]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
Remove unneeded msg_Error about memory failure.
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35
36 #ifdef HAVE_CONFIG_H
37 # include "config.h"
38 #endif
39
40 #include <vlc_common.h>
41 #include <vlc_plugin.h>
42 #include <vlc_aout.h>
43
44 #include "bandlimited.h"
45
46 /*****************************************************************************
47  * Local prototypes
48  *****************************************************************************/
49 static int  Create    ( vlc_object_t * );
50 static void Close     ( vlc_object_t * );
51 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
52                         aout_buffer_t * );
53
54 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
55                            float *f_in, float *f_out, uint32_t ui_remainder,
56                            uint32_t ui_output_rate, int16_t Inc,
57                            int i_nb_channels );
58
59 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
60                            float *f_in, float *f_out, uint32_t ui_remainder,
61                            uint32_t ui_output_rate, uint32_t ui_input_rate,
62                            int16_t Inc, int i_nb_channels );
63
64 /*****************************************************************************
65  * Local structures
66  *****************************************************************************/
67 struct aout_filter_sys_t
68 {
69     int32_t *p_buf;                        /* this filter introduces a delay */
70     int i_buf_size;
71
72     int i_old_rate;
73     double d_old_factor;
74     int i_old_wing;
75
76     unsigned int i_remainder;                /* remainder of previous sample */
77
78     audio_date_t end_date;
79 };
80
81 /*****************************************************************************
82  * Module descriptor
83  *****************************************************************************/
84 vlc_module_begin();
85     set_category( CAT_AUDIO );
86     set_subcategory( SUBCAT_AUDIO_MISC );
87     set_description( N_("Audio filter for band-limited interpolation resampling") );
88     set_capability( "audio filter", 20 );
89     set_callbacks( Create, Close );
90 vlc_module_end();
91
92 /*****************************************************************************
93  * Create: allocate linear resampler
94  *****************************************************************************/
95 static int Create( vlc_object_t *p_this )
96 {
97     aout_filter_t * p_filter = (aout_filter_t *)p_this;
98     double d_factor;
99     int i_filter_wing;
100
101     if ( p_filter->input.i_rate == p_filter->output.i_rate
102           || p_filter->input.i_format != p_filter->output.i_format
103           || p_filter->input.i_physical_channels
104               != p_filter->output.i_physical_channels
105           || p_filter->input.i_original_channels
106               != p_filter->output.i_original_channels
107           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
108     {
109         return VLC_EGENERIC;
110     }
111
112 #if !defined( __APPLE__ )
113     if( !config_GetInt( p_this, "hq-resampling" ) )
114     {
115         return VLC_EGENERIC;
116     }
117 #endif
118
119     /* Allocate the memory needed to store the module's structure */
120     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
121     if( p_filter->p_sys == NULL )
122         return VLC_ENOMEM;
123
124     /* Calculate worst case for the length of the filter wing */
125     d_factor = (double)p_filter->output.i_rate
126                         / p_filter->input.i_rate / AOUT_MAX_INPUT_RATE;
127     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
128                       * __MAX(1.0, 1.0/d_factor) + 10;
129     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
130         sizeof(int32_t) * 2 * i_filter_wing;
131
132     /* Allocate enough memory to buffer previous samples */
133     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
134     if( p_filter->p_sys->p_buf == NULL )
135         return VLC_ENOMEM;
136
137     p_filter->p_sys->i_old_wing = 0;
138     p_filter->pf_do_work = DoWork;
139
140     /* We don't want a new buffer to be created because we're not sure we'll
141      * actually need to resample anything. */
142     p_filter->b_in_place = true;
143
144     return VLC_SUCCESS;
145 }
146
147 /*****************************************************************************
148  * Close: free our resources
149  *****************************************************************************/
150 static void Close( vlc_object_t * p_this )
151 {
152     aout_filter_t * p_filter = (aout_filter_t *)p_this;
153     free( p_filter->p_sys->p_buf );
154     free( p_filter->p_sys );
155 }
156
157 /*****************************************************************************
158  * DoWork: convert a buffer
159  *****************************************************************************/
160 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
161                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
162 {
163     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
164
165     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
166     int i_in_nb = p_in_buf->i_nb_samples;
167     int i_in, i_out = 0;
