]> git.sesse.net Git - mlt/blob - src/modules/core/transition_composite.c
Use '/' for coordinate delimiter instead of period.
[mlt] / src / modules / core / transition_composite.c
1 /*
2  * transition_composite.c -- compose one image over another using alpha channel
3  * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4  * Author: Dan Dennedy <dan@dennedy.org>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, uint32_t step );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37         struct mlt_geometry_item_s item;
38         int nw; // normalised width
39         int nh; // normalised height
40         int sw; // scaled width, not including consumer scale based upon w/nw
41         int sh; // scaled height, not including consumer scale based upon h/nh
42         int halign; // horizontal alignment: 0=left, 1=center, 2=right
43         int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44         int x_src;
45         int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53         int ret = 0;
54         
55         if ( align == NULL );
56         else if ( isdigit( align[ 0 ] ) )
57                 ret = atoi( align );
58         else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59                 ret = 1;
60         else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61                 ret = 2;
62
63         return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
70 {
71         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72         mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73         int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74         int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75         int length = mlt_geometry_get_length( geometry );
76
77         // Allow wrapping
78         if ( !repeat_off && position >= length && length != 0 )
79         {
80                 int section = position / length;
81                 position -= section * length;
82                 if ( !mirror_off && section % 2 == 1 )
83                         position = length - position;
84         }
85
86         // Fetch the key for the position
87         mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
91 {
92         // Loop variable for property interrogation
93         int i = 0;
94
95         // Get the properties of the transition
96         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
97
98         // Create an empty geometries object
99         mlt_geometry geometry = mlt_geometry_init( );
100
101         // Get the duration
102         mlt_position length = mlt_transition_get_length( this );
103         double cycle = mlt_properties_get_double( properties, "cycle" );
104
105         // Get the new style geometry string
106         char *property = mlt_properties_get( properties, "geometry" );
107
108         // Allow a geometry repeat cycle
109         if ( cycle >= 1 )
110                 length = cycle;
111         else if ( cycle > 0 )
112                 length *= cycle;
113
114         // Parse the geometry if we have one
115         mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117         // Check if we're using the old style geometry
118         if ( property == NULL )
119         {
120                 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for 
121                 // practical use - while deprecated, it has been slightly extended too - keys can now
122                 // be specified out of order, and can be blanked or NULL to simulate removal
123
124                 // Structure to use for parsing and inserting
125                 struct mlt_geometry_item_s item;
126
127                 // Parse the start property
128                 item.frame = 0;
129                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130                         mlt_geometry_insert( geometry, &item );
131
132                 // Parse the keys in between
133                 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134                 {
135                         // Get the name of the property
136                         char *name = mlt_properties_get_name( properties, i );
137         
138                         // Check that it's valid
139                         if ( !strncmp( name, "key[", 4 ) )
140                         {
141                                 // Get the value of the property
142                                 char *value = mlt_properties_get_value( properties, i );
143         
144                                 // Determine the frame number
145                                 item.frame = atoi( name + 4 );
146         
147                                 // Parse and add to the list
148                                 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149                                         mlt_geometry_insert( geometry, &item );
150                                 else
151                                         fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152                         }
153                 }
154
155                 // Parse the end
156                 item.frame = -1;
157                 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158                         mlt_geometry_insert( geometry, &item );
159         }
160         
161         return geometry;
162 }
163
164 /** Adjust position according to scaled size and alignment properties.
165 */
166
167 static void alignment_calculate( struct geometry_s *geometry )
168 {
169         geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170         geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
171 }
172
173 /** Calculate the position for this frame.
174 */
175
176 static int position_calculate( mlt_transition this, mlt_position position )
177 {
178         // Get the in and out position
179         mlt_position in = mlt_transition_get_in( this );
180
181         // Now do the calcs
182         return position - in;
183 }
184
185 /** Calculate the field delta for this frame - position between two frames.
186 */
187
188 static int get_value( mlt_properties properties, const char *preferred, const char *fallback )
189 {
190         int value = mlt_properties_get_int( properties, preferred );
191         if ( value == 0 )
192                 value = mlt_properties_get_int( properties, fallback );
193         return value;
194 }
195
196 /** A linear threshold determination function.
