]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
Remove stdlib.h
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002, 2006 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35 #include <string.h>
36
37 #include <vlc/vlc.h>
38 #include <vlc_aout.h>
39
40 #include "bandlimited.h"
41
42 /*****************************************************************************
43  * Local prototypes
44  *****************************************************************************/
45 static int  Create    ( vlc_object_t * );
46 static void Close     ( vlc_object_t * );
47 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
48                         aout_buffer_t * );
49
50 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
51                            float *f_in, float *f_out, uint32_t ui_remainder,
52                            uint32_t ui_output_rate, int16_t Inc,
53                            int i_nb_channels );
54
55 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
56                            float *f_in, float *f_out, uint32_t ui_remainder,
57                            uint32_t ui_output_rate, uint32_t ui_input_rate,
58                            int16_t Inc, int i_nb_channels );
59
60 /*****************************************************************************
61  * Local structures
62  *****************************************************************************/
63 struct aout_filter_sys_t
64 {
65     int32_t *p_buf;                        /* this filter introduces a delay */
66     int i_buf_size;
67
68     int i_old_rate;
69     double d_old_factor;
70     int i_old_wing;
71
72     unsigned int i_remainder;                /* remainder of previous sample */
73
74     audio_date_t end_date;
75 };
76
77 /*****************************************************************************
78  * Module descriptor
79  *****************************************************************************/
80 vlc_module_begin();
81     set_category( CAT_AUDIO );
82     set_subcategory( SUBCAT_AUDIO_MISC );
83     set_description( _("Audio filter for band-limited interpolation resampling") );
84     set_capability( "audio filter", 20 );
85     set_callbacks( Create, Close );
86 vlc_module_end();
87
88 /*****************************************************************************
89  * Create: allocate linear resampler
90  *****************************************************************************/
91 static int Create( vlc_object_t *p_this )
92 {
93     aout_filter_t * p_filter = (aout_filter_t *)p_this;
94     double d_factor;
95     int i_filter_wing;
96
97     if ( p_filter->input.i_rate == p_filter->output.i_rate
98           || p_filter->input.i_format != p_filter->output.i_format
99           || p_filter->input.i_physical_channels
100               != p_filter->output.i_physical_channels
101           || p_filter->input.i_original_channels
102               != p_filter->output.i_original_channels
103           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
104     {
105         return VLC_EGENERIC;
106     }
107
108 #if !defined( __APPLE__ )
109     if( !config_GetInt( p_this, "hq-resampling" ) )
110     {
111         return VLC_EGENERIC;
112     }
113 #endif
114
115     /* Allocate the memory needed to store the module's structure */
116     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
117     if( p_filter->p_sys == NULL )
118     {
119         msg_Err( p_filter, "out of memory" );
120         return VLC_ENOMEM;
121     }
122
123     /* Calculate worst case for the length of the filter wing */
124     d_factor = (double)p_filter->output.i_rate
125                         / p_filter->input.i_rate / AOUT_MAX_INPUT_RATE;
126     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
127                       * __MAX(1.0, 1.0/d_factor) + 10;
128     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
129         sizeof(int32_t) * 2 * i_filter_wing;
130
131     /* Allocate enough memory to buffer previous samples */
132     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
133     if( p_filter->p_sys->p_buf == NULL )
134     {
135         msg_Err( p_filter, "out of memory" );
136         return VLC_ENOMEM;
137     }
138
139     p_filter->p_sys->i_old_wing = 0;
140     p_filter->pf_do_work = DoWork;
141
142     /* We don't want a new buffer to be created because we're not sure we'll
143      * actually need to resample anything. */
144     p_filter->b_in_place = VLC_TRUE;
145
146     return VLC_SUCCESS;
147 }
148
149 /*****************************************************************************
150  * Close: free our resources
151  *****************************************************************************/
152 static void Close( vlc_object_t * p_this )
153 {
154     aout_filter_t * p_filter = (aout_filter_t *)p_this;
155     free( p_filter->p_sys->p_buf );
156     free( p_filter->p_sys );
157 }
158
159 /*****************************************************************************
160  * DoWork: convert a buffer
161  *****************************************************************************/
162 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
163                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
164 {
165     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
166
167     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
168     int i_in_nb = p_in_buf->i_nb_samples;
