainder += p_filter->input.i_rate;
336                     break;
337                 }
338             }
339             else
340             {
341                 /* Perform left-wing inner product */
342                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
343                                SMALL_FILTER_NWING, p_in, p_out,
344                                p_sys->i_remainder,
345                                p_filter->output.i_rate, p_filter->input.i_rate,
346                                -1, i_nb_channels );
347                 /* Perform right-wing inner product */
348                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
349                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
350                                p_filter->output.i_rate -
351                                p_sys->i_remainder,
352                                p_filter->output.i_rate, p_filter->input.i_rate,
353                                1, i_nb_channels );
354             }
355
356             p_out += i_nb_channels;
357             i_out++;
358
359             p_sys->i_remainder += p_filter->input.i_rate;
360         }
361
362         p_in += i_nb_channels;
363         p_sys->i_remainder -= p_filter->output.i_rate;
364     }
365
366     /* Apply the new rate for the rest of the samples */
367     if( i_in < i_in_nb - i_filter_wing )
368     {
369         p_sys->i_old_rate   = p_filter->input.i_rate;
370         p_sys->d_old_factor = d_factor;
371         p_sys->i_old_wing   = i_filter_wing;
372     }
373     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
374     {
375         while( p_sys->i_remainder < p_filter->output.i_rate )
376         {
377
378             if( d_factor >= 1 )
379             {
380                 /* FilterFloatUP() is faster if we can use it */
381
382                 /* Perform left-wing inner product */
383                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
384                                SMALL_FILTER_NWING, p_in, p_out,
385                                p_sys->i_remainder,
386                                p_filter->output.i_rate,
387                                -1, i_nb_channels );
388
389                 /* Perform right-wing inner product */
390                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
391                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
392                                p_filter->output.i_rate -
393                                p_sys->i_remainder,
394                                p_filter->output.i_rate,
395                                1, i_nb_channels );
396
397 #if 0
398                 /* Normalize for unity filter gain */
399                 for( int i = 0; i < i_nb_channels; i++ )
400                 {
401                     *(p_out+i) *= d_old_scale_factor;
402                 }
403 #endif
404                 /* Sanity check */
405                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
406                     <= (unsigned int)i_out+1 )
407                 {
408                     p_out += i_nb_channels;
409                     i_out++;
410                     p_sys->i_remainder += p_filter->input.i_rate;
411                     break;
412                 }
413             }
414             else
415             {
416                 /* Perform left-wing inner product */
417                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
418                                SMALL_FILTER_NWING, p_in, p_out,
419                                p_sys->i_remainder,
420                                p_filter->output.i_rate, p_filter->input.i_rate,
421                                -1, i_nb_channels );
422                 /* Perform right-wing inner product */
423                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
424                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
425                                p_filter->output.i_rate -
426                                p_sys->i_remainder,
427                                p_filter->output.i_rate, p_filter->input.i_rate,
428                                1, i_nb_channels );
429             }
430
431             p_out += i_nb_channels;
432             i_out++;
433
434             p_sys->i_remainder += p_filter->input.i_rate;
435         }
436
437         p_in += i_nb_channels;
438         p_sys->i_remainder -= p_filter->output.i_rate;
439     }
440
441     /* Buffer i_filter_wing * 2 samples for next time */
442     if( p_sys->i_old_wing )
443     {
444         memcpy( p_sys->p_buf,
445                 p_in_orig + (i_in_nb - 2 * p_sys->i_old_wing) *
446                 i_nb_channels, (2 * p_sys->i_old_wing) *
447                 p_filter->input.i_bytes_per_frame );
448     }
449
450 #if 0
451     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
452              i_out * p_filter->input.i_bytes_per_frame );
453 #endif
454