197 */
198
199 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
200 {
201         if ( a < edge1 )
202                 return 0;
203
204         if ( a >= edge2 )
205                 return 0x10000;
206
207         return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
208 }
209
210 /** A smoother, non-linear threshold determination function.
211 */
212
213 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
214 {
215         if ( a < edge1 )
216                 return 0;
217
218         if ( a >= edge2 )
219                 return 0x10000;
220
221         a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
222
223         return ( ( ( a * a ) >> 16 )  * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
224 }
225
226 /** Load the luma map from PGM stream.
227 */
228
229 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
230 {
231         uint8_t *data = NULL;
232         while (1)
233         {
234                 char line[128];
235                 char comment[128];
236                 int i = 2;
237                 int maxval;
238                 int bpp;
239                 uint16_t *p;
240
241                 line[127] = '\0';
242
243                 // get the magic code
244                 if ( fgets( line, 127, f ) == NULL )
245                         break;
246
247                 // skip comments
248                 while ( sscanf( line, " #%s", comment ) > 0 )
249                         if ( fgets( line, 127, f ) == NULL )
250                                 break;
251
252                 if ( line[0] != 'P' || line[1] != '5' )
253                         break;
254
255                 // skip white space and see if a new line must be fetched
256                 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
257                 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
258                         break;
259
260                 // skip comments
261                 while ( sscanf( line, " #%s", comment ) > 0 )
262                         if ( fgets( line, 127, f ) == NULL )
263                                 break;
264
265                 // get the dimensions
266                 if ( line[0] == 'P' )
267                         i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
268                 else
269                         i = sscanf( line, "%d %d %d", width, height, &maxval );
270
271                 // get the height value, if not yet
272                 if ( i < 2 )
273                 {
274                         if ( fgets( line, 127, f ) == NULL )
275                                 break;
276
277                         // skip comments
278                         while ( sscanf( line, " #%s", comment ) > 0 )
279                                 if ( fgets( line, 127, f ) == NULL )
280                                         break;
281
282                         i = sscanf( line, "%d", height );
283                         if ( i == 0 )
284                                 break;
285                         else
286                                 i = 2;
287                 }
288
289                 // get the maximum gray value, if not yet
290                 if ( i < 3 )
291                 {
292                         if ( fgets( line, 127, f ) == NULL )
293                                 break;
294
295                         // skip comments
296                         while ( sscanf( line, " #%s", comment ) > 0 )
297                                 if ( fgets( line, 127, f ) == NULL )
298                                         break;
299
300                         i = sscanf( line, "%d", &maxval );
301                         if ( i == 0 )
302                                 break;
303                 }
304
305                 // determine if this is one or two bytes per pixel
306                 bpp = maxval > 255 ? 2 : 1;
307
308                 // allocate temporary storage for the raw data
309                 data = mlt_pool_alloc( *width * *height * bpp );
310                 if ( data == NULL )
311                         break;
312
313                 // read the raw data
314                 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
315                         break;
316
317                 // allocate the luma bitmap
318                 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
319                 if ( *map == NULL )
320                         break;
321
322                 // proces the raw data into the luma bitmap
323                 for ( i = 0; i < *width * *height * bpp; i += bpp )
324                 {
325                         if ( bpp == 1 )
326                                 *p++ = data[ i ] << 8;
327                         else
328                                 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
329                 }
330
331                 break;
332         }
333
334         if ( data != NULL )
335                 mlt_pool_release( data );
336 }
337
338 /** Generate a luma map from any YUV image.