169     int i_in, i_out = 0;
170     double d_factor, d_scale_factor, d_old_scale_factor;
171     int i_filter_wing;
172 #if 0
173     int i;
174 #endif
175
176     /* Check if we really need to run the resampler */
177     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
178     {
179         if( /*p_filter->b_continuity && /--* What difference does it make ? :) */
180             p_filter->p_sys->i_old_wing &&
181             p_in_buf->i_size >=
182               p_in_buf->i_nb_bytes + p_filter->p_sys->i_old_wing *
183               p_filter->input.i_bytes_per_frame )
184         {
185             /* output the whole thing with the samples from last time */
186             memmove( ((float *)(p_in_buf->p_buffer)) +
187                      i_nb_channels * p_filter->p_sys->i_old_wing,
188                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
189             memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
190                     i_nb_channels * p_filter->p_sys->i_old_wing,
191                     p_filter->p_sys->i_old_wing *
192                     p_filter->input.i_bytes_per_frame );
193
194             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
195                 p_filter->p_sys->i_old_wing;
196
197             p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
198             p_out_buf->end_date =
199                 aout_DateIncrement( &p_filter->p_sys->end_date,
200                                     p_out_buf->i_nb_samples );
201
202             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
203                 p_filter->input.i_bytes_per_frame;
204         }
205         p_filter->b_continuity = VLC_FALSE;
206         p_filter->p_sys->i_old_wing = 0;
207         return;
208     }
209
210     if( !p_filter->b_continuity )
211     {
212         /* Continuity in sound samples has been broken, we'd better reset
213          * everything. */
214         p_filter->b_continuity = VLC_TRUE;
215         p_filter->p_sys->i_remainder = 0;
216         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
217         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
218         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
219         p_filter->p_sys->d_old_factor = 1;
220         p_filter->p_sys->i_old_wing   = 0;
221     }
222
223 #if 0
224     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
225              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
226              p_filter->p_sys->i_old_wing, i_in_nb );
227 #endif
228
229     /* Prepare the source buffer */
230     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
231 #ifdef HAVE_ALLOCA
232     p_in = p_in_orig = (float *)alloca( i_in_nb *
233                                         p_filter->input.i_bytes_per_frame );
234 #else
235     p_in = p_in_orig = (float *)malloc( i_in_nb *
236                                         p_filter->input.i_bytes_per_frame );
237 #endif
238     if( p_in == NULL )
239     {
240         return;
241     }
242
243     /* Copy all our samples in p_in */
244     if( p_filter->p_sys->i_old_wing )
245     {
246         p_aout->p_libvlc->pf_memcpy( p_in, p_filter->p_sys->p_buf,
247                                   p_filter->p_sys->i_old_wing * 2 *
248                                   p_filter->input.i_bytes_per_frame );
249     }
250     p_aout->p_libvlc->pf_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 *
251                               i_nb_channels, p_in_buf->p_buffer,
252                               p_in_buf->i_nb_samples *
253                               p_filter->input.i_bytes_per_frame );
254
255     /* Make sure the output buffer is reset */
256     memset( p_out, 0, p_out_buf->i_size );
257
258     /* Calculate the new length of the filter wing */
259     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
260     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
261
262     /* Account for increased filter gain when using factors less than 1 */
263     d_old_scale_factor = SMALL_FILTER_SCALE *
264         p_filter->p_sys->d_old_factor + 0.5;
265     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
266
267     /* Apply the old rate until we have enough samples for the new one */
268     i_in = p_filter->p_sys->i_old_wing;
269     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
270     for( ; i_in < i_filter_wing &&
271            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
272     {
273         if( p_filter->p_sys->d_old_factor == 1 )
274         {
275             /* Just copy the samples */
276             memcpy( p_out, p_in, 
277                     p_filter->input.i_bytes_per_frame );
278             p_in += i_nb_channels;
279             p_out += i_nb_channels;
280             i_out++;
281             continue;
282         }
283
284         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
285         {
286
287             if( p_filter->p_sys->d_old_factor >= 1 )
288             {
289                 /* FilterFloatUP() is faster if we can use it */
290
291                 /* Perform left-wing inner product */
292                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
293                                SMALL_FILTER_NWING, p_in, p_out,
294                                p_filter->p_sys->i_remainder,
295                                p_filter->output.i_rate,
