2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
46 /** Parse the alignment properties into the geometry.
49 static int alignment_parse( char* align )
54 else if ( isdigit( align[ 0 ] ) )
56 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
58 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
64 /** Calculate real geometry.
67 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
69 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
70 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
71 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
72 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
73 int length = mlt_geometry_get_length( geometry );
76 if ( !repeat_off && position >= length && length != 0 )
78 int section = position / length;
79 position -= section * length;
80 if ( !mirror_off && section % 2 == 1 )
81 position = length - position;
84 // Fetch the key for the position
85 mlt_geometry_fetch( geometry, &output->item, position );
88 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
90 // Loop variable for property interrogation
93 // Get the properties of the transition
94 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
96 // Create an empty geometries object
97 mlt_geometry geometry = mlt_geometry_init( );
99 // Get the in and out position
100 mlt_position in = mlt_transition_get_in( this );
101 mlt_position out = mlt_transition_get_out( this );
102 int length = out - in + 1;
103 double cycle = mlt_properties_get_double( properties, "cycle" );
105 // Get the new style geometry string
106 char *property = mlt_properties_get( properties, "geometry" );
108 // Allow a geometry repeat cycle
111 else if ( cycle > 0 )
114 // Parse the geometry if we have one
115 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
117 // Check if we're using the old style geometry
118 if ( property == NULL )
120 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
121 // practical use - while deprecated, it has been slightly extended too - keys can now
122 // be specified out of order, and can be blanked or NULL to simulate removal
124 // Structure to use for parsing and inserting
125 struct mlt_geometry_item_s item;
127 // Parse the start property
129 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130 mlt_geometry_insert( geometry, &item );
132 // Parse the keys in between
133 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
135 // Get the name of the property
136 char *name = mlt_properties_get_name( properties, i );
138 // Check that it's valid
139 if ( !strncmp( name, "key[", 4 ) )
141 // Get the value of the property
142 char *value = mlt_properties_get_value( properties, i );
144 // Determine the frame number
145 item.frame = atoi( name + 4 );
147 // Parse and add to the list
148 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149 mlt_geometry_insert( geometry, &item );
151 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
157 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158 mlt_geometry_insert( geometry, &item );
164 /** Adjust position according to scaled size and alignment properties.
167 static void alignment_calculate( struct geometry_s *geometry )
169 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
173 /** Calculate the position for this frame.
176 static int position_calculate( mlt_transition this, mlt_position position )
178 // Get the in and out position
179 mlt_position in = mlt_transition_get_in( this );
182 return position - in;
185 /** Calculate the field delta for this frame - position between two frames.
188 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
190 // Get the in and out position
191 mlt_position in = mlt_transition_get_in( this );
192 mlt_position out = mlt_transition_get_out( this );
193 double length = out - in + 1;
196 double x = ( double )( position - in ) / length;
197 double y = ( double )( position + 1 - in ) / length;
199 return length * ( y - x ) / 2.0;
202 static int get_value( mlt_properties properties, char *preferred, char *fallback )
204 int value = mlt_properties_get_int( properties, preferred );
206 value = mlt_properties_get_int( properties, fallback );
210 /** A linear threshold determination function.
213 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
221 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
224 /** A smoother, non-linear threshold determination function.
227 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
235 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
237 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
240 /** Load the luma map from PGM stream.
243 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
245 uint8_t *data = NULL;
257 // get the magic code
258 if ( fgets( line, 127, f ) == NULL )
262 while ( sscanf( line, " #%s", comment ) > 0 )
263 if ( fgets( line, 127, f ) == NULL )
266 if ( line[0] != 'P' || line[1] != '5' )
269 // skip white space and see if a new line must be fetched
270 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
271 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
275 while ( sscanf( line, " #%s", comment ) > 0 )
276 if ( fgets( line, 127, f ) == NULL )
279 // get the dimensions
280 if ( line[0] == 'P' )
281 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
283 i = sscanf( line, "%d %d %d", width, height, &maxval );
285 // get the height value, if not yet
288 if ( fgets( line, 127, f ) == NULL )
292 while ( sscanf( line, " #%s", comment ) > 0 )
293 if ( fgets( line, 127, f ) == NULL )
296 i = sscanf( line, "%d", height );
303 // get the maximum gray value, if not yet
306 if ( fgets( line, 127, f ) == NULL )
310 while ( sscanf( line, " #%s", comment ) > 0 )
311 if ( fgets( line, 127, f ) == NULL )
314 i = sscanf( line, "%d", &maxval );
319 // determine if this is one or two bytes per pixel
320 bpp = maxval > 255 ? 2 : 1;
322 // allocate temporary storage for the raw data
323 data = mlt_pool_alloc( *width * *height * bpp );
328 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
331 // allocate the luma bitmap
332 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
336 // proces the raw data into the luma bitmap
337 for ( i = 0; i < *width * *height * bpp; i += bpp )
340 *p++ = data[ i ] << 8;
342 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
349 mlt_pool_release( data );
352 /** Generate a luma map from any YUV image.
