]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
* Don't use the bandlimited resampler for downsampling (skew resampling for instance...
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : band-limited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002 the VideoLAN team
5  * $Id$
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the band-limited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35 #include <stdlib.h>                                      /* malloc(), free() */
36 #include <string.h>
37
38 #include <vlc/vlc.h>
39 #include "audio_output.h"
40 #include "aout_internal.h"
41 #include "bandlimited.h"
42
43 /*****************************************************************************
44  * Local prototypes
45  *****************************************************************************/
46 static int  Create    ( vlc_object_t * );
47 static void Close     ( vlc_object_t * );
48 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
49                         aout_buffer_t * );
50
51 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
52                            float *f_in, float *f_out, uint32_t ui_remainder,
53                            uint32_t ui_output_rate, int16_t Inc,
54                            int i_nb_channels );
55
56 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
57                            float *f_in, float *f_out, uint32_t ui_remainder,
58                            uint32_t ui_output_rate, uint32_t ui_input_rate,
59                            int16_t Inc, int i_nb_channels );
60
61 /*****************************************************************************
62  * Local structures
63  *****************************************************************************/
64 struct aout_filter_sys_t
65 {
66     int32_t *p_buf;                        /* this filter introduces a delay */
67     int i_buf_size;
68
69     int i_old_rate;
70     double d_old_factor;
71     int i_old_wing;
72
73     unsigned int i_remainder;                /* remainder of previous sample */
74
75     audio_date_t end_date;
76 };
77
78 /*****************************************************************************
79  * Module descriptor
80  *****************************************************************************/
81 vlc_module_begin();
82     set_category( CAT_AUDIO );
83     set_subcategory( SUBCAT_AUDIO_MISC );
84     set_description( _("audio filter for band-limited interpolation resampling") );
85     set_capability( "audio filter", 20 );
86     set_callbacks( Create, Close );
87 vlc_module_end();
88
89 /*****************************************************************************
90  * Create: allocate linear resampler
91  *****************************************************************************/
92 static int Create( vlc_object_t *p_this )
93 {
94     aout_filter_t * p_filter = (aout_filter_t *)p_this;
95     double d_factor;
96     int i_filter_wing;
97
98     if ( p_filter->input.i_rate == p_filter->output.i_rate
99           || p_filter->input.i_format != p_filter->output.i_format
100           || p_filter->input.i_physical_channels
101               != p_filter->output.i_physical_channels
102           || p_filter->input.i_original_channels
103               != p_filter->output.i_original_channels
104           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
105     {
106         return VLC_EGENERIC;
107     }
108
109 #if !defined( SYS_DARWIN )
110     if( !config_GetInt( p_this, "hq-resampling" ) )
111     {
112         return VLC_EGENERIC;
113     }
114 #endif
115
116     /* Allocate the memory needed to store the module's structure */
117     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
118     if( p_filter->p_sys == NULL )
119     {
120         msg_Err( p_filter, "out of memory" );
121         return VLC_ENOMEM;
122     }
123
124     /* Calculate worst case for the length of the filter wing */
125     d_factor = (double)p_filter->output.i_rate
126                         / p_filter->input.i_rate;
127
128     if( d_factor < (double)1.0 )
129     {
130         return VLC_EGENERIC;
131     }
132
133     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
134                       * __MAX(1.0, 1.0/d_factor) + 10;
135     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
136         sizeof(int32_t) * 2 * i_filter_wing;
137
138     /* Allocate enough memory to buffer previous samples */
139     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
140     if( p_filter->p_sys->p_buf == NULL )
141     {
142         msg_Err( p_filter, "out of memory" );
143         return VLC_ENOMEM;
144     }
145
146     p_filter->p_sys->i_old_wing = 0;
147     p_filter->pf_do_work = DoWork;
148
149     /* We don't want a new buffer to be created because we're not sure we'll
150      * actually need to resample anything. */
151     p_filter->b_in_place = VLC_TRUE;
152
153     return VLC_SUCCESS;
154 }
155
156 /*****************************************************************************
157  * Close: free our resources
158  *****************************************************************************/
159 static void Close( vlc_object_t * p_this )
160 {
161     aout_filter_t * p_filter = (aout_filter_t *)p_this;
162     free( p_filter->p_sys->p_buf );
163     free( p_filter->p_sys );
164 }
165
166 /*****************************************************************************
167  * DoWork: convert a buffer
168  *****************************************************************************/