296                                -1, i_nb_channels );
297                 /* Perform right-wing inner product */
298                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
299                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
300                                p_filter->output.i_rate -
301                                p_filter->p_sys->i_remainder,
302                                p_filter->output.i_rate,
303                                1, i_nb_channels );
304
305 #if 0
306                 /* Normalize for unity filter gain */
307                 for( i = 0; i < i_nb_channels; i++ )
308                 {
309                     *(p_out+i) *= d_old_scale_factor;
310                 }
311 #endif
312
313                 /* Sanity check */
314                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
315                     <= (unsigned int)i_out+1 )
316                 {
317                     p_out += i_nb_channels;
318                     i_out++;
319                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
320                     break;
321                 }
322             }
323             else
324             {
325                 /* Perform left-wing inner product */
326                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
327                                SMALL_FILTER_NWING, p_in, p_out,
328                                p_filter->p_sys->i_remainder,
329                                p_filter->output.i_rate, p_filter->input.i_rate,
330                                -1, i_nb_channels );
331                 /* Perform right-wing inner product */
332                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
333                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
334                                p_filter->output.i_rate -
335                                p_filter->p_sys->i_remainder,
336                                p_filter->output.i_rate, p_filter->input.i_rate,
337                                1, i_nb_channels );
338             }
339
340             p_out += i_nb_channels;
341             i_out++;
342
343             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
344         }
345
346         p_in += i_nb_channels;
347         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
348     }
349
350     /* Apply the new rate for the rest of the samples */
351     if( i_in < i_in_nb - i_filter_wing )
352     {
353         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
354         p_filter->p_sys->d_old_factor = d_factor;
355         p_filter->p_sys->i_old_wing   = i_filter_wing;
356     }
357     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
358     {
359         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
360         {
361
362             if( d_factor >= 1 )
363             {
364                 /* FilterFloatUP() is faster if we can use it */
365
366                 /* Perform left-wing inner product */
367                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
368                                SMALL_FILTER_NWING, p_in, p_out,
369                                p_filter->p_sys->i_remainder,
370                                p_filter->output.i_rate,
371                                -1, i_nb_channels );
372
373                 /* Perform right-wing inner product */
374                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
375                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
376                                p_filter->output.i_rate -
377                                p_filter->p_sys->i_remainder,
378                                p_filter->output.i_rate,
379                                1, i_nb_channels );
380
381 #if 0
382                 /* Normalize for unity filter gain */
383                 for( i = 0; i < i_nb_channels; i++ )
384                 {
385                     *(p_out+i) *= d_old_scale_factor;
386                 }
387 #endif
388                 /* Sanity check */
389                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
390                     <= (unsigned int)i_out+1 )
391                 {
392                     p_out += i_nb_channels;
393                     i_out++;
394                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
395                     break;
396                 }
397             }
398             else
399             {
400                 /* Perform left-wing inner product */
401                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
402                                SMALL_FILTER_NWING, p_in, p_out,
403                                p_filter->p_sys->i_remainder,
404                                p_filter->output.i_rate, p_filter->input.i_rate,
405                                -1, i_nb_channels );
406                 /* Perform right-wing inner product */
407                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
408                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
409                                p_filter->output.i_rate -
410                                p_filter->p_sys->i_remainder,
411                                p_filter->output.i_rate, p_filter->input.i_rate,
412                                1, i_nb_channels );
413             }
414
415             p_out += i_nb_channels;
416             i_out++;