168     double d_factor, d_scale_factor, d_old_scale_factor;
169     int i_filter_wing;
170 #if 0
171     int i;
172 #endif
173
174     /* Check if we really need to run the resampler */
175     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
176     {
177         if( /*p_filter->b_continuity && /--* What difference does it make ? :) */
178             p_filter->p_sys->i_old_wing &&
179             p_in_buf->i_size >=
180               p_in_buf->i_nb_bytes + p_filter->p_sys->i_old_wing *
181               p_filter->input.i_bytes_per_frame )
182         {
183             /* output the whole thing with the samples from last time */
184             memmove( ((float *)(p_in_buf->p_buffer)) +
185                      i_nb_channels * p_filter->p_sys->i_old_wing,
186                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
187             memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
188                     i_nb_channels * p_filter->p_sys->i_old_wing,
189                     p_filter->p_sys->i_old_wing *
190                     p_filter->input.i_bytes_per_frame );
191
192             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
193                 p_filter->p_sys->i_old_wing;
194
195             p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
196             p_out_buf->end_date =
197                 aout_DateIncrement( &p_filter->p_sys->end_date,
198                                     p_out_buf->i_nb_samples );
199
200             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
201                 p_filter->input.i_bytes_per_frame;
202         }
203         p_filter->b_continuity = false;
204         p_filter->p_sys->i_old_wing = 0;
205         return;
206     }
207
208     if( !p_filter->b_continuity )
209     {
210         /* Continuity in sound samples has been broken, we'd better reset
211          * everything. */
212         p_filter->b_continuity = true;
213         p_filter->p_sys->i_remainder = 0;
214         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
215         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
216         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
217         p_filter->p_sys->d_old_factor = 1;
218         p_filter->p_sys->i_old_wing   = 0;
219     }
220
221 #if 0
222     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
223              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
224              p_filter->p_sys->i_old_wing, i_in_nb );
225 #endif
226
227     /* Prepare the source buffer */
228     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
229 #ifdef HAVE_ALLOCA
230     p_in = p_in_orig = (float *)alloca( i_in_nb *
231                                         p_filter->input.i_bytes_per_frame );
232 #else
233     p_in = p_in_orig = (float *)malloc( i_in_nb *
234                                         p_filter->input.i_bytes_per_frame );
235 #endif
236     if( p_in == NULL )
237     {
238         return;
239     }
240
241     /* Copy all our samples in p_in */
242     if( p_filter->p_sys->i_old_wing )
243     {
244         vlc_memcpy( p_in, p_filter->p_sys->p_buf,
245                     p_filter->p_sys->i_old_wing * 2 *
246                       p_filter->input.i_bytes_per_frame );
247     }
248     vlc_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 * i_nb_channels,
249                 p_in_buf->p_buffer,
250                 p_in_buf->i_nb_samples * p_filter->input.i_bytes_per_frame );
251
252     /* Make sure the output buffer is reset */
253     memset( p_out, 0, p_out_buf->i_size );
254
255     /* Calculate the new length of the filter wing */
256     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
257     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
258
259     /* Account for increased filter gain when using factors less than 1 */
260     d_old_scale_factor = SMALL_FILTER_SCALE *
261         p_filter->p_sys->d_old_factor + 0.5;
262     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
263
264     /* Apply the old rate until we have enough samples for the new one */
265     i_in = p_filter->p_sys->i_old_wing;
266     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
267     for( ; i_in < i_filter_wing &&
268            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
269     {
270         if( p_filter->p_sys->d_old_factor == 1 )
271         {
272             /* Just copy the samples */
273             memcpy( p_out, p_in,
274                     p_filter->input.i_bytes_per_frame );
275             p_in += i_nb_channels;
276             p_out += i_nb_channels;
277             i_out++;
278             continue;
279         }
280
281         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
282         {
283
284             if( p_filter->p_sys->d_old_factor >= 1 )
285             {
286                 /* FilterFloatUP() is faster if we can use it */
287
288                 /* Perform left-wing inner product */
289                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
290                                SMALL_FILTER_NWING, p_in, p_out,
291                                p_filter->p_sys->i_remainder,
292                                p_filter->output.i_rate,
293                                -1, i_nb_channels );
294                 /* Perform right-wing inner product */