169 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
170                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
171 {
172     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
173
174     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
175     int i_in_nb = p_in_buf->i_nb_samples;
176     int i_in, i_out = 0;
177     double d_factor, d_scale_factor, d_old_scale_factor;
178     int i_filter_wing;
179 #if 0
180     int i;
181 #endif
182
183     /* Check if we really need to run the resampler */
184     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
185     {
186         if( //p_filter->b_continuity && /* What difference does it make ? :) */
187             p_filter->p_sys->i_old_wing &&
188             p_in_buf->i_size >=
189               p_in_buf->i_nb_bytes + p_filter->p_sys->i_old_wing *
190               p_filter->input.i_bytes_per_frame )
191         {
192             /* output the whole thing with the samples from last time */
193             memmove( ((float *)(p_in_buf->p_buffer)) +
194                      i_nb_channels * p_filter->p_sys->i_old_wing,
195                      p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
196             memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
197                     i_nb_channels * p_filter->p_sys->i_old_wing,
198                     p_filter->p_sys->i_old_wing *
199                     p_filter->input.i_bytes_per_frame );
200
201             p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
202                 p_filter->p_sys->i_old_wing;
203
204             p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
205             p_out_buf->end_date =
206                 aout_DateIncrement( &p_filter->p_sys->end_date,
207                                     p_out_buf->i_nb_samples );
208
209             p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
210                 p_filter->input.i_bytes_per_frame;
211         }
212         p_filter->b_continuity = VLC_FALSE;
213         p_filter->p_sys->i_old_wing = 0;
214         return;
215     }
216
217     if( !p_filter->b_continuity )
218     {
219         /* Continuity in sound samples has been broken, we'd better reset
220          * everything. */
221         p_filter->b_continuity = VLC_TRUE;
222         p_filter->p_sys->i_remainder = 0;
223         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
224         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
225         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
226         p_filter->p_sys->d_old_factor = 1;
227         p_filter->p_sys->i_old_wing   = 0;
228     }
229
230 #if 0
231     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
232              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
233              p_filter->p_sys->i_old_wing, i_in_nb );
234 #endif
235
236     /* Prepare the source buffer */
237     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
238 #ifdef HAVE_ALLOCA
239     p_in = p_in_orig = (float *)alloca( i_in_nb *
240                                         p_filter->input.i_bytes_per_frame );
241 #else
242     p_in = p_in_orig = (float *)malloc( i_in_nb *
243                                         p_filter->input.i_bytes_per_frame );
244 #endif
245     if( p_in == NULL )
246     {
247         return;
248     }
249
250     /* Copy all our samples in p_in */
251     if( p_filter->p_sys->i_old_wing )
252     {
253         p_aout->p_vlc->pf_memcpy( p_in, p_filter->p_sys->p_buf,
254                                   p_filter->p_sys->i_old_wing * 2 *
255                                   p_filter->input.i_bytes_per_frame );
256     }
257     p_aout->p_vlc->pf_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 *
258                               i_nb_channels, p_in_buf->p_buffer,
259                               p_in_buf->i_nb_samples *
260                               p_filter->input.i_bytes_per_frame );
261
262     /* Make sure the output buffer is reset */
263     memset( p_out, 0, p_out_buf->i_size );
264
265     /* Calculate the new length of the filter wing */
266     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
267     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
268
269     /* Account for increased filter gain when using factors less than 1 */
270     d_old_scale_factor = SMALL_FILTER_SCALE *
271         p_filter->p_sys->d_old_factor + 0.5;
272     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
273
274     /* Apply the old rate until we have enough samples for the new one */
275     i_in = p_filter->p_sys->i_old_wing;
276     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
277     for( ; i_in < i_filter_wing &&
278            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
279     {
280         if( p_filter->p_sys->d_old_factor == 1 )
281         {
282             /* Just copy the samples */
283             memcpy( p_out, p_in, 
284                     p_filter->input.i_bytes_per_frame );          
285             p_in += i_nb_channels;
286             p_out += i_nb_channels;
287             i_out++;
288             continue;
289         }
290
291         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
292         {
293
294             if( p_filter->p_sys->d_old_factor >= 1 )
295             {
296                 /* FilterFloatUP() is faster if we can use it */
297
298                 /* Perform left-wing inner product */
299                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