339 */
340
341 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
342 {
343         int i;
344         
345         // allocate the luma bitmap
346         uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
347         if ( *map == NULL )
348                 return;
349
350         // proces the image data into the luma bitmap
351         for ( i = 0; i < width * height * 2; i += 2 )
352                 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
353 }
354
355 static inline int calculate_mix( uint16_t *luma, int j, int softness, int weight, int alpha, uint32_t step )
356 {
357         return ( ( luma ? smoothstep( luma[ j ], luma[ j ] + softness, step ) : weight ) * alpha ) >> 8;
358 }
359
360 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
361 {
362         return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
363 }
364
365 /** Composite a source line over a destination line
366 */
367
368 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
369 {
370         register int j;
371         register int mix;
372
373         for ( j = 0; j < width; j ++ )
374         {
375                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++, step );
376                 *dest = sample_mix( *dest, *src++, mix );
377                 dest++;
378                 *dest = sample_mix( *dest, *src++, mix );
379                 dest++;
380                 *alpha_a = ( mix >> 8 ) | *alpha_a;
381                 alpha_a ++;
382         }
383 }
384
385 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
386 {
387         register int j;
388         register int mix;
389
390         for ( j = 0; j < width; j ++ )
391         {
392                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a, step );
393                 *dest = sample_mix( *dest, *src++, mix );
394                 dest++;
395                 *dest = sample_mix( *dest, *src++, mix );
396                 dest++;
397                 *alpha_a ++ = mix >> 8;
398         }
399 }
400
401 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step  )
402 {
403         register int j;
404         register int mix;
405
406         for ( j = 0; j < width; j ++ )
407         {
408                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a, step );
409                 *dest = sample_mix( *dest, *src++, mix );
410                 dest++;
411                 *dest = sample_mix( *dest, *src++, mix );
412                 dest++;
413                 *alpha_a ++ = mix >> 8;
414         }
415 }
416
417 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
418 {
419         register int j;
420         register int mix;
421
422         for ( j = 0; j < width; j ++ )
423         {
424                 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a, step );
425                 *dest = sample_mix( *dest, *src++, mix );
426                 dest++;
427                 *dest = sample_mix( *dest, *src++, mix );
428                 dest++;
429                 *alpha_a ++ = mix >> 8;
430         }
431 }
432
433 /** Composite function.
434 */
435
436 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, double softness, composite_line_fn line_fn )
437 {
438         int ret = 0;
439         int i;
440         int x_src = -geometry.x_src, y_src = -geometry.y_src;
441         int uneven_x_src = ( x_src % 2 );
442         int step = ( field > -1 ) ? 2 : 1;
443         int bpp = 2;
444         int stride_src = geometry.sw * bpp;
445         int stride_dest = width_dest * bpp;
446         int i_softness = ( 1 << 16 ) * softness;
447         int weight = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100;
448         uint32_t luma_step = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100 * ( 1.0 + softness );
449
450         // Adjust to consumer scale
451         int x = rint( geometry.item.x * width_dest / geometry.nw );
452         int y = rint( geometry.item.y * height_dest / geometry.nh );
453         int uneven_x = ( x % 2 );
454
455         // optimization points - no work to do
456         if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
457                 return ret;
458
459         if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
460                 return ret;
461
462         // cropping affects the source width
463         if ( x_src > 0 )
464         {
465                 width_src -= x_src;
466                 // and it implies cropping
467                 if ( width_src > geometry.item.w )
468                         width_src = geometry.item.w;
469         }
470
471         // cropping affects the source height
472         if ( y_src > 0 )
473         {
474                 height_src -= y_src;
475                 // and it implies cropping
476                 if ( height_src > geometry.item.h )
477                         height_src = geometry.item.h;
478         }
479
480         // crop overlay off the left edge of frame
481         if ( x < 0 )
482         {
483                 x_src = -x;
484                 width_src -= x_src;
485                 x = 0;
486         }
487
488         // crop overlay beyond right edge of frame
489         if ( x + width_src > width_dest )
490                 width_src = width_dest - x;
491
492         // crop overlay off the top edge of the frame
493         if ( y < 0 )
494         {
495                 y_src = -y;
496                 height_src -= y_src;
497                 y = 0;
498         }
499         
500         // crop overlay below bottom edge of frame
501         if ( y + height_src > height_dest )
502                 height_src = height_dest - y;
503
504         // offset pointer into overlay buffer based on cropping
505         p_src += x_src * bpp + y_src * stride_src;
506
507         // offset pointer into frame buffer based upon positive coordinates only!
508         p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
509
510         // offset pointer into alpha channel based upon cropping
511         alpha_b += x_src + y_src * stride_src / bpp;
512         alpha_a += x + y * stride_dest / bpp;
513
514         // offset pointer into luma channel based upon cropping
515         if ( p_luma )
516                 p_luma += x_src + y_src * stride_src / bpp;
517         
518         // Assuming lower field first
519         // Special care is taken to make sure the b_frame is aligned to the correct field.
520         // field 0 = lower field and y should be odd (y is 0-based).
521         // field 1 = upper field and y should be even.