355 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
359 // allocate the luma bitmap
360 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
364 // proces the image data into the luma bitmap
365 for ( i = 0; i < width * height * 2; i += 2 )
366 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
369 static inline int calculate_mix( uint16_t *luma, int j, int soft, int weight, int alpha )
371 return ( ( ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + soft, weight + soft ) ) * alpha ) >> 8;
374 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
376 return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
379 /** Composite a source line over a destination line
382 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
387 for ( j = 0; j < width; j ++ )
389 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ );
390 *dest = sample_mix( *dest, *src++, mix );
392 *dest = sample_mix( *dest, *src++, mix );
394 *alpha_a = ( mix >> 8 ) | *alpha_a;
399 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
404 for ( j = 0; j < width; j ++ )
406 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a );
407 *dest = sample_mix( *dest, *src++, mix );
409 *dest = sample_mix( *dest, *src++, mix );
411 *alpha_a ++ = mix >> 8;
415 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
420 for ( j = 0; j < width; j ++ )
422 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a );
423 *dest = sample_mix( *dest, *src++, mix );
425 *dest = sample_mix( *dest, *src++, mix );
427 *alpha_a ++ = mix >> 8;
431 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
436 for ( j = 0; j < width; j ++ )
438 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a );
439 *dest = sample_mix( *dest, *src++, mix );
441 *dest = sample_mix( *dest, *src++, mix );
443 *alpha_a ++ = mix >> 8;
447 /** Composite function.
450 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
454 int x_src = 0, y_src = 0;
455 int32_t weight = ( ( 1 << 16 ) - 1 ) * ( geometry.item.mix / 100 );
456 int step = ( field > -1 ) ? 2 : 1;
458 int stride_src = width_src * bpp;
459 int stride_dest = width_dest * bpp;
461 // Adjust to consumer scale
462 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
463 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
464 int uneven_x = ( x % 2 );
466 // optimization points - no work to do
467 if ( width_src <= 0 || height_src <= 0 )
470 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
473 // crop overlay off the left edge of frame
481 // crop overlay beyond right edge of frame
482 if ( x + width_src > width_dest )
483 width_src = width_dest - x;
485 // crop overlay off the top edge of the frame
493 // crop overlay below bottom edge of frame
494 if ( y + height_src > height_dest )
495 height_src = height_dest - y;
497 // offset pointer into overlay buffer based on cropping
498 p_src += x_src * bpp + y_src * stride_src;
500 // offset pointer into frame buffer based upon positive coordinates only!
501 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
503 // offset pointer into alpha channel based upon cropping
504 alpha_b += x_src + y_src * stride_src / bpp;
505 alpha_a += x + y * stride_dest / bpp;
507 // offset pointer into luma channel based upon cropping
509 p_luma += x_src + y_src * stride_src / bpp;
511 // Assuming lower field first
512 // Special care is taken to make sure the b_frame is aligned to the correct field.
513 // field 0 = lower field and y should be odd (y is 0-based).
514 // field 1 = upper field and y should be even.
515 if ( ( field > -1 ) && ( y % 2 == field ) )
517 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
518 p_dest += stride_dest;
520 p_dest -= stride_dest;
523 // On the second field, use the other lines from b_frame
527 alpha_b += stride_src / bpp;
528 alpha_a += stride_dest / bpp;
534 int alpha_b_stride = stride_src / bpp;
535 int alpha_a_stride = stride_dest / bpp;
537 p_src += uneven_x * 2;
538 width_src -= 2 * uneven_x;
542 // now do the compositing only to cropped extents
543 for ( i = 0; i < height_src; i += step )
545 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
548 p_dest += stride_dest;
549 alpha_b += alpha_b_stride;
550 alpha_a += alpha_a_stride;
552 p_luma += alpha_b_stride;
559 /** Scale 16bit greyscale luma map using nearest neighbor.
