]> git.sesse.net Git - nageru/blob - nageru/audio_mixer.h
Factor out a convert_audio_to_fp32() function.
[nageru] / nageru / audio_mixer.h
1 #ifndef _AUDIO_MIXER_H
2 #define _AUDIO_MIXER_H 1
3
4 // The audio mixer, dealing with extracting the right signals from
5 // each capture card, resampling signals so that they are in sync,
6 // processing them with effects (if desired), and then mixing them
7 // all together into one final audio signal.
8 //
9 // All operations on AudioMixer (except destruction) are thread-safe.
10
11 #include <assert.h>
12 #include <stdint.h>
13 #include <zita-resampler/resampler.h>
14 #include <atomic>
15 #include <chrono>
16 #include <functional>
17 #include <map>
18 #include <memory>
19 #include <mutex>
20 #include <set>
21 #include <string>
22 #include <vector>
23
24 #include "alsa_pool.h"
25 #include "correlation_measurer.h"
26 #include "decibel.h"
27 #include "defs.h"
28 #include "ebu_r128_proc.h"
29 #include "filter.h"
30 #include "input_mapping.h"
31 #include "resampling_queue.h"
32 #include "stereocompressor.h"
33
34 class DeviceSpecProto;
35
36 namespace bmusb {
37 struct AudioFormat;
38 }  // namespace bmusb
39
40 // Convert the given audio from {16,24,32}-bit M-channel to 32-bit N-channel PCM.
41 // Assumes little-endian and chunky, signed PCM throughout.
42 std::vector<int32_t> convert_audio_to_fixed32(const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, unsigned num_destination_channels);
43
44 // Similar, except converts ot floating-point instead, and converts only one channel.
45 void convert_audio_to_fp32(float *dst, size_t out_channel, size_t out_num_channels,
46                            const uint8_t *src, size_t in_channel, bmusb::AudioFormat in_audio_format,
47                            size_t num_samples);
48
49 enum EQBand {
50         EQ_BAND_BASS = 0,
51         EQ_BAND_MID,
52         EQ_BAND_TREBLE,
53         NUM_EQ_BANDS
54 };
55
56 class AudioMixer {
57 public:
58         AudioMixer(unsigned num_capture_cards, unsigned num_ffmpeg_inputs);
59         void reset_resampler(DeviceSpec device_spec);
60         void reset_meters();
61
62         // Add audio (or silence) to the given device's queue. Can return false if
63         // the lock wasn't successfully taken; if so, you should simply try again.
64         // (This is to avoid a deadlock where a card hangs on the mutex in add_audio()
65         // while we are trying to shut it down from another thread that also holds
66         // the mutex.)
67         bool add_audio(DeviceSpec device_spec, const uint8_t *data, unsigned num_samples, bmusb::AudioFormat audio_format, std::chrono::steady_clock::time_point frame_time);
68         bool add_silence(DeviceSpec device_spec, unsigned samples_per_frame, unsigned num_frames);
69
70         // If a given device is offline for whatever reason and cannot deliver audio
71         // (by means of add_audio() or add_silence()), you can call put it in silence mode,
72         // where it will be taken to only output silence. Note that when taking it _out_
73         // of silence mode, the resampler will be reset, so that old audio will not
74         // affect it. Same true/false behavior as add_audio().
75         bool silence_card(DeviceSpec device_spec, bool silence);
76
77         std::vector<float> get_output(std::chrono::steady_clock::time_point ts, unsigned num_samples, ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy);
78
79         float get_fader_volume(unsigned bus_index) const { return fader_volume_db[bus_index]; }
80         void set_fader_volume(unsigned bus_index, float level_db) { fader_volume_db[bus_index] = level_db; }
81
82         bool get_mute(unsigned bus_index) const { return mute[bus_index]; }
83         void set_mute(unsigned bus_index, bool muted) { mute[bus_index] = muted; }
84
85         // Note: This operation holds all ALSA devices (see ALSAPool::get_devices()).