522         if ( ( field > -1 ) && ( y % 2 == field ) )
523         {
524                 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
525                         p_dest += stride_dest;
526                 else
527                         p_dest -= stride_dest;
528         }
529
530         // On the second field, use the other lines from b_frame
531         if ( field == 1 )
532         {
533                 p_src += stride_src;
534                 alpha_b += stride_src / bpp;
535                 alpha_a += stride_dest / bpp;
536                 height_src--;
537         }
538
539         stride_src *= step;
540         stride_dest *= step;
541         int alpha_b_stride = stride_src / bpp;
542         int alpha_a_stride = stride_dest / bpp;
543
544         // Align chroma of source and destination
545         if ( uneven_x != uneven_x_src )
546         {
547                 p_src += 2;
548                 width_src -= 2;
549                 alpha_b += 1;
550         }
551
552         // now do the compositing only to cropped extents
553         for ( i = 0; i < height_src; i += step )
554         {
555                 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, i_softness, luma_step );
556
557                 p_src += stride_src;
558                 p_dest += stride_dest;
559                 alpha_b += alpha_b_stride;
560                 alpha_a += alpha_a_stride;
561                 if ( p_luma )
562                         p_luma += alpha_b_stride;
563         }
564
565         return ret;
566 }
567
568
569 /** Scale 16bit greyscale luma map using nearest neighbor.
570 */
571
572 static inline void
573 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
574 {
575         register int i, j;
576         register int x_step = ( src_width << 16 ) / dest_width;
577         register int y_step = ( src_height << 16 ) / dest_height;
578         register int x, y = 0;
579
580         for ( i = 0; i < dest_height; i++ )
581         {
582                 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
583                 x = 0;
584                 
585                 for ( j = 0; j < dest_width; j++ )
586                 {
587                         *dest_buf++ = src[ x >> 16 ] ^ invert;
588                         x += x_step;
589                 }
590                 y += y_step;
591         }
592 }
593
594 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
595 {
596         // The cached luma map information
597         int luma_width = mlt_properties_get_int( properties, "_luma.width" );
598         int luma_height = mlt_properties_get_int( properties, "_luma.height" );
599         uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
600         int invert = mlt_properties_get_int( properties, "luma_invert" );
601         
602         // If the filename property changed, reload the map
603         char *resource = mlt_properties_get( properties, "luma" );
604
605         char temp[ 512 ];
606
607         if ( luma_width == 0 || luma_height == 0 )
608         {
609                 luma_width = width;
610                 luma_height = height;
611         }
612
613         if ( resource && resource[0] && strchr( resource, '%' ) )
614         {
615                 // TODO: Clean up quick and dirty compressed/existence check
616                 FILE *test;
617                 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
618                 test = fopen( temp, "r" );
619                 if ( test == NULL )
620                         strcat( temp, ".png" );
621                 else
622                         fclose( test );
623                 resource = temp;
624         }
625
626         if ( resource && resource[0] )
627         {
628                 char *old_luma = mlt_properties_get( properties, "_luma" );
629                 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
630
631                 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
632                 {
633                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
634                         luma_bitmap = NULL;
635                 }
636         }
637         else {
638                 char *old_luma = mlt_properties_get( properties, "_luma" );
639                 if ( old_luma && old_luma[0] )
640                 {
641                         mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
642                         luma_bitmap = NULL;
643                         mlt_properties_set( properties, "_luma", NULL);
644                 }
645         }
646
647         if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
648         {
649                 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
650                 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
651                 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
652
653                 // Load the original luma once
654                 if ( orig_bitmap == NULL )
655                 {
656                         char *extension = strrchr( resource, '.' );
657                         
658                         // See if it is a PGM
659                         if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
660                         {
661                                 // Open PGM
662                                 FILE *f = fopen( resource, "r" );
663                                 if ( f != NULL )
664                                 {
665                                         // Load from PGM
666                                         luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
667                                         fclose( f );
668                                         
669                                         // Remember the original size for subsequent scaling
670                                         mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
671                                         mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
672                                         mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
673                                 }
674                         }
675                         else
676                         {
677                                 // Get the factory producer service
678                                 char *factory = mlt_properties_get( properties, "factory" );
679         
680                                 // Create the producer
681                                 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
682                                 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
683         
684                                 // If we have one
685                                 if ( producer != NULL )
686                                 {
687                                         // Get the producer properties
688                                         mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
689         
690                                         // Ensure that we loop
691                                         mlt_properties_set( producer_properties, "eof", "loop" );
692         
693                                         // Now pass all producer. properties on the transition down