563 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
566 register int x_step = ( src_width << 16 ) / dest_width;
567 register int y_step = ( src_height << 16 ) / dest_height;
568 register int x, y = 0;
570 for ( i = 0; i < dest_height; i++ )
572 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
575 for ( j = 0; j < dest_width; j++ )
577 *dest_buf++ = src[ x >> 16 ] ^ invert;
584 static uint16_t* get_luma( mlt_properties properties, int width, int height )
586 // The cached luma map information
587 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
588 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
589 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
590 int invert = mlt_properties_get_int( properties, "luma_invert" );
592 // If the filename property changed, reload the map
593 char *resource = mlt_properties_get( properties, "luma" );
597 if ( luma_width == 0 || luma_height == 0 )
600 luma_height = height;
603 if ( resource != NULL && strchr( resource, '%' ) )
605 // TODO: Clean up quick and dirty compressed/existence check
607 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
608 test = fopen( temp, "r" );
610 strcat( temp, ".png" );
616 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
618 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
619 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
620 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
622 // Load the original luma once
623 if ( orig_bitmap == NULL )
625 char *extension = strrchr( resource, '.' );
627 // See if it is a PGM
628 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
631 FILE *f = fopen( resource, "r" );
635 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
638 // Remember the original size for subsequent scaling
639 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
640 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
641 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
646 // Get the factory producer service
647 char *factory = mlt_properties_get( properties, "factory" );
649 // Create the producer
650 mlt_producer producer = mlt_factory_producer( factory, resource );
653 if ( producer != NULL )
655 // Get the producer properties
656 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
658 // Ensure that we loop
659 mlt_properties_set( producer_properties, "eof", "loop" );
661 // Now pass all producer. properties on the transition down
662 mlt_properties_pass( producer_properties, properties, "luma." );
664 // We will get the alpha frame from the producer
665 mlt_frame luma_frame = NULL;
667 // Get the luma frame
668 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
671 mlt_image_format luma_format = mlt_image_yuv422;
673 // Get image from the luma producer
674 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
675 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
677 // Generate the luma map
678 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
679 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
681 // Remember the original size for subsequent scaling
682 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
683 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
684 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
686 // Cleanup the luma frame
687 mlt_frame_close( luma_frame );
690 // Cleanup the luma producer
691 mlt_producer_close( producer );
696 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
697 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
699 // Remember the scaled luma size to prevent unnecessary scaling
700 mlt_properties_set_int( properties, "_luma.width", width );
701 mlt_properties_set_int( properties, "_luma.height", height );
702 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
707 /** Get the properly sized image from b_frame.
710 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
713 mlt_image_format format = mlt_image_yuv422;
715 // Get the properties objects
716 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
717 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
718 uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
720 if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
722 // Adjust b_frame pixel aspect
723 int normalised_width = geometry->item.w;
724 int normalised_height = geometry->item.h;
725 int real_width = get_value( b_props, "real_width", "width" );
726 int real_height = get_value( b_props, "real_height", "height" );
727 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
728 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
729 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
730 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
731 int scaled_width = rint( 0.5 + ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
732 int scaled_height = real_height;
734 // Now ensure that our images fit in the normalised frame
735 if ( scaled_width > normalised_width )
737 scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
738 scaled_width = normalised_width;
740 if ( scaled_height > normalised_height )
742 scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
743 scaled_height = normalised_height;
746 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
747 // ????: Shouln't this be the default behaviour?
748 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
750 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
752 scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
753 scaled_height = normalised_height;
755 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
757 scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
758 scaled_width = normalised_width;
762 // Save the new scaled dimensions
763 geometry->sw = scaled_width;
764 geometry->sh = scaled_height;
768 geometry->sw = geometry->item.w;
769 geometry->sh = geometry->item.h;
772 // We want to ensure that we bypass resize now...