86         // You will need to call set_input_mapping() to get the hold state correctly,
87         // or every card will be held forever.
88         std::map<DeviceSpec, DeviceInfo> get_devices();
89
90         // See comments on ALSAPool::get_card_state().
91         ALSAPool::Device::State get_alsa_card_state(unsigned index)
92         {
93                 return alsa_pool.get_card_state(index);
94         }
95
96         // See comments on ALSAPool::create_dead_card().
97         DeviceSpec create_dead_card(const std::string &name, const std::string &info, unsigned num_channels)
98         {
99                 unsigned dead_card_index = alsa_pool.create_dead_card(name, info, num_channels);
100                 return DeviceSpec{InputSourceType::ALSA_INPUT, dead_card_index};
101         }
102
103         void set_display_name(DeviceSpec device_spec, const std::string &name);
104
105         // Note: The card should be held (currently this isn't enforced, though).
106         void serialize_device(DeviceSpec device_spec, DeviceSpecProto *device_spec_proto);
107
108         enum class MappingMode {
109                 // A single bus, only from a video card (no ALSA devices),
110                 // only channel 1 and 2, locked to +0 dB. Note that this is
111                 // only an UI abstraction around exactly the same audio code
112                 // as MULTICHANNEL; it's just less flexible.
113                 SIMPLE,
114
115                 // Full, arbitrary mappings.
116                 MULTICHANNEL
117         };
118
119         // Automatically sets mapping mode to MappingMode::SIMPLE.
120         void set_simple_input(unsigned card_index);
121
122         // If mapping mode is not representable as a MappingMode::SIMPLE type
123         // mapping, returns numeric_limits<unsigned>::max().
124         unsigned get_simple_input() const;
125
126         // Implicitly sets mapping mode to MappingMode::MULTICHANNEL.
127         void set_input_mapping(const InputMapping &input_mapping);
128
129         MappingMode get_mapping_mode() const;
130         InputMapping get_input_mapping() const;
131
132         unsigned num_buses() const;
133
134         void set_locut_cutoff(float cutoff_hz)
135         {
136                 locut_cutoff_hz = cutoff_hz;
137         }
138
139         float get_locut_cutoff() const
140         {
141                 return locut_cutoff_hz;
142         }
143
144         void set_locut_enabled(unsigned bus, bool enabled)
145         {
146                 locut_enabled[bus] = enabled;
147         }
148
149         bool get_locut_enabled(unsigned bus)
150         {
151                 return locut_enabled[bus];
152         }
153
154         bool is_mono(unsigned bus_index);
155
156         void set_stereo_width(unsigned bus_index, float width)
157         {
158                 stereo_width[bus_index] = width;
159         }
160
161         float get_stereo_width(unsigned bus_index)
162         {
163                 return stereo_width[bus_index];
164         }
165
166         void set_eq(unsigned bus_index, EQBand band, float db_gain)
167         {
168                 assert(band >= 0 && band < NUM_EQ_BANDS);
169                 eq_level_db[bus_index][band] = db_gain;
170         }
171
172         float get_eq(unsigned bus_index, EQBand band) const
173         {
174                 assert(band >= 0 && band < NUM_EQ_BANDS);
175                 return eq_level_db[bus_index][band];
176         }
177
178         float get_limiter_threshold_dbfs() const
179         {
180                 return limiter_threshold_dbfs;
181         }
182
183         float get_compressor_threshold_dbfs(unsigned bus_index) const
184         {
185                 return compressor_threshold_dbfs[bus_index];
186         }
187
188         void set_limiter_threshold_dbfs(float threshold_dbfs)
189         {
190                 limiter_threshold_dbfs = threshold_dbfs;
191         }
192
193         void set_compressor_threshold_dbfs(unsigned bus_index, float threshold_dbfs)
194         {
195                 compressor_threshold_dbfs[bus_index] = threshold_dbfs;
196         }
197
198         void set_limiter_enabled(bool enabled)
199         {
200                 limiter_enabled = enabled;
