]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
* modules/audio_filter/resampler/bandlimited.c: another bug-fix ( should be the last...
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : bandlimited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002 VideoLAN
5  * $Id: bandlimited.c,v 1.5 2003/03/05 22:37:05 gbazin Exp $
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the bandlimited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35 #include <stdlib.h>                                      /* malloc(), free() */
36 #include <string.h>
37
38 #include <vlc/vlc.h>
39 #include "audio_output.h"
40 #include "aout_internal.h"
41 #include "bandlimited.h"
42
43 /*****************************************************************************
44  * Local prototypes
45  *****************************************************************************/
46 static int  Create    ( vlc_object_t * );
47 static void Close     ( vlc_object_t * );
48 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
49                         aout_buffer_t * );
50
51 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
52                            float *f_in, float *f_out, uint32_t ui_remainder,
53                            uint32_t ui_output_rate, int16_t Inc,
54                            int i_nb_channels );
55
56 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
57                            float *f_in, float *f_out, uint32_t ui_remainder,
58                            uint32_t ui_output_rate, uint32_t ui_input_rate,
59                            int16_t Inc, int i_nb_channels );
60
61 /*****************************************************************************
62  * Local structures
63  *****************************************************************************/
64 struct aout_filter_sys_t
65 {
66     int32_t *p_buf;                        /* this filter introduces a delay */
67     int i_buf_size;
68
69     int i_old_rate;
70     double d_old_factor;
71     int i_old_wing;
72
73     unsigned int i_remainder;                /* remainder of previous sample */
74
75     audio_date_t end_date;
76 };
77
78 /*****************************************************************************
79  * Module descriptor
80  *****************************************************************************/
81 vlc_module_begin();
82     set_description( _("audio filter for bandlimited interpolation resampling") );
83     set_capability( "audio filter", 20 );
84     set_callbacks( Create, Close );
85 vlc_module_end();
86
87 /*****************************************************************************
88  * Create: allocate linear resampler
89  *****************************************************************************/
90 static int Create( vlc_object_t *p_this )
91 {
92     aout_filter_t * p_filter = (aout_filter_t *)p_this;
93     double d_factor;
94     int i_filter_wing;
95
96     if ( p_filter->input.i_rate == p_filter->output.i_rate
97           || p_filter->input.i_format != p_filter->output.i_format
98           || p_filter->input.i_physical_channels
99               != p_filter->output.i_physical_channels
100           || p_filter->input.i_original_channels
101               != p_filter->output.i_original_channels
102           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
103     {
104         return VLC_EGENERIC;
105     }
106
107     /* Allocate the memory needed to store the module's structure */
108     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
109     if( p_filter->p_sys == NULL )
110     {
111         msg_Err( p_filter, "out of memory" );
112         return VLC_ENOMEM;
113     }
114
115     /* Calculate worst case for the length of the filter wing */
116     d_factor = (double)p_filter->output.i_rate
117                         / p_filter->input.i_rate;
118     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
119                       * __MAX(1.0, 1.0/d_factor) + 10;
120     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
121         sizeof(int32_t) * 2 * i_filter_wing;
122
123     /* Allocate enough memory to buffer previous samples */
124     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
125     if( p_filter->p_sys->p_buf == NULL )
126     {
127         msg_Err( p_filter, "out of memory" );
128         return VLC_ENOMEM;
129     }
130
131     p_filter->p_sys->i_old_wing = 0;
132     p_filter->pf_do_work = DoWork;
133
134     /* We don't want a new buffer to be created because we're not sure we'll
135      * actually need to resample anything. */
136     p_filter->b_in_place = VLC_TRUE;
137
138     return VLC_SUCCESS;
139 }
140
141 /*****************************************************************************
142  * Close: free our resources
143  *****************************************************************************/
144 static void Close( vlc_object_t * p_this )
145 {
146     aout_filter_t * p_filter = (aout_filter_t *)p_this;
147     free( p_filter->p_sys->p_buf );
148     free( p_filter->p_sys );
149 }
150
151 /*****************************************************************************
152  * DoWork: convert a buffer
153  *****************************************************************************/
154 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
155                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
156 {
157     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
158