295                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
296                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
297                                p_filter->output.i_rate -
298                                p_filter->p_sys->i_remainder,
299                                p_filter->output.i_rate,
300                                1, i_nb_channels );
301
302 #if 0
303                 /* Normalize for unity filter gain */
304                 for( i = 0; i < i_nb_channels; i++ )
305                 {
306                     *(p_out+i) *= d_old_scale_factor;
307                 }
308 #endif
309
310                 /* Sanity check */
311                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
312                     <= (unsigned int)i_out+1 )
313                 {
314                     p_out += i_nb_channels;
315                     i_out++;
316                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
317                     break;
318                 }
319             }
320             else
321             {
322                 /* Perform left-wing inner product */
323                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
324                                SMALL_FILTER_NWING, p_in, p_out,
325                                p_filter->p_sys->i_remainder,
326                                p_filter->output.i_rate, p_filter->input.i_rate,
327                                -1, i_nb_channels );
328                 /* Perform right-wing inner product */
329                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
330                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
331                                p_filter->output.i_rate -
332                                p_filter->p_sys->i_remainder,
333                                p_filter->output.i_rate, p_filter->input.i_rate,
334                                1, i_nb_channels );
335             }
336
337             p_out += i_nb_channels;
338             i_out++;
339
340             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
341         }
342
343         p_in += i_nb_channels;
344         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
345     }
346
347     /* Apply the new rate for the rest of the samples */
348     if( i_in < i_in_nb - i_filter_wing )
349     {
350         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
351         p_filter->p_sys->d_old_factor = d_factor;
352         p_filter->p_sys->i_old_wing   = i_filter_wing;
353     }
354     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
355     {
356         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
357         {
358
359             if( d_factor >= 1 )
360             {
361                 /* FilterFloatUP() is faster if we can use it */
362
363                 /* Perform left-wing inner product */
364                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
365                                SMALL_FILTER_NWING, p_in, p_out,
366                                p_filter->p_sys->i_remainder,
367                                p_filter->output.i_rate,
368                                -1, i_nb_channels );
369
370                 /* Perform right-wing inner product */
371                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
372                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
373                                p_filter->output.i_rate -
374                                p_filter->p_sys->i_remainder,
375                                p_filter->output.i_rate,
376                                1, i_nb_channels );
377
378 #if 0
379                 /* Normalize for unity filter gain */
380                 for( i = 0; i < i_nb_channels; i++ )
381                 {
382                     *(p_out+i) *= d_old_scale_factor;
383                 }
384 #endif
385                 /* Sanity check */
386                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
387                     <= (unsigned int)i_out+1 )
388                 {
389                     p_out += i_nb_channels;
390                     i_out++;
391                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
392                     break;
393                 }
394             }
395             else
396             {
397                 /* Perform left-wing inner product */
398                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
399                                SMALL_FILTER_NWING, p_in, p_out,
400                                p_filter->p_sys->i_remainder,
401                                p_filter->output.i_rate, p_filter->input.i_rate,
402                                -1, i_nb_channels );
403                 /* Perform right-wing inner product */
404                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
405                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
406                                p_filter->output.i_rate -
407                                p_filter->p_sys->i_remainder,
408                                p_filter->output.i_rate, p_filter->input.i_rate,
409                                1, i_nb_channels );
410             }
411
412             p_out += i_nb_channels;
413             i_out++;
414
415             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