300                                SMALL_FILTER_NWING, p_in, p_out,
301                                p_filter->p_sys->i_remainder,
302                                p_filter->output.i_rate,
303                                -1, i_nb_channels );
304                 /* Perform right-wing inner product */
305                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
306                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
307                                p_filter->output.i_rate -
308                                p_filter->p_sys->i_remainder,
309                                p_filter->output.i_rate,
310                                1, i_nb_channels );
311
312 #if 0
313                 /* Normalize for unity filter gain */
314                 for( i = 0; i < i_nb_channels; i++ )
315                 {
316                     *(p_out+i) *= d_old_scale_factor;
317                 }
318 #endif
319
320                 /* Sanity check */
321                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
322                     <= (unsigned int)i_out+1 )
323                 {
324                     p_out += i_nb_channels;
325                     i_out++;
326                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
327                     break;
328                 }
329             }
330             else
331             {
332                 /* Perform left-wing inner product */
333                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
334                                SMALL_FILTER_NWING, p_in, p_out,
335                                p_filter->p_sys->i_remainder,
336                                p_filter->output.i_rate, p_filter->input.i_rate,
337                                -1, i_nb_channels );
338                 /* Perform right-wing inner product */
339                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
340                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
341                                p_filter->output.i_rate -
342                                p_filter->p_sys->i_remainder,
343                                p_filter->output.i_rate, p_filter->input.i_rate,
344                                1, i_nb_channels );
345             }
346
347             p_out += i_nb_channels;
348             i_out++;
349
350             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
351         }
352
353         p_in += i_nb_channels;
354         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
355     }
356
357     /* Apply the new rate for the rest of the samples */
358     if( i_in < i_in_nb - i_filter_wing )
359     {
360         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
361         p_filter->p_sys->d_old_factor = d_factor;
362         p_filter->p_sys->i_old_wing   = i_filter_wing;
363     }
364     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
365     {
366         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
367         {
368
369             if( d_factor >= 1 )
370             {
371                 /* FilterFloatUP() is faster if we can use it */
372
373                 /* Perform left-wing inner product */
374                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
375                                SMALL_FILTER_NWING, p_in, p_out,
376                                p_filter->p_sys->i_remainder,
377                                p_filter->output.i_rate,
378                                -1, i_nb_channels );
379
380                 /* Perform right-wing inner product */
381                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
382                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
383                                p_filter->output.i_rate -
384                                p_filter->p_sys->i_remainder,
385                                p_filter->output.i_rate,
386                                1, i_nb_channels );
387
388 #if 0
389                 /* Normalize for unity filter gain */
390                 for( i = 0; i < i_nb_channels; i++ )
391                 {
392                     *(p_out+i) *= d_old_scale_factor;
393                 }
394 #endif
395                 /* Sanity check */
396                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
397                     <= (unsigned int)i_out+1 )
398                 {
399                     p_out += i_nb_channels;
400                     i_out++;
401                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
402                     break;
403                 }
404             }
405             else
406             {
407                 /* Perform left-wing inner product */
408                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
409                                SMALL_FILTER_NWING, p_in, p_out,
410                                p_filter->p_sys->i_remainder,
411                                p_filter->output.i_rate, p_filter->input.i_rate,
412                                -1, i_nb_channels );
413                 /* Perform right-wing inner product */
414                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
415                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
416                                p_filter->output.i_rate -
417                                p_filter->p_sys->i_remainder,
418                                p_filter->output.i_rate, p_filter->input.i_rate,
419                                1, i_nb_channels );