201         }
202
203         bool get_limiter_enabled() const
204         {
205                 return limiter_enabled;
206         }
207
208         void set_compressor_enabled(unsigned bus_index, bool enabled)
209         {
210                 compressor_enabled[bus_index] = enabled;
211         }
212
213         bool get_compressor_enabled(unsigned bus_index) const
214         {
215                 return compressor_enabled[bus_index];
216         }
217
218         void set_gain_staging_db(unsigned bus_index, float gain_db)
219         {
220                 std::lock_guard<std::mutex> lock(compressor_mutex);
221                 level_compressor_enabled[bus_index] = false;
222                 gain_staging_db[bus_index] = gain_db;
223         }
224
225         float get_gain_staging_db(unsigned bus_index) const
226         {
227                 std::lock_guard<std::mutex> lock(compressor_mutex);
228                 return gain_staging_db[bus_index];
229         }
230
231         void set_gain_staging_auto(unsigned bus_index, bool enabled)
232         {
233                 std::lock_guard<std::mutex> lock(compressor_mutex);
234                 level_compressor_enabled[bus_index] = enabled;
235         }
236
237         bool get_gain_staging_auto(unsigned bus_index) const
238         {
239                 std::lock_guard<std::mutex> lock(compressor_mutex);
240                 return level_compressor_enabled[bus_index];
241         }
242
243         void set_final_makeup_gain_db(float gain_db)
244         {
245                 std::lock_guard<std::mutex> lock(compressor_mutex);
246                 final_makeup_gain_auto = false;
247                 final_makeup_gain = from_db(gain_db);
248         }
249
250         float get_final_makeup_gain_db()
251         {
252                 std::lock_guard<std::mutex> lock(compressor_mutex);
253                 return to_db(final_makeup_gain);
254         }
255
256         void set_final_makeup_gain_auto(bool enabled)
257         {
258                 std::lock_guard<std::mutex> lock(compressor_mutex);
259                 final_makeup_gain_auto = enabled;
260         }
261
262         bool get_final_makeup_gain_auto() const
263         {
264                 std::lock_guard<std::mutex> lock(compressor_mutex);
265                 return final_makeup_gain_auto;
266         }
267
268         void reset_peak(unsigned bus_index);
269
270         struct BusLevel {
271                 float current_level_dbfs[2];  // Digital peak of last frame, left and right.
272                 float peak_level_dbfs[2];  // Digital peak with hold, left and right.
273                 float historic_peak_dbfs;
274                 float gain_staging_db;
275                 float compressor_attenuation_db;  // A positive number; 0.0 for no attenuation.
276         };
277
278         typedef std::function<void(float level_lufs, float peak_db,
279                                    std::vector<BusLevel> bus_levels,
280                                    float global_level_lufs, float range_low_lufs, float range_high_lufs,
281                                    float final_makeup_gain_db,
282                                    float correlation)> audio_level_callback_t;
283         void set_audio_level_callback(audio_level_callback_t callback)
284         {
285                 audio_level_callback = callback;
286         }
287
288         typedef std::function<void()> state_changed_callback_t;
289         void set_state_changed_callback(state_changed_callback_t callback)
290         {
291                 state_changed_callback = callback;
292         }
293
294         state_changed_callback_t get_state_changed_callback() const
295         {
296                 return state_changed_callback;
297         }
298
299         void trigger_state_changed_callback()
300         {
301                 if (state_changed_callback != nullptr) {
302                         state_changed_callback();
303                 }
304         }
305
306         // A combination of all settings for a bus. Useful if you want to get
307         // or store them as a whole without bothering to call all of the get_*
308         // or set_* functions for that bus.
