]> git.sesse.net Git - vlc/blob - modules/audio_filter/resampler/bandlimited.c
* modules/audio_filter/resampler/bandlimited.c: added a few more sanity checks.
[vlc] / modules / audio_filter / resampler / bandlimited.c
1 /*****************************************************************************
2  * bandlimited.c : bandlimited interpolation resampler
3  *****************************************************************************
4  * Copyright (C) 2002 VideoLAN
5  * $Id: bandlimited.c,v 1.4 2003/03/05 19:31:32 gbazin Exp $
6  *
7  * Authors: Gildas Bazin <gbazin@netcourrier.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble:
26  *
27  * This implementation of the bandlimited interpolationis based on the
28  * following paper:
29  * http://ccrma-www.stanford.edu/~jos/resample/resample.html
30  *
31  * It uses a Kaiser-windowed sinc-function low-pass filter and the width of the
32  * filter is 13 samples.
33  *
34  *****************************************************************************/
35 #include <stdlib.h>                                      /* malloc(), free() */
36 #include <string.h>
37
38 #include <vlc/vlc.h>
39 #include "audio_output.h"
40 #include "aout_internal.h"
41 #include "bandlimited.h"
42
43 /*****************************************************************************
44  * Local prototypes
45  *****************************************************************************/
46 static int  Create    ( vlc_object_t * );
47 static void Close     ( vlc_object_t * );
48 static void DoWork    ( aout_instance_t *, aout_filter_t *, aout_buffer_t *,
49                         aout_buffer_t * );
50
51 static void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing,
52                            float *f_in, float *f_out, uint32_t ui_remainder,
53                            uint32_t ui_output_rate, int16_t Inc,
54                            int i_nb_channels );
55
56 static void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing,
57                            float *f_in, float *f_out, uint32_t ui_remainder,
58                            uint32_t ui_output_rate, uint32_t ui_input_rate,
59                            int16_t Inc, int i_nb_channels );
60
61 /*****************************************************************************
62  * Local structures
63  *****************************************************************************/
64 struct aout_filter_sys_t
65 {
66     int32_t *p_buf;                        /* this filter introduces a delay */
67     int i_buf_size;
68
69     int i_old_rate;
70     double d_old_factor;
71     int i_old_wing;
72
73     unsigned int i_remainder;                /* remainder of previous sample */
74
75     audio_date_t end_date;
76 };
77
78 /*****************************************************************************
79  * Module descriptor
80  *****************************************************************************/
81 vlc_module_begin();
82     set_description( _("audio filter for bandlimited interpolation resampling") );
83     set_capability( "audio filter", 20 );
84     set_callbacks( Create, Close );
85 vlc_module_end();
86
87 /*****************************************************************************
88  * Create: allocate linear resampler
89  *****************************************************************************/
90 static int Create( vlc_object_t *p_this )
91 {
92     aout_filter_t * p_filter = (aout_filter_t *)p_this;
93     double d_factor;
94     int i_filter_wing;
95
96     if ( p_filter->input.i_rate == p_filter->output.i_rate
97           || p_filter->input.i_format != p_filter->output.i_format
98           || p_filter->input.i_physical_channels
99               != p_filter->output.i_physical_channels
100           || p_filter->input.i_original_channels
101               != p_filter->output.i_original_channels
102           || p_filter->input.i_format != VLC_FOURCC('f','l','3','2') )
103     {
104         return VLC_EGENERIC;
105     }
106
107     /* Allocate the memory needed to store the module's structure */
108     p_filter->p_sys = malloc( sizeof(struct aout_filter_sys_t) );
109     if( p_filter->p_sys == NULL )
110     {
111         msg_Err( p_filter, "out of memory" );
112         return VLC_ENOMEM;
113     }
114
115     /* Calculate worst case for the length of the filter wing */
116     d_factor = (double)p_filter->output.i_rate
117                         / p_filter->input.i_rate;
118     i_filter_wing = ((SMALL_FILTER_NMULT + 1)/2.0)