455     /* Finalize aout buffer */
456     p_out_buf->i_nb_samples = i_out;
457     p_out_buf->start_date = aout_DateGet( &p_sys->end_date );
458     p_out_buf->end_date = aout_DateIncrement( &p_sys->end_date,
459                                               p_out_buf->i_nb_samples );
460
461     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
462         i_nb_channels * sizeof(int32_t);
463
464 }
465
466 /*****************************************************************************
467  * OpenFilter:
468  *****************************************************************************/
469 static int OpenFilter( vlc_object_t *p_this )
470 {
471     filter_t *p_filter = (filter_t *)p_this;
472     filter_sys_t *p_sys;
473     unsigned int i_out_rate  = p_filter->fmt_out.audio.i_rate;
474     double d_factor;
475     int i_filter_wing;
476
477     if( p_filter->fmt_in.audio.i_rate == p_filter->fmt_out.audio.i_rate ||
478         p_filter->fmt_in.i_codec != VLC_CODEC_FL32 )
479     {
480         return VLC_EGENERIC;
481     }
482
483 #if !defined( SYS_DARWIN )
484     if( !config_GetInt( p_this, "hq-resampling" ) )
485     {
486         return VLC_EGENERIC;
487     }
488 #endif
489
490     /* Allocate the memory needed to store the module's structure */
491     p_filter->p_sys = p_sys = malloc( sizeof(struct filter_sys_t) );
492     if( p_sys == NULL )
493         return VLC_ENOMEM;
494
495     /* Calculate worst case for the length of the filter wing */
496     d_factor = (double)i_out_rate / p_filter->fmt_in.audio.i_rate;
497     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
498                       * __MAX(1.0, 1.0/d_factor) + 10;
499     p_filter->p_sys->i_buf_size = p_filter->fmt_in.audio.i_channels *
500         sizeof(int32_t) * 2 * i_filter_wing;
501
502     /* Allocate enough memory to buffer previous samples */
503     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
504     if( p_filter->p_sys->p_buf == NULL )
505     {
506         free( p_sys );
507         return VLC_ENOMEM;
508     }
509
510     p_filter->p_sys->i_old_wing = 0;
511     p_sys->b_first = true;
512     p_sys->b_filter2 = true;
513     p_filter->pf_audio_filter = Resample;
514
515     msg_Dbg( p_this, "%4.4s/%iKHz/%i->%4.4s/%iKHz/%i",
516              (char *)&p_filter->fmt_in.i_codec,
517              p_filter->fmt_in.audio.i_rate,
518              p_filter->fmt_in.audio.i_channels,
519              (char *)&p_filter->fmt_out.i_codec,
520              p_filter->fmt_out.audio.i_rate,
521              p_filter->fmt_out.audio.i_channels);
522
523     p_filter->fmt_out = p_filter->fmt_in;
524     p_filter->fmt_out.audio.i_rate = i_out_rate;
525
526     return 0;
527 }
528
529 /*****************************************************************************
530  * CloseFilter : deallocate data structures
531  *****************************************************************************/
532 static void CloseFilter( vlc_object_t *p_this )
533 {
534     filter_t *p_filter = (filter_t *)p_this;
535     free( p_filter->p_sys->p_buf );
536     free( p_filter->p_sys );
537 }
538
539 /*****************************************************************************
540  * Resample
541  *****************************************************************************/
542 static block_t *Resample( filter_t *p_filter, block_t *p_block )
543 {
544     aout_filter_t aout_filter;
545     aout_buffer_t in_buf, out_buf;
546     block_t *p_out;
547     int i_out_size;
548     int i_bytes_per_frame;
549
550     if( !p_block || !p_block->i_samples )
551     {
552         if( p_block )
553             block_Release( p_block );
554         return NULL;
555     }
556
557     i_bytes_per_frame = p_filter->fmt_out.audio.i_channels *
558                   p_filter->fmt_out.audio.i_bitspersample / 8;
559
560     i_out_size = i_bytes_per_frame * ( 1 + ( p_block->i_samples *
561                                              p_filter->fmt_out.audio.i_rate /
562                                              p_filter->fmt_in.audio.i_rate) ) +
563                  p_filter->p_sys->i_buf_size;
564
565     p_out = p_filter->pf_audio_buffer_new( p_filter, i_out_size );
566     if( !p_out )
567     {
568         msg_Warn( p_filter, "can't get output buffer" );
569         block_Release( p_block );
570         return NULL;
571     }
572
573     p_out->i_samples = i_out_size / i_bytes_per_frame;
574     p_out->i_dts = p_block->i_dts;
575     p_out->i_pts = p_block->i_pts;
576     p_out->i_length = p_block->i_length;
577
578     aout_filter.p_sys = (struct aout_filter_sys_t *)p_filter->p_sys;
579     aout_filter.input = p_filter->fmt_in.audio;
580     aout_filter.input.i_bytes_per_frame = p_filter->fmt_in.audio.i_channels *
581                   p_filter->fmt_in.audio.i_bitspersample / 8;
582     aout_filter.output = p_filter->fmt_out.audio;
583     aout_filter.output.i_bytes_per_frame = p_filter->fmt_out.audio.i_channels *