309         struct BusSettings {
310                 float fader_volume_db;
311                 bool muted;
312                 bool locut_enabled;
313                 float stereo_width;
314                 float eq_level_db[NUM_EQ_BANDS];
315                 float gain_staging_db;
316                 bool level_compressor_enabled;
317                 float compressor_threshold_dbfs;
318                 bool compressor_enabled;
319         };
320         static BusSettings get_default_bus_settings();
321         BusSettings get_bus_settings(unsigned bus_index) const;
322         void set_bus_settings(unsigned bus_index, const BusSettings &settings);
323
324 private:
325         struct AudioDevice {
326                 std::unique_ptr<ResamplingQueue> resampling_queue;
327                 std::string display_name;
328                 unsigned capture_frequency = OUTPUT_FREQUENCY;
329                 // Which channels we consider interesting (ie., are part of some input_mapping).
330                 std::set<unsigned> interesting_channels;
331                 bool silenced = false;
332
333                 // Positive means the audio is delayed, negative means we try to have it earlier
334                 // (although we can't time-travel!). Stored together with the input mapping.
335                 double extra_delay_ms = 0.0;
336         };
337
338         const AudioDevice *find_audio_device(DeviceSpec device_spec) const
339         {
340                 return const_cast<AudioMixer *>(this)->find_audio_device(device_spec);
341         }
342
343         AudioDevice *find_audio_device(DeviceSpec device_spec);
344
345         void find_sample_src_from_device(const std::map<DeviceSpec, std::vector<float>> &samples_card, DeviceSpec device_spec, int source_channel, const float **srcptr, unsigned *stride);
346         void fill_audio_bus(const std::map<DeviceSpec, std::vector<float>> &samples_card, const InputMapping::Bus &bus, unsigned num_samples, float stereo_width, float *output);
347         void reset_resampler_mutex_held(DeviceSpec device_spec);
348         void apply_eq(unsigned bus_index, std::vector<float> *samples_bus);
349         void update_meters(const std::vector<float> &samples);
350         void add_bus_to_master(unsigned bus_index, const std::vector<float> &samples_bus, std::vector<float> *samples_out);
351         void measure_bus_levels(unsigned bus_index, const std::vector<float> &left, const std::vector<float> &right);
352         void send_audio_level_callback();
353         std::vector<DeviceSpec> get_active_devices() const;
354         void set_input_mapping_lock_held(const InputMapping &input_mapping);
355
356         unsigned num_capture_cards, num_ffmpeg_inputs;
357
358         mutable std::timed_mutex audio_mutex;
359
360         ALSAPool alsa_pool;
361         AudioDevice video_cards[MAX_VIDEO_CARDS];  // Under audio_mutex.
362         AudioDevice alsa_inputs[MAX_ALSA_CARDS];  // Under audio_mutex.
363         std::unique_ptr<AudioDevice[]> ffmpeg_inputs;  // Under audio_mutex.
364
365         std::atomic<float> locut_cutoff_hz{120};
366         StereoFilter locut[MAX_BUSES];  // Default cutoff 120 Hz, 24 dB/oct.
367         std::atomic<bool> locut_enabled[MAX_BUSES];
368         StereoFilter eq[MAX_BUSES][NUM_EQ_BANDS];  // The one for EQBand::MID isn't actually used (see comments in apply_eq()).
369
370         // First compressor; takes us up to about -12 dBFS.
371         mutable std::mutex compressor_mutex;
372         std::unique_ptr<StereoCompressor> level_compressor[MAX_BUSES];  // Under compressor_mutex. Used to set/override gain_staging_db if <level_compressor_enabled>.
373         float gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
374         float last_gain_staging_db[MAX_BUSES];  // Under compressor_mutex.
375         bool level_compressor_enabled[MAX_BUSES];  // Under compressor_mutex.
376
377         static constexpr float ref_level_dbfs = -14.0f;  // Chosen so that we end up around 0 LU in practice.
378         static constexpr float ref_level_lufs = -23.0f;  // 0 LU, more or less by definition.