119                       * __MAX(1.0, 1.0/d_factor) + 10;
120     p_filter->p_sys->i_buf_size = aout_FormatNbChannels( &p_filter->input ) *
121         sizeof(int32_t) * 2 * i_filter_wing;
122
123     /* Allocate enough memory to buffer previous samples */
124     p_filter->p_sys->p_buf = malloc( p_filter->p_sys->i_buf_size );
125     if( p_filter->p_sys->p_buf == NULL )
126     {
127         msg_Err( p_filter, "out of memory" );
128         return VLC_ENOMEM;
129     }
130
131     p_filter->pf_do_work = DoWork;
132
133     /* We don't want a new buffer to be created because we're not sure we'll
134      * actually need to resample anything. */
135     p_filter->b_in_place = VLC_TRUE;
136
137     return VLC_SUCCESS;
138 }
139
140 /*****************************************************************************
141  * Close: free our resources
142  *****************************************************************************/
143 static void Close( vlc_object_t * p_this )
144 {
145     aout_filter_t * p_filter = (aout_filter_t *)p_this;
146     free( p_filter->p_sys->p_buf );
147     free( p_filter->p_sys );
148 }
149
150 /*****************************************************************************
151  * DoWork: convert a buffer
152  *****************************************************************************/
153 static void DoWork( aout_instance_t * p_aout, aout_filter_t * p_filter,
154                     aout_buffer_t * p_in_buf, aout_buffer_t * p_out_buf )
155 {
156     float *p_in, *p_in_orig, *p_out = (float *)p_out_buf->p_buffer;
157
158     int i_nb_channels = aout_FormatNbChannels( &p_filter->input );
159     int i_in_nb = p_in_buf->i_nb_samples;
160     int i_in, i_out = 0;
161     double d_factor, d_scale_factor, d_old_scale_factor;
162     int i_filter_wing;
163 #if 0
164     int i;
165 #endif
166
167     /* Check if we really need to run the resampler */
168     if( p_aout->mixer.mixer.i_rate == p_filter->input.i_rate )
169     {
170         if( p_filter->b_continuity &&
171             p_in_buf->i_size >=
172               p_in_buf->i_nb_bytes + sizeof(float) * i_nb_channels )
173         {
174             if( p_filter->p_sys->i_old_wing )
175             {
176                 /* output the whole thing with the samples from last time */
177                 memmove( ((float *)(p_in_buf->p_buffer)) +
178                          i_nb_channels * p_filter->p_sys->i_old_wing,
179                          p_in_buf->p_buffer, p_in_buf->i_nb_bytes );
180                 memcpy( p_in_buf->p_buffer, p_filter->p_sys->p_buf +
181                         i_nb_channels * p_filter->p_sys->i_old_wing,
182                         p_filter->p_sys->i_old_wing *
183                         p_filter->input.i_bytes_per_frame );
184
185                 p_out_buf->i_nb_samples = p_in_buf->i_nb_samples +
186                     p_filter->p_sys->i_old_wing;
187
188                 p_out_buf->end_date =
189                     aout_DateIncrement( &p_filter->p_sys->end_date,
190                                         p_out_buf->i_nb_samples );
191
192                 p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
193                     p_filter->input.i_bytes_per_frame;
194             }
195         }
196         p_filter->b_continuity = VLC_FALSE;
197         return;
198     }
199
200     if( !p_filter->b_continuity )
201     {
202         /* Continuity in sound samples has been broken, we'd better reset
203          * everything. */
204         p_filter->b_continuity = VLC_TRUE;
205         p_filter->p_sys->i_remainder = 0;
206         aout_DateInit( &p_filter->p_sys->end_date, p_filter->output.i_rate );
207         aout_DateSet( &p_filter->p_sys->end_date, p_in_buf->start_date );
208         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
209         p_filter->p_sys->d_old_factor = 1;
210         p_filter->p_sys->i_old_wing   = 0;
211     }
212
213 #if 0
214     msg_Err( p_filter, "old rate: %i, old factor: %f, old wing: %i, i_in: %i",
215              p_filter->p_sys->i_old_rate, p_filter->p_sys->d_old_factor,
216              p_filter->p_sys->i_old_wing, i_in_nb );
217 #endif
218
219     /* Prepare the source buffer */
220     i_in_nb += (p_filter->p_sys->i_old_wing * 2);
221 #ifdef HAVE_ALLOCA
222     p_in = p_in_orig = (float *)alloca( i_in_nb *
223                                         p_filter->input.i_bytes_per_frame );
224 #else
225     p_in = p_in_orig = (float *)malloc( i_in_nb *