584                   p_filter->fmt_out.audio.i_bitspersample / 8;
585     aout_filter.b_continuity = !p_filter->p_sys->b_first;
586     p_filter->p_sys->b_first = false;
587
588     in_buf.p_buffer = p_block->p_buffer;
589     in_buf.i_nb_bytes = in_buf.i_size = p_block->i_buffer;
590     in_buf.i_nb_samples = p_block->i_samples;
591     out_buf.p_buffer = p_out->p_buffer;
592     out_buf.i_nb_bytes = out_buf.i_size = p_out->i_buffer;
593     out_buf.i_nb_samples = p_out->i_samples;
594
595     DoWork( (aout_instance_t *)p_filter, &aout_filter, &in_buf, &out_buf );
596
597     block_Release( p_block );
598
599     p_out->i_buffer = out_buf.i_nb_bytes;
600     p_out->i_samples = out_buf.i_nb_samples;
601
602     return p_out;
603 }
604
605 void FilterFloatUP( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
606                     float *p_out, uint32_t ui_remainder,
607                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
608 {
609     const float *Hp, *Hdp, *End;
610     float t, temp;
611     uint32_t ui_linear_remainder;
612     int i;
613
614     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
615     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
616
617     End = &Imp[Nwing];
618
619     ui_linear_remainder = (ui_remainder<<Nhc) -
620                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
621
622     if (Inc == 1)               /* If doing right wing...              */
623     {                           /* ...drop extra coeff, so when Ph is  */
624         End--;                  /*    0.5, we don't do too many mult's */
625         if (ui_remainder == 0)  /* If the phase is zero...           */
626         {                       /* ...then we've already skipped the */
627             Hp += Npc;          /*    first sample, so we must also  */
628             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
629         }
630     }
631
632     while (Hp < End) {
633         t = *Hp;                /* Get filter coeff */
634                                 /* t is now interp'd filter coeff */
635         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
636         for( i = 0; i < i_nb_channels; i++ )
637         {
638             temp = t;
639             temp *= *(p_in+i);  /* Mult coeff by input sample */
640             *(p_out+i) += temp; /* The filter output */
641         }
642         Hdp += Npc;             /* Filter coeff differences step */
643         Hp += Npc;              /* Filter coeff step */
644         p_in += (Inc * i_nb_channels); /* Input signal step */
645     }
646 }
647
648 void FilterFloatUD( const float Imp[], const float ImpD[], uint16_t Nwing, float *p_in,
649                     float *p_out, uint32_t ui_remainder,
650                     uint32_t ui_output_rate, uint32_t ui_input_rate,
651                     int16_t Inc, int i_nb_channels )
652 {
653     const float *Hp, *Hdp, *End;
654     float t, temp;
655     uint32_t ui_linear_remainder;
656     int i, ui_counter = 0;
657
658     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
659     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
660
661     End = &Imp[Nwing];
662
663     if (Inc == 1)               /* If doing right wing...              */
664     {                           /* ...drop extra coeff, so when Ph is  */
665         End--;                  /*    0.5, we don't do too many mult's */
666         if (ui_remainder == 0)  /* If the phase is zero...           */
667         {                       /* ...then we've already skipped the */
668             Hp = Imp +          /* first sample, so we must also  */
669                   (ui_output_rate << Nhc) / ui_input_rate;
670             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
671                   (ui_output_rate << Nhc) / ui_input_rate;
672             ui_counter++;
673         }
674     }
675
676     while (Hp < End) {
677         t = *Hp;                /* Get filter coeff */
678                                 /* t is now interp'd filter coeff */
679         ui_linear_remainder =
680           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
681           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
682           ui_input_rate * ui_input_rate;
683         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
684         for( i = 0; i < i_nb_channels; i++ )
685         {
686             temp = t;
687             temp *= *(p_in+i);  /* Mult coeff by input sample */
688             *(p_out+i) += temp; /* The filter output */
689         }
690
691         ui_counter++;
692
693         /* Filter coeff step */
694         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
695                     / ui_input_rate;
696         /* Filter coeff differences step */
697         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
698                      / ui_input_rate;
699
700         p_in += (Inc * i_nb_channels); /* Input signal step */
701     }
702 }