379
380         StereoCompressor limiter;
381         std::atomic<float> limiter_threshold_dbfs{ref_level_dbfs + 4.0f};   // 4 dB.
382         std::atomic<bool> limiter_enabled{true};
383         std::unique_ptr<StereoCompressor> compressor[MAX_BUSES];
384         std::atomic<float> compressor_threshold_dbfs[MAX_BUSES];
385         std::atomic<bool> compressor_enabled[MAX_BUSES];
386
387         // Note: The values here are not in dB.
388         struct PeakHistory {
389                 float current_level = 0.0f;  // Peak of the last frame.
390                 float historic_peak = 0.0f;  // Highest peak since last reset; no falloff.
391                 float current_peak = 0.0f;  // Current peak of the peak meter.
392                 float last_peak = 0.0f;
393                 float age_seconds = 0.0f;   // Time since "last_peak" was set.
394         };
395         PeakHistory peak_history[MAX_BUSES][2];  // Separate for each channel. Under audio_mutex.
396
397         double final_makeup_gain = 1.0;  // Under compressor_mutex. Read/write by the user. Note: Not in dB, we want the numeric precision so that we can change it slowly.
398         bool final_makeup_gain_auto = true;  // Under compressor_mutex.
399
400         MappingMode current_mapping_mode;  // Under audio_mutex.
401         InputMapping input_mapping;  // Under audio_mutex.
402         std::atomic<float> fader_volume_db[MAX_BUSES] {{ 0.0f }};
403         std::atomic<bool> mute[MAX_BUSES] {{ false }};
404         float last_fader_volume_db[MAX_BUSES] { 0.0f };  // Under audio_mutex.
405         std::atomic<float> stereo_width[MAX_BUSES] {{ 0.0f }};  // Default 1.0f (is set in constructor).
406         std::atomic<float> eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{{ 0.0f }}};
407         float last_eq_level_db[MAX_BUSES][NUM_EQ_BANDS] {{ 0.0f }};
408
409         audio_level_callback_t audio_level_callback = nullptr;
410         state_changed_callback_t state_changed_callback = nullptr;
411         mutable std::mutex audio_measure_mutex;
412         Ebu_r128_proc r128;  // Under audio_measure_mutex.
413         CorrelationMeasurer correlation;  // Under audio_measure_mutex.
414         Resampler peak_resampler;  // Under audio_measure_mutex.
415         std::atomic<float> peak{0.0f};
416
417         // Metrics.
418         std::atomic<double> metric_audio_loudness_short_lufs{0.0 / 0.0};
419         std::atomic<double> metric_audio_loudness_integrated_lufs{0.0 / 0.0};
420         std::atomic<double> metric_audio_loudness_range_low_lufs{0.0 / 0.0};
421         std::atomic<double> metric_audio_loudness_range_high_lufs{0.0 / 0.0};
422         std::atomic<double> metric_audio_peak_dbfs{0.0 / 0.0};
423         std::atomic<double> metric_audio_final_makeup_gain_db{0.0};
424         std::atomic<double> metric_audio_correlation{0.0};
425
426         // These are all gauges corresponding to the elements of BusLevel.
427         // In a sense, they'd probably do better as histograms, but that's an
428         // awful lot of time series when you have many buses.
429         struct BusMetrics {
430                 std::vector<std::pair<std::string, std::string>> labels;
431                 std::atomic<double> current_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
432                 std::atomic<double> peak_level_dbfs[2]{{0.0/0.0},{0.0/0.0}};
433                 std::atomic<double> historic_peak_dbfs{0.0/0.0};
434                 std::atomic<double> gain_staging_db{0.0/0.0};
435                 std::atomic<double> compressor_attenuation_db{0.0/0.0};
436         };
437         std::unique_ptr<BusMetrics[]> bus_metrics;  // One for each bus in <input_mapping>.
438 };
439
440 extern AudioMixer *global_audio_mixer;
441
442 #endif  // !defined(_AUDIO_MIXER_H)