159     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
160     int i_in_nb = p_in_buf->i_nb_samples;
161     int i_in, i_out = 0;
162     double d_factor, d_scale_factor, d_old_scale_factor;
163     int i_filter_wing;
164 #if 0
165     int i;
166 #endif
167
168     /* Check if we really need to run the resampler */
169     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
170     {
171         if( //p_filter->b_continuity && /* What difference does it make ? :) */
172             p_filter->p_sys->i_old_wing &&
173             p_in_buf->i_size >=
174               p_in_buf->i_nb_bytes + p_filter->p_sys->i_old_wing *
175               p_filter->input.i_bytes_per_frame )
176         {
177             /* output the whole thing with the samples from last time */
178             memmove( ((float *)(p_in_buf->p_buffer)) +
179                      i_nb_channels * p_filter->p_sys->i_old_wing,
180                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
181             memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
182                     i_nb_channels * p_filter->p_sys->i_old_wing,
183                     p_filter->p_sys->i_old_wing *
184                     p_filter->input.i_bytes_per_frame );
185
186             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
187                 p_filter->p_sys->i_old_wing;
188
189             p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
190             p_out_buf->end_date =
191                 aout_DateIncrement( &p_filter->p_sys->end_date,
192                                     p_out_buf->i_nb_samples );
193
194             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
195                 p_filter->input.i_bytes_per_frame;
196         }
197         p_filter->b_continuity = VLC_FALSE;
198         p_filter->p_sys->i_old_wing = 0;
199         return;
200     }
201
202     if( !p_filter->b_continuity )
203     {
204         /* Continuity in sound samples has been broken, we'd better reset
205          * everything. */
206         p_filter->b_continuity = VLC_TRUE;
207         p_filter->p_sys->i_remainder = 0;
208         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
209         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
210         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
211         p_filter->p_sys->d_old_factor = 1;
212         p_filter->p_sys->i_old_wing   = 0;
213     }
214
215 #if 0
216     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
217              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
218              p_filter->p_sys->i_old_wing, i_in_nb );
219 #endif
220
221     /* Prepare the source buffer */
222     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
223 #ifdef HAVE_ALLOCA
224     p_in = p_in_orig = (float *)alloca( i_in_nb *
225                                         p_filter->input.i_bytes_per_frame );
226 #else
227     p_in = p_in_orig = (float *)malloc( i_in_nb *
228                                         p_filter->input.i_bytes_per_frame );
229 #endif
230     if( p_in == NULL )
231     {
232         return;
233     }
234
235     /* Copy all our samples in p_in */
236     if( p_filter->p_sys->i_old_wing )
237     {
238         p_aout->p_vlc->pf_memcpy( p_in, p_filter->p_sys->p_buf,
239                                   p_filter->p_sys->i_old_wing * 2 *
240                                   p_filter->input.i_bytes_per_frame );
241     }
242     p_aout->p_vlc->pf_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 *
243                               i_nb_channels, p_in_buf->p_buffer,
244                               p_in_buf->i_nb_samples *
245                               p_filter->input.i_bytes_per_frame );
246
247     /* Make sure the output buffer is reset */
248     memset( p_out, 0, p_out_buf->i_size );
249
250     /* Calculate the new length of the filter wing */
251     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
252     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
253
254     /* Account for increased filter gain when using factors less than 1 */
255     d_old_scale_factor = SMALL_FILTER_SCALE *
256         p_filter->p_sys->d_old_factor + 0.5;
257     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
258
259     /* Apply the old rate until we have enough samples for the new one */
260     i_in = p_filter->p_sys->i_old_wing;
261     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
262     for( ; i_in < i_filter_wing &&
263            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
264     {
265         if( p_filter->p_sys->d_old_factor == 1 )
266         {
267             /* Just copy the samples */
268             memcpy( p_out, p_in, 
269                     p_filter->input.i_bytes_per_frame );          
270             p_in += i_nb_channels;
271             p_out += i_nb_channels;
272             i_out++;
273             continue;
274         }
275
276         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
277         {
278
279             if( p_filter->p_sys->d_old_factor >= 1 )
280             {
281                 /* FilterFloatUP() is faster if we can use it */
282
283                 /* Perform left-wing inner product */
284                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
285                                SMALL_FILTER_NWING, p_in, p_out,
286                                p_filter->p_sys->i_remainder,