773 if ( resize_alpha == 0 )
774 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
776 // If we're not aligned, we want a non-transparent background
777 if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
778 mlt_properties_set_int( b_props, "resize_alpha", 255 );
780 // Take into consideration alignment for optimisation (titles are a special case)
781 if ( !mlt_properties_get_int( properties, "titles" ) )
782 alignment_calculate( geometry );
784 // Adjust to consumer scale
785 *width = rint( 0.5 + geometry->sw * *width / geometry->nw );
786 *height = rint( 0.5 + geometry->sh * *height / geometry->nh );
788 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
790 // Set the frame back
791 mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
793 return ret && image != NULL;
797 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
799 // Get the properties from the transition
800 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
802 // Get the properties from the frame
803 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
805 // Structures for geometry
806 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
808 // Obtain the normalised width and height from the a_frame
809 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
810 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
812 char *name = mlt_properties_get( properties, "_unique_id" );
815 sprintf( key, "%s.in", name );
816 if ( mlt_properties_get( a_props, key ) )
818 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
822 // Now parse the geometries
825 // Parse the transitions properties
826 start = transition_parse_keys( this, normalised_width, normalised_height );
828 // Assign to properties to ensure we get destroyed
829 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
833 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
834 double cycle = mlt_properties_get_double( properties, "cycle" );
837 else if ( cycle > 0 )
839 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
842 // Do the calculation
843 geometry_calculate( this, result, position );
845 // Assign normalised info
846 result->nw = normalised_width;
847 result->nh = normalised_height;
850 // Now parse the alignment
851 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
852 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
857 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
859 // Create a frame to return
860 mlt_frame b_frame = mlt_frame_init( );
862 // Get the properties of the a frame
863 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
865 // Get the properties of the b frame
866 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
869 int position = position_calculate( this, frame_position );
871 // Get the unique id of the transition
872 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
876 uint8_t *dest = NULL;
878 // Get the image and dimensions
879 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
880 int width = mlt_properties_get_int( a_props, "width" );
881 int height = mlt_properties_get_int( a_props, "height" );
882 int format = mlt_properties_get_int( a_props, "format" );
884 // Pointers for copy operation
896 // Will need to know region to copy
897 struct geometry_s result;
899 // Calculate the region now
900 composite_calculate( this, &result, a_frame, position );
902 // Need to scale down to actual dimensions
903 x = rint( 0.5 + result.item.x * width / result.nw );
904 y = rint( 0.5 + result.item.y * height / result.nh );
905 w = rint( 0.5 + result.item.w * width / result.nw );
906 h = rint( 0.5 + result.item.h * height / result.nh );
915 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
916 mlt_properties_parse( a_props, key );
917 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
918 mlt_properties_parse( a_props, key );
923 // Now we need to create a new destination image
924 dest = mlt_pool_alloc( w * h * 2 );
926 // Assign to the new frame
927 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
928 mlt_properties_set_int( b_props, "width", w );
929 mlt_properties_set_int( b_props, "height", h );
930 mlt_properties_set_int( b_props, "format", format );
939 if ( y + h > height )
940 h -= ( y + h - height );
949 if ( w > 0 && h > 0 )
951 // Copy the region of the image
952 p = image + y * ss + x * 2;
956 memcpy( dest, p, w * 2 );
962 // Assign this position to the b frame
963 mlt_frame_set_position( b_frame, frame_position );
964 mlt_properties_set_int( b_props, "distort", 1 );
973 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
975 // Get the b frame from the stack
976 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
978 // Get the transition from the a frame
979 mlt_transition this = mlt_frame_pop_service( a_frame );
982 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
983 int out = mlt_frame_pop_service_int( a_frame );
984 int in = mlt_frame_pop_service_int( a_frame );
986 // Get the properties from the transition
987 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
989 // TODO: clean up always_active behaviour
990 if ( mlt_properties_get_int( properties, "always_active" ) )
992 mlt_events_block( properties, properties );
993 mlt_properties_set_int( properties, "in", in );
994 mlt_properties_set_int( properties, "out", out );
995 mlt_events_unblock( properties, properties );
998 // This compositer is yuv422 only
999 *format = mlt_image_yuv422;
1001 if ( b_frame != NULL )
1003 // Get the properties of the a frame
1004 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1006 // Get the properties of the b frame
1007 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1009 // Structures for geometry
1010 struct geometry_s result;
1012 // Calculate the position
1013 double delta = delta_calculate( this, a_frame, position );
1015 // Get the image from the b frame
1016 uint8_t *image_b = NULL;
1017 int width_b = *width;
1018 int height_b = *height;
1021 uint8_t *alpha_a = NULL;
1022 uint8_t *alpha_b = NULL;
1024 // Composites always need scaling... defaulting to lowest