694                                         mlt_properties_pass( producer_properties, properties, "luma." );
695         
696                                         // We will get the alpha frame from the producer
697                                         mlt_frame luma_frame = NULL;
698         
699                                         // Get the luma frame
700                                         if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
701                                         {
702                                                 uint8_t *luma_image;
703                                                 mlt_image_format luma_format = mlt_image_yuv422;
704         
705                                                 // Get image from the luma producer
706                                                 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
707                                                 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
708         
709                                                 // Generate the luma map
710                                                 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
711                                                         luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
712         
713                                                 // Remember the original size for subsequent scaling
714                                                 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
715                                                 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
716                                                 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
717                                                 
718                                                 // Cleanup the luma frame
719                                                 mlt_frame_close( luma_frame );
720                                         }
721         
722                                         // Cleanup the luma producer
723                                         mlt_producer_close( producer );
724                                 }
725                         }
726                 }
727                 // Scale luma map
728                 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
729                 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
730
731                 // Remember the scaled luma size to prevent unnecessary scaling
732                 mlt_properties_set_int( properties, "_luma.width", width );
733                 mlt_properties_set_int( properties, "_luma.height", height );
734                 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
735                 mlt_properties_set( properties, "_luma", resource );
736                 mlt_properties_set_int( properties, "_luma_invert", invert );
737         }
738         return luma_bitmap;
739 }
740
741 /** Get the properly sized image from b_frame.
742 */
743
744 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
745 {
746         int ret = 0;
747         mlt_image_format format = mlt_image_yuv422;
748
749         // Get the properties objects
750         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
751         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
752         uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
753         double consumer_ar = mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(this) ) );
754
755         // Do not scale if we are cropping - the compositing rectangle can crop the b image
756         // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
757         if ( mlt_properties_get( properties, "crop" ) )
758         {
759                 int real_width = get_value( b_props, "real_width", "width" );
760                 int real_height = get_value( b_props, "real_height", "height" );
761                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
762                 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
763                 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
764                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
765                 int scaled_height = real_height;
766                 geometry->sw = scaled_width;
767                 geometry->sh = scaled_height;
768         }
769         // Normalise aspect ratios and scale preserving aspect ratio
770         else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
771         {
772                 // Adjust b_frame pixel aspect
773                 int normalised_width = geometry->item.w;
774                 int normalised_height = geometry->item.h;
775                 int real_width = get_value( b_props, "real_width", "width" );
776                 int real_height = get_value( b_props, "real_height", "height" );
777                 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
778                 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
779                 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
780                 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
781                 int scaled_height = real_height;
782 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
783 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
784 // background_ar, output_ar);
785
786                 // Now ensure that our images fit in the normalised frame
787                 if ( scaled_width > normalised_width )
788                 {
789                         scaled_height = rint( scaled_height * normalised_width / scaled_width );
790                         scaled_width = normalised_width;
791                 }
792                 if ( scaled_height > normalised_height )
793                 {
794                         scaled_width = rint( scaled_width * normalised_height / scaled_height );
795                         scaled_height = normalised_height;
796                 }
797
798                 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
799                 // ????: Shouln't this be the default behaviour?
800                 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
801                 {
802                         if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
803                         {
804                                 scaled_width = rint( scaled_width * normalised_height / scaled_height );
805                                 scaled_height = normalised_height;
806                         }
807                         else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
808                         {
809                                 scaled_height = rint( scaled_height * normalised_width / scaled_width );
810                                 scaled_width = normalised_width;
811                         }
812                 }
813
814                 // Save the new scaled dimensions
815                 geometry->sw = scaled_width;
816                 geometry->sh = scaled_height;
817         }
818         else
819         {
820                 geometry->sw = geometry->item.w;
821                 geometry->sh = geometry->item.h;
822         }
823
824         // We want to ensure that we bypass resize now...