420             }
421
422             p_out += i_nb_channels;
423             i_out++;
424
425             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
426         }
427
428         p_in += i_nb_channels;
429         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
430     }
431
432     /* Buffer i_filter_wing * 2 samples for next time */
433     if( p_filter->p_sys->i_old_wing )
434     {
435         memcpy( p_filter->p_sys->p_buf,
436                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
437                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
438                 p_filter->input.i_bytes_per_frame );
439     }
440
441 #if 0
442     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
443              i_out * p_filter->input.i_bytes_per_frame );
444 #endif
445
446     /* Free the temp buffer */
447 #ifndef HAVE_ALLOCA
448     free( p_in_orig );
449 #endif
450
451     /* Finalize aout buffer */
452     p_out_buf->i_nb_samples = i_out;
453     p_out_buf->start_date = aout_DateGet( &p_filter->p_sys->end_date );
454     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
455                                               p_out_buf->i_nb_samples );
456
457     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
458         i_nb_channels * sizeof(int32_t);
459
460 }
461
462 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
463                     float *p_out, uint32_t ui_remainder,
464                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
465 {
466     float *Hp, *Hdp, *End;
467     float t, temp;
468     uint32_t ui_linear_remainder;
469     int i;
470
471     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
472     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
473
474     End = &Imp[Nwing];
475
476     ui_linear_remainder = (ui_remainder<<Nhc) -
477                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
478
479     if (Inc == 1)               /* If doing right wing...              */
480     {                           /* ...drop extra coeff, so when Ph is  */
481         End--;                  /*    0.5, we don't do too many mult's */
482         if (ui_remainder == 0)  /* If the phase is zero...           */
483         {                       /* ...then we've already skipped the */
484             Hp += Npc;          /*    first sample, so we must also  */
485             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
486         }
487     }
488
489     while (Hp < End) {
490         t = *Hp;                /* Get filter coeff */
491                                 /* t is now interp'd filter coeff */
492         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
493         for( i = 0; i < i_nb_channels; i++ )
494         {
495             temp = t;
496             temp *= *(p_in+i);  /* Mult coeff by input sample */
497             *(p_out+i) += temp; /* The filter output */
498         }
499         Hdp += Npc;             /* Filter coeff differences step */
500         Hp += Npc;              /* Filter coeff step */
501         p_in += (Inc * i_nb_channels); /* Input signal step */
502     }
503 }
504
505 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
506                     float *p_out, uint32_t ui_remainder,
507                     uint32_t ui_output_rate, uint32_t ui_input_rate,
508                     int16_t Inc, int i_nb_channels )
509 {
510     float *Hp, *Hdp, *End;
511     float t, temp;
512     uint32_t ui_linear_remainder;
513     int i, ui_counter = 0;
514
515     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
516     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
517
518     End = &Imp[Nwing];
519
520     if (Inc == 1)               /* If doing right wing...              */
521     {                           /* ...drop extra coeff, so when Ph is  */
522         End--;                  /*    0.5, we don't do too many mult's */
523         if (ui_remainder == 0)  /* If the phase is zero...           */
524         {                       /* ...then we've already skipped the */
525             Hp = Imp +          /* first sample, so we must also  */
526                   (ui_output_rate << Nhc) / ui_input_rate;
527             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
528                   (ui_output_rate << Nhc) / ui_input_rate;
529             ui_counter++;
530         }
531     }
532
533     while (Hp < End) {
534         t = *Hp;                /* Get filter coeff */
535                                 /* t is now interp'd filter coeff */
536         ui_linear_remainder =
537           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
538           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
539           ui_input_rate * ui_input_rate;
540         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
541         for( i = 0; i < i_nb_channels; i++ )
542         {
543             temp = t;
544             temp *= *(p_in+i);  /* Mult coeff by input sample */
545             *(p_out+i) += temp; /* The filter output */
546         }
547
548         ui_counter++;
549
550         /* Filter coeff step */
551         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
552                     / ui_input_rate;
553         /* Filter coeff differences step */
554         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
555                      / ui_input_rate;
556
557         p_in += (Inc * i_nb_channels); /* Input signal step */
558     }
559 }