287                                p_filter->output.i_rate,
288                                -1, i_nb_channels );
289                 /* Perform right-wing inner product */
290                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
291                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
292                                p_filter->output.i_rate -
293                                p_filter->p_sys->i_remainder,
294                                p_filter->output.i_rate,
295                                1, i_nb_channels );
296
297 #if 0
298                 /* Normalize for unity filter gain */
299                 for( i = 0; i < i_nb_channels; i++ )
300                 {
301                     *(p_out+i) *= d_old_scale_factor;
302                 }
303 #endif
304
305                 /* Sanity check */
306                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
307                     <= (unsigned int)i_out+1 )
308                 {
309                     p_out += i_nb_channels;
310                     i_out++;
311                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
312                     break;
313                 }
314             }
315             else
316             {
317                 /* Perform left-wing inner product */
318                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
319                                SMALL_FILTER_NWING, p_in, p_out,
320                                p_filter->p_sys->i_remainder,
321                                p_filter->output.i_rate, p_filter->input.i_rate,
322                                -1, i_nb_channels );
323                 /* Perform right-wing inner product */
324                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
325                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
326                                p_filter->output.i_rate -
327                                p_filter->p_sys->i_remainder,
328                                p_filter->output.i_rate, p_filter->input.i_rate,
329                                1, i_nb_channels );
330             }
331
332             p_out += i_nb_channels;
333             i_out++;
334
335             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
336         }
337
338         p_in += i_nb_channels;
339         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
340     }
341
342     /* Apply the new rate for the rest of the samples */
343     if( i_in < i_in_nb - i_filter_wing )
344     {
345         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
346         p_filter->p_sys->d_old_factor = d_factor;
347         p_filter->p_sys->i_old_wing   = i_filter_wing;
348     }
349     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
350     {
351         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
352         {
353
354             if( d_factor >= 1 )
355             {
356                 /* FilterFloatUP() is faster if we can use it */
357
358                 /* Perform left-wing inner product */
359                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
360                                SMALL_FILTER_NWING, p_in, p_out,
361                                p_filter->p_sys->i_remainder,
362                                p_filter->output.i_rate,
363                                -1, i_nb_channels );
364
365                 /* Perform right-wing inner product */
366                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
367                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
368                                p_filter->output.i_rate -
369                                p_filter->p_sys->i_remainder,
370                                p_filter->output.i_rate,
371                                1, i_nb_channels );
372
373 #if 0
374                 /* Normalize for unity filter gain */
375                 for( i = 0; i < i_nb_channels; i++ )
376                 {
377                     *(p_out+i) *= d_old_scale_factor;
378                 }
379 #endif
380                 /* Sanity check */
381                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
382                     <= (unsigned int)i_out+1 )
383                 {
384                     p_out += i_nb_channels;
385                     i_out++;
386                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
387                     break;
388                 }
389             }
390             else
391             {
392                 /* Perform left-wing inner product */
393                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
394                                SMALL_FILTER_NWING, p_in, p_out,
395                                p_filter->p_sys->i_remainder,
396                                p_filter->output.i_rate, p_filter->input.i_rate,
397                                -1, i_nb_channels );
398                 /* Perform right-wing inner product */
399                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
400                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
401                                p_filter->output.i_rate -
402                                p_filter->p_sys->i_remainder,
403                                p_filter->output.i_rate, p_filter->input.i_rate,
404                                1, i_nb_channels );
405             }
406
407             p_out += i_nb_channels;