1025 char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1026 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1027 rescale = "nearest";
1028 mlt_properties_set( a_props, "rescale.interp", rescale );
1029 mlt_properties_set( b_props, "rescale.interp", rescale );
1031 // Do the calculation
1032 // NB: Locks needed here since the properties are being modified
1033 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1034 composite_calculate( this, &result, a_frame, position );
1035 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1037 // Since we are the consumer of the b_frame, we must pass along these
1038 // consumer properties from the a_frame
1039 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
1040 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1041 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1043 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1044 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1045 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1047 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1048 if ( !mlt_frame_is_test_card( a_frame ) )
1049 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1053 if ( a_frame == b_frame )
1055 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1056 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1057 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1058 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1061 // Get the image from the a frame
1062 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1063 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1065 // Optimisation - no compositing required
1066 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1069 // Need to keep the width/height of the a_frame on the b_frame for titling
1070 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1072 mlt_properties_set_int( a_props, "dest_width", *width );
1073 mlt_properties_set_int( a_props, "dest_height", *height );
1074 mlt_properties_set_int( b_props, "dest_width", *width );
1075 mlt_properties_set_int( b_props, "dest_height", *height );
1079 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1080 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1083 // Special case for titling...
1084 if ( mlt_properties_get_int( properties, "titles" ) )
1086 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1087 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1088 width_b = mlt_properties_get_int( a_props, "dest_width" );
1089 height_b = mlt_properties_get_int( a_props, "dest_height" );
1092 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1094 uint8_t *dest = *image;
1095 uint8_t *src = image_b;
1097 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1098 mlt_properties_get_int( properties, "progressive" );
1101 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1102 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1103 char *operator = mlt_properties_get( properties, "operator" );
1105 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1107 composite_line_fn line_fn = composite_line_yuv;
1109 // Replacement and override
1110 if ( operator != NULL )
1112 if ( !strcmp( operator, "or" ) )
1113 line_fn = composite_line_yuv_or;
1114 if ( !strcmp( operator, "and" ) )
1115 line_fn = composite_line_yuv_and;
1116 if ( !strcmp( operator, "xor" ) )
1117 line_fn = composite_line_yuv_xor;
1120 // Allow the user to completely obliterate the alpha channels from both frames
1121 if ( mlt_properties_get( properties, "alpha_a" ) )
1122 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1124 if ( mlt_properties_get( properties, "alpha_b" ) )
1125 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1127 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1129 // Assume lower field (0) first
1130 double field_position = position + field * delta;
1132 // Do the calculation if we need to
1133 // NB: Locks needed here since the properties are being modified
1134 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1135 composite_calculate( this, &result, a_frame, field_position );
1136 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1138 if ( mlt_properties_get_int( properties, "titles" ) )
1140 result.item.w = rint( 0.5 + *width * ( result.item.w / result.nw ) );
1141 result.nw = result.item.w;
1142 result.item.h = rint( 0.5 + *height * ( result.item.h / result.nh ) );
1143 result.nh = *height;
1144 result.sw = width_b;
1145 result.sh = height_b;
1149 alignment_calculate( &result );
1151 // Composite the b_frame on the a_frame
1152 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1158 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1164 /** Composition transition processing.
1167 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1169 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1170 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1172 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1173 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1174 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1178 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1179 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1180 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1181 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1184 mlt_frame_push_service( a_frame, this );
1185 mlt_frame_push_frame( a_frame, b_frame );
1186 mlt_frame_push_get_image( a_frame, transition_get_image );
1190 /** Constructor for the filter.
1193 mlt_transition transition_composite_init( char *arg )
1195 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1196 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1198 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1200 this->process = composite_process;
1202 // Default starting motion and zoom
1203 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1206 mlt_properties_set( properties, "factory", "fezzik" );
1208 // Use alignment (and hence alpha of b frame)
1209 mlt_properties_set_int( properties, "aligned", 1 );
1211 // Inform apps and framework that this is a video only transition
1212 mlt_properties_set_int( properties, "_transition_type", 1 );