226                                         p_filter->input.i_bytes_per_frame );
227 #endif
228     if( p_in == NULL )
229     {
230         return;
231     }
232
233     /* Copy all our samples in p_in */
234     if( p_filter->p_sys->i_old_wing )
235     {
236         p_aout->p_vlc->pf_memcpy( p_in, p_filter->p_sys->p_buf,
237                                   p_filter->p_sys->i_old_wing * 2 *
238                                   p_filter->input.i_bytes_per_frame );
239     }
240     p_aout->p_vlc->pf_memcpy( p_in + p_filter->p_sys->i_old_wing * 2 *
241                               i_nb_channels, p_in_buf->p_buffer,
242                               p_in_buf->i_nb_samples *
243                               p_filter->input.i_bytes_per_frame );
244
245     /* Make sure the output buffer is reset */
246     memset( p_out, 0, p_out_buf->i_size );
247
248     /* Calculate the new length of the filter wing */
249     d_factor = (double)p_aout->mixer.mixer.i_rate / p_filter->input.i_rate;
250     i_filter_wing = ((SMALL_FILTER_NMULT+1)/2.0) * __MAX(1.0,1.0/d_factor) + 1;
251
252     /* Account for increased filter gain when using factors less than 1 */
253     d_old_scale_factor = SMALL_FILTER_SCALE *
254         p_filter->p_sys->d_old_factor + 0.5;
255     d_scale_factor = SMALL_FILTER_SCALE * d_factor + 0.5;
256
257     /* Apply the old rate until we have enough samples for the new one */
258     i_in = p_filter->p_sys->i_old_wing;
259     p_in += p_filter->p_sys->i_old_wing * i_nb_channels;
260     for( ; i_in < i_filter_wing &&
261            (i_in + p_filter->p_sys->i_old_wing) < i_in_nb; i_in++ )
262     {
263         if( p_filter->p_sys->d_old_factor == 1 )
264         {
265             /* Just copy the samples */
266             memcpy( p_out_buf->p_buffer, p_in, 
267                     p_filter->input.i_bytes_per_frame );          
268             p_in += i_nb_channels;
269             p_out += i_nb_channels;
270             i_out++;
271             continue;
272         }
273
274         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
275         {
276
277             if( p_filter->p_sys->d_old_factor >= 1 )
278             {
279                 /* FilterFloatUP() is faster if we can use it */
280
281                 /* Perform left-wing inner product */
282                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
283                                SMALL_FILTER_NWING, p_in, p_out,
284                                p_filter->p_sys->i_remainder,
285                                p_filter->output.i_rate,
286                                -1, i_nb_channels );
287                 /* Perform right-wing inner product */
288                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
289                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
290                                p_filter->output.i_rate -
291                                p_filter->p_sys->i_remainder,
292                                p_filter->output.i_rate,
293                                1, i_nb_channels );
294
295 #if 0
296                 /* Normalize for unity filter gain */
297                 for( i = 0; i < i_nb_channels; i++ )
298                 {
299                     *(p_out+i) *= d_old_scale_factor;
300                 }
301 #endif
302
303                 /* Sanity check */
304                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
305                     <= (unsigned int)i_out+1 )
306                 {
307                     p_out += i_nb_channels;
308                     i_out++;
309                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
310                     break;
311                 }
312             }
313             else
314             {
315                 /* Perform left-wing inner product */
316                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
317                                SMALL_FILTER_NWING, p_in, p_out,
318                                p_filter->p_sys->i_remainder,
319                                p_filter->output.i_rate, p_filter->input.i_rate,
320                                -1, i_nb_channels );
321                 /* Perform right-wing inner product */
322                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
323                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
324                                p_filter->output.i_rate -
325                                p_filter->p_sys->i_remainder,
326                                p_filter->output.i_rate, p_filter->input.i_rate,