408             i_out++;
409
410             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
411         }
412
413         p_in += i_nb_channels;
414         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
415     }
416
417     /* Buffer i_filter_wing * 2 samples for next time */
418     if( p_filter->p_sys->i_old_wing )
419     {
420         memcpy( p_filter->p_sys->p_buf,
421                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
422                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
423                 p_filter->input.i_bytes_per_frame );
424     }
425
426 #if 0
427     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
428              i_out * p_filter->input.i_bytes_per_frame );
429 #endif
430
431     /* Free the temp buffer */
432 #ifndef HAVE_ALLOCA
433     free( p_in_orig );
434 #endif
435
436     /* Finalize aout buffer */
437     p_out_buf->i_nb_samples = i_out;
438     p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
439     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
440                                               p_out_buf->i_nb_samples );
441
442     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
443         i_nb_channels * sizeof(int32_t);
444
445 }
446
447 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
448                     float *p_out, uint32_t ui_remainder,
449                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
450 {
451     float *Hp, *Hdp, *End;
452     float t, temp;
453     uint32_t ui_linear_remainder;
454     int i;
455
456     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
457     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
458
459     End = &Imp[Nwing];
460
461     ui_linear_remainder = (ui_remainder<<Nhc) -
462                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
463
464     if (Inc == 1)               /* If doing right wing...              */
465     {                           /* ...drop extra coeff, so when Ph is  */
466         End--;                  /*    0.5, we don't do too many mult's */
467         if (ui_remainder == 0)  /* If the phase is zero...           */
468         {                       /* ...then we've already skipped the */
469             Hp += Npc;          /*    first sample, so we must also  */
470             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
471         }
472     }
473
474     while (Hp < End) {
475         t = *Hp;                /* Get filter coeff */
476                                 /* t is now interp'd filter coeff */
477         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
478         for( i = 0; i < i_nb_channels; i++ )
479         {
480             temp = t;
481             temp *= *(p_in+i);  /* Mult coeff by input sample */
482             *(p_out+i) += temp; /* The filter output */
483         }
484         Hdp += Npc;             /* Filter coeff differences step */
485         Hp += Npc;              /* Filter coeff step */
486         p_in += (Inc * i_nb_channels); /* Input signal step */
487     }
488 }
489
490 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
491                     float *p_out, uint32_t ui_remainder,
492                     uint32_t ui_output_rate, uint32_t ui_input_rate,
493                     int16_t Inc, int i_nb_channels )
494 {
495     float *Hp, *Hdp, *End;
496     float t, temp;
497     uint32_t ui_linear_remainder;
498     int i, ui_counter = 0;
499
500     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
501     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
502
503     End = &Imp[Nwing];
504
505     if (Inc == 1)               /* If doing right wing...              */
506     {                           /* ...drop extra coeff, so when Ph is  */
507         End--;                  /*    0.5, we don't do too many mult's */
508         if (ui_remainder == 0)  /* If the phase is zero...           */
509         {                       /* ...then we've already skipped the */
510             Hp = Imp +          /* first sample, so we must also  */
511                   (ui_output_rate << Nhc) / ui_input_rate;
512             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
513                   (ui_output_rate << Nhc) / ui_input_rate;
514             ui_counter++;
515         }
516     }
517
518     while (Hp < End) {
519         t = *Hp;                /* Get filter coeff */
520                                 /* t is now interp'd filter coeff */
521         ui_linear_remainder =
522           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
523           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
524           ui_input_rate * ui_input_rate;
525         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
526         for( i = 0; i < i_nb_channels; i++ )
527         {
528             temp = t;
529             temp *= *(p_in+i);  /* Mult coeff by input sample */
530             *(p_out+i) += temp; /* The filter output */
531         }
532
533         ui_counter++;
534
535         /* Filter coeff step */
536         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
537                     / ui_input_rate;
538         /* Filter coeff differences step */
539         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
540                      / ui_input_rate;
541
542         p_in += (Inc * i_nb_channels); /* Input signal step */
543     }
544 }