417
418             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
419         }
420
421         p_in += i_nb_channels;
422         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
423     }
424
425     /* Buffer i_filter_wing * 2 samples for next time */
426     if( p_filter->p_sys->i_old_wing )
427     {
428         memcpy( p_filter->p_sys->p_buf,
429                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
430                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
431                 p_filter->input.i_bytes_per_frame );
432     }
433
434 #if 0
435     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
436              i_out * p_filter->input.i_bytes_per_frame );
437 #endif
438
439     /* Free the temp buffer */
440 #ifndef HAVE_ALLOCA
441     free( p_in_orig );
442 #endif
443
444     /* Finalize aout buffer */
445     p_out_buf->i_nb_samples = i_out;
446     p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
447     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
448                                               p_out_buf->i_nb_samples );
449
450     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
451         i_nb_channels * sizeof(int32_t);
452
453 }
454
455 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
456                     float *p_out, uint32_t ui_remainder,
457                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
458 {
459     float *Hp, *Hdp, *End;
460     float t, temp;
461     uint32_t ui_linear_remainder;
462     int i;
463
464     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
465     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
466
467     End = &Imp[Nwing];
468
469     ui_linear_remainder = (ui_remainder<<Nhc) -
470                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
471
472     if (Inc == 1)               /* If doing right wing...              */
473     {                           /* ...drop extra coeff, so when Ph is  */
474         End--;                  /*    0.5, we don't do too many mult's */
475         if (ui_remainder == 0)  /* If the phase is zero...           */
476         {                       /* ...then we've already skipped the */
477             Hp += Npc;          /*    first sample, so we must also  */
478             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
479         }
480     }
481
482     while (Hp < End) {
483         t = *Hp;                /* Get filter coeff */
484                                 /* t is now interp'd filter coeff */
485         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
486         for( i = 0; i < i_nb_channels; i++ )
487         {
488             temp = t;
489             temp *= *(p_in+i);  /* Mult coeff by input sample */
490             *(p_out+i) += temp; /* The filter output */
491         }
492         Hdp += Npc;             /* Filter coeff differences step */
493         Hp += Npc;              /* Filter coeff step */
494         p_in += (Inc * i_nb_channels); /* Input signal step */
495     }
496 }
497
498 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
499                     float *p_out, uint32_t ui_remainder,
500                     uint32_t ui_output_rate, uint32_t ui_input_rate,
501                     int16_t Inc, int i_nb_channels )
502 {
503     float *Hp, *Hdp, *End;
504     float t, temp;
505     uint32_t ui_linear_remainder;
506     int i, ui_counter = 0;
507
508     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
509     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
510
511     End = &Imp[Nwing];
512
513     if (Inc == 1)               /* If doing right wing...              */
514     {                           /* ...drop extra coeff, so when Ph is  */
515         End--;                  /*    0.5, we don't do too many mult's */
516         if (ui_remainder == 0)  /* If the phase is zero...           */
517         {                       /* ...then we've already skipped the */
518             Hp = Imp +          /* first sample, so we must also  */
519                   (ui_output_rate << Nhc) / ui_input_rate;
520             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
521                   (ui_output_rate << Nhc) / ui_input_rate;
522             ui_counter++;
523         }
524     }
525
526     while (Hp < End) {
527         t = *Hp;                /* Get filter coeff */
528                                 /* t is now interp'd filter coeff */
529         ui_linear_remainder =
530           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
531           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
532           ui_input_rate * ui_input_rate;
533         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
534         for( i = 0; i < i_nb_channels; i++ )
535         {
536             temp = t;
537             temp *= *(p_in+i);  /* Mult coeff by input sample */
538             *(p_out+i) += temp; /* The filter output */
539         }
540
541         ui_counter++;
542
543         /* Filter coeff step */
544         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
545                     / ui_input_rate;
546         /* Filter coeff differences step */
547         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
548                      / ui_input_rate;
549
550         p_in += (Inc * i_nb_channels); /* Input signal step */
551     }
552 }