327                                1, i_nb_channels );
328             }
329
330             p_out += i_nb_channels;
331             i_out++;
332
333             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
334         }
335
336         p_in += i_nb_channels;
337         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
338     }
339
340     /* Apply the new rate for the rest of the samples */
341     if( i_in < i_in_nb - i_filter_wing )
342     {
343         p_filter->p_sys->i_old_rate   = p_filter->input.i_rate;
344         p_filter->p_sys->d_old_factor = d_factor;
345         p_filter->p_sys->i_old_wing   = i_filter_wing;
346     }
347     for( ; i_in < i_in_nb - i_filter_wing; i_in++ )
348     {
349         while( p_filter->p_sys->i_remainder < p_filter->output.i_rate )
350         {
351
352             if( d_factor >= 1 )
353             {
354                 /* FilterFloatUP() is faster if we can use it */
355
356                 /* Perform left-wing inner product */
357                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
358                                SMALL_FILTER_NWING, p_in, p_out,
359                                p_filter->p_sys->i_remainder,
360                                p_filter->output.i_rate,
361                                -1, i_nb_channels );
362
363                 /* Perform right-wing inner product */
364                 FilterFloatUP( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
365                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
366                                p_filter->output.i_rate -
367                                p_filter->p_sys->i_remainder,
368                                p_filter->output.i_rate,
369                                1, i_nb_channels );
370
371 #if 0
372                 /* Normalize for unity filter gain */
373                 for( i = 0; i < i_nb_channels; i++ )
374                 {
375                     *(p_out+i) *= d_old_scale_factor;
376                 }
377 #endif
378                 /* Sanity check */
379                 if( p_out_buf->i_size/p_filter->input.i_bytes_per_frame
380                     <= (unsigned int)i_out+1 )
381                 {
382                     p_out += i_nb_channels;
383                     i_out++;
384                     p_filter->p_sys->i_remainder += p_filter->input.i_rate;
385                     break;
386                 }
387             }
388             else
389             {
390                 /* Perform left-wing inner product */
391                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
392                                SMALL_FILTER_NWING, p_in, p_out,
393                                p_filter->p_sys->i_remainder,
394                                p_filter->output.i_rate, p_filter->input.i_rate,
395                                -1, i_nb_channels );
396                 /* Perform right-wing inner product */
397                 FilterFloatUD( SMALL_FILTER_FLOAT_IMP, SMALL_FILTER_FLOAT_IMPD,
398                                SMALL_FILTER_NWING, p_in + i_nb_channels, p_out,
399                                p_filter->output.i_rate -
400                                p_filter->p_sys->i_remainder,
401                                p_filter->output.i_rate, p_filter->input.i_rate,
402                                1, i_nb_channels );
403             }
404
405             p_out += i_nb_channels;
406             i_out++;
407
408             p_filter->p_sys->i_remainder += p_filter->input.i_rate;
409         }
410
411         p_in += i_nb_channels;
412         p_filter->p_sys->i_remainder -= p_filter->output.i_rate;
413     }
414
415     /* Buffer i_filter_wing * 2 samples for next time */
416     if( p_filter->p_sys->i_old_wing )
417     {
418         memcpy( p_filter->p_sys->p_buf,
419                 p_in_orig + (i_in_nb - 2 * p_filter->p_sys->i_old_wing) *
420                 i_nb_channels, (2 * p_filter->p_sys->i_old_wing) *
421                 p_filter->input.i_bytes_per_frame );
422     }
423
424 #if 0
425     msg_Err( p_filter, "p_out size: %i, nb bytes out: %i", p_out_buf->i_size,
426              i_out * p_filter->input.i_bytes_per_frame );
427 #endif
428
429     /* Free the temp buffer */
430 #ifndef HAVE_ALLOCA
431     free( p_in_orig );
432 #endif
433
434     /* Finalize aout buffer */
435     p_out_buf->i_nb_samples = i_out;
436     p_out_buf->start_date = p_in_buf->start_date;
437