416         }
417
418         p_in += i_nb_channels;
419         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
420     }
421
422     /* Buffer i_filter_wing * 2 samples for next time */
423     if( p_filter->p_sys->i_old_wing )
424     {
425         memcpy( p_filter->p_sys->p_buf,
426                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
427                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
428                 p_filter->input.i_bytes_per_frame );
429     }
430
431 #if 0
432     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
433              i_out * p_filter->input.i_bytes_per_frame );
434 #endif
435
436     /* Free the temp buffer */
437 #ifndef HAVE_ALLOCA
438     free( p_in_orig );
439 #endif
440
441     /* Finalize aout buffer */
442     p_out_buf->i_nb_samples = i_out;
443     p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
444     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
445                                               p_out_buf->i_nb_samples );
446
447     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
448         i_nb_channels * sizeof(int32_t);
449
450 }
451
452 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
453                     float *p_out, uint32_t ui_remainder,
454                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
455 {
456     float *Hp, *Hdp, *End;
457     float t, temp;
458     uint32_t ui_linear_remainder;
459     int i;
460
461     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
462     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
463
464     End = &Imp[Nwing];
465
466     ui_linear_remainder = (ui_remainder<<Nhc) -
467                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
468
469     if (Inc == 1)               /* If doing right wing...              */
470     {                           /* ...drop extra coeff, so when Ph is  */
471         End--;                  /*    0.5, we don't do too many mult's */
472         if (ui_remainder == 0)  /* If the phase is zero...           */
473         {                       /* ...then we've already skipped the */
474             Hp += Npc;          /*    first sample, so we must also  */
475             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
476         }
477     }
478
479     while (Hp < End) {
480         t = *Hp;                /* Get filter coeff */
481                                 /* t is now interp'd filter coeff */
482         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
483         for( i = 0; i < i_nb_channels; i++ )
484         {
485             temp = t;
486             temp *= *(p_in+i);  /* Mult coeff by input sample */
487             *(p_out+i) += temp; /* The filter output */
488         }
489         Hdp += Npc;             /* Filter coeff differences step */
490         Hp += Npc;              /* Filter coeff step */
491         p_in += (Inc * i_nb_channels); /* Input signal step */
492     }
493 }
494
495 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
496                     float *p_out, uint32_t ui_remainder,
497                     uint32_t ui_output_rate, uint32_t ui_input_rate,
498                     int16_t Inc, int i_nb_channels )
499 {
500     float *Hp, *Hdp, *End;
501     float t, temp;
502     uint32_t ui_linear_remainder;
503     int i, ui_counter = 0;
504
505     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
506     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
507
508     End = &Imp[Nwing];
509
510     if (Inc == 1)               /* If doing right wing...              */
511     {                           /* ...drop extra coeff, so when Ph is  */
512         End--;                  /*    0.5, we don't do too many mult's */
513         if (ui_remainder == 0)  /* If the phase is zero...           */
514         {                       /* ...then we've already skipped the */
515             Hp = Imp +          /* first sample, so we must also  */
516                   (ui_output_rate << Nhc) / ui_input_rate;
517             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
518                   (ui_output_rate << Nhc) / ui_input_rate;
519             ui_counter++;
520         }
521     }
522
523     while (Hp < End) {
524         t = *Hp;                /* Get filter coeff */
525                                 /* t is now interp'd filter coeff */
526         ui_linear_remainder =
527           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
528           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
529           ui_input_rate * ui_input_rate;
530         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
531         for( i = 0; i < i_nb_channels; i++ )
532         {
533             temp = t;
534             temp *= *(p_in+i);  /* Mult coeff by input sample */
535             *(p_out+i) += temp; /* The filter output */
536         }
537
538         ui_counter++;
539
540         /* Filter coeff step */
541         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
542                     / ui_input_rate;
543         /* Filter coeff differences step */
544         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
545                      / ui_input_rate;
546
547         p_in += (Inc * i_nb_channels); /* Input signal step */
548     }
549 }