438     p_out_buf->end_date = aout_DateIncrement( &p_filter->p_sys->end_date,
439                                               p_out_buf->i_nb_samples );
440
441     p_out_buf->i_nb_bytes = p_out_buf->i_nb_samples *
442         i_nb_channels * sizeof(int32_t);
443
444 }
445
446 void FilterFloatUP( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
447                     float *p_out, uint32_t ui_remainder,
448                     uint32_t ui_output_rate, int16_t Inc, int i_nb_channels )
449 {
450     float *Hp, *Hdp, *End;
451     float t, temp;
452     uint32_t ui_linear_remainder;
453     int i;
454
455     Hp = &Imp[(ui_remainder<<Nhc)/ui_output_rate];
456     Hdp = &ImpD[(ui_remainder<<Nhc)/ui_output_rate];
457
458     End = &Imp[Nwing];
459
460     ui_linear_remainder = (ui_remainder<<Nhc) -
461                             (ui_remainder<<Nhc)/ui_output_rate*ui_output_rate;
462
463     if (Inc == 1)               /* If doing right wing...              */
464     {                           /* ...drop extra coeff, so when Ph is  */
465         End--;                  /*    0.5, we don't do too many mult's */
466         if (ui_remainder == 0)  /* If the phase is zero...           */
467         {                       /* ...then we've already skipped the */
468             Hp += Npc;          /*    first sample, so we must also  */
469             Hdp += Npc;         /*    skip ahead in Imp[] and ImpD[] */
470         }
471     }
472
473     while (Hp < End) {
474         t = *Hp;                /* Get filter coeff */
475                                 /* t is now interp'd filter coeff */
476         t += *Hdp * ui_linear_remainder / ui_output_rate / Npc;
477         for( i = 0; i < i_nb_channels; i++ )
478         {
479             temp = t;
480             temp *= *(p_in+i);  /* Mult coeff by input sample */
481             *(p_out+i) += temp; /* The filter output */
482         }
483         Hdp += Npc;             /* Filter coeff differences step */
484         Hp += Npc;              /* Filter coeff step */
485         p_in += (Inc * i_nb_channels); /* Input signal step */
486     }
487 }
488
489 void FilterFloatUD( float Imp[], float ImpD[], uint16_t Nwing, float *p_in,
490                     float *p_out, uint32_t ui_remainder,
491                     uint32_t ui_output_rate, uint32_t ui_input_rate,
492                     int16_t Inc, int i_nb_channels )
493 {
494     float *Hp, *Hdp, *End;
495     float t, temp;
496     uint32_t ui_linear_remainder;
497     int i, ui_counter = 0;
498
499     Hp = Imp + (ui_remainder<<Nhc) / ui_input_rate;
500     Hdp = ImpD  + (ui_remainder<<Nhc) / ui_input_rate;
501
502     End = &Imp[Nwing];
503
504     if (Inc == 1)               /* If doing right wing...              */
505     {                           /* ...drop extra coeff, so when Ph is  */
506         End--;                  /*    0.5, we don't do too many mult's */
507         if (ui_remainder == 0)  /* If the phase is zero...           */
508         {                       /* ...then we've already skipped the */
509             Hp = Imp +          /* first sample, so we must also  */
510                   (ui_output_rate << Nhc) / ui_input_rate;
511             Hdp = ImpD +        /* skip ahead in Imp[] and ImpD[] */
512                   (ui_output_rate << Nhc) / ui_input_rate;
513             ui_counter++;
514         }
515     }
516
517     while (Hp < End) {
518         t = *Hp;                /* Get filter coeff */
519                                 /* t is now interp'd filter coeff */
520         ui_linear_remainder =
521           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) -
522           ((ui_output_rate * ui_counter + ui_remainder)<< Nhc) /
523           ui_input_rate * ui_input_rate;
524         t += *Hdp * ui_linear_remainder / ui_input_rate / Npc;
525         for( i = 0; i < i_nb_channels; i++ )
526         {
527             temp = t;
528             temp *= *(p_in+i);  /* Mult coeff by input sample */
529             *(p_out+i) += temp; /* The filter output */
530         }
531
532         ui_counter++;
533
534         /* Filter coeff step */
535         Hp = Imp + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
536                     / ui_input_rate;
537         /* Filter coeff differences step */
538         Hdp = ImpD + ((ui_output_rate * ui_counter + ui_remainder)<< Nhc)
539                      / ui_input_rate;
540
541         p_in += (Inc * i_nb_channels); /* Input signal step */
542     }
543 }