825         if ( resize_alpha == 0 )
826                 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
827
828         // If we're not aligned, we want a non-transparent background
829         if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
830                 mlt_properties_set_int( b_props, "resize_alpha", 255 );
831
832         // Take into consideration alignment for optimisation (titles are a special case)
833         if ( !mlt_properties_get_int( properties, "titles" ) &&
834                  mlt_properties_get( properties, "crop" ) == NULL )
835                 alignment_calculate( geometry );
836
837         // Adjust to consumer scale
838         *width = rint( geometry->sw * *width / geometry->nw );
839         *width -= *width % 2; // coerce to even width for yuv422
840         *height = rint( geometry->sh * *height / geometry->nh );
841 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
842 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
843
844         ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
845
846         // composite_yuv uses geometry->sw to determine source stride, which
847         // should equal the image width if not using crop property.
848         if ( !mlt_properties_get( properties, "crop" ) )
849                 geometry->sw = *width;
850
851         // Set the frame back
852         mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
853
854         return ret && image != NULL;
855 }
856
857 static void crop_calculate( mlt_transition this, mlt_properties properties, struct geometry_s *result, double position )
858 {
859         // Initialize panning info
860         result->x_src = 0;
861         result->y_src = 0;
862         if ( mlt_properties_get( properties, "crop" ) )
863         {
864                 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
865                 if ( !crop )
866                 {
867                         crop = mlt_geometry_init();
868                         mlt_position length = mlt_transition_get_length( this );
869                         double cycle = mlt_properties_get_double( properties, "cycle" );
870
871                         // Allow a geometry repeat cycle
872                         if ( cycle >= 1 )
873                                 length = cycle;
874                         else if ( cycle > 0 )
875                                 length *= cycle;
876                         mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
877                         mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
878                 }
879
880                 // Repeat processing
881                 int length = mlt_geometry_get_length( crop );
882                 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
883                 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
884                 if ( !repeat_off && position >= length && length != 0 )
885                 {
886                         int section = position / length;
887                         position -= section * length;
888                         if ( !mirror_off && section % 2 == 1 )
889                                 position = length - position;
890                 }
891
892                 // Compute the pan
893                 struct mlt_geometry_item_s crop_item;
894                 mlt_geometry_fetch( crop, &crop_item, position );
895                 result->x_src = rint( crop_item.x );
896                 result->y_src = rint( crop_item.y );
897         }
898 }
899
900 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
901 {
902         // Get the properties from the transition
903         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
904
905         // Get the properties from the frame
906         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
907         
908         // Structures for geometry
909         mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
910
911         // Obtain the normalised width and height from the a_frame
912         int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
913         int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
914
915         char *name = mlt_properties_get( properties, "_unique_id" );
916         char key[ 256 ];
917
918         sprintf( key, "%s.in", name );
919         if ( mlt_properties_get( a_props, key ) )
920         {
921                 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
922         }
923         else
924         {
925                 // Now parse the geometries
926                 if ( start == NULL )
927                 {
928                         // Parse the transitions properties
929                         start = transition_parse_keys( this, normalised_width, normalised_height );
930
931                         // Assign to properties to ensure we get destroyed
932                         mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
933                 }
934                 else
935                 {
936                         mlt_position length = mlt_transition_get_length( this );
937                         double cycle = mlt_properties_get_double( properties, "cycle" );
938                         if ( cycle > 1 )
939                                 length = cycle;
940                         else if ( cycle > 0 )
941                                 length *= cycle;
942                         mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
943                 }
944
945                 // Do the calculation
946                 geometry_calculate( this, result, position );
947
948                 // Assign normalised info
949                 result->nw = normalised_width;
950                 result->nh = normalised_height;
951         }
952
953         // Now parse the alignment
954         result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
955         result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
956
957         crop_calculate( this, properties, result, position );
958
959         return start;
960 }
961
962 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
963 {
964         // Create a frame to return
965         mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
966
967         // Get the properties of the a frame
968         mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
969
970         // Get the properties of the b frame
971         mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
972
973         // Get the position
974         int position = position_calculate( this, frame_position );
975
976         // Get the unique id of the transition
977         char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
978         char key[ 256 ];
979
980         // Destination image
981         uint8_t *dest = NULL;
982
983         // Get the image and dimensions
984         uint8_t *image = NULL;
985         int width = mlt_properties_get_int( a_props, "width" );
986         int height = mlt_properties_get_int( a_props, "height" );
987         mlt_image_format format = mlt_image_yuv422;
988
989         mlt_frame_get_image( a_frame, &image, &format, &width, &height, 0 );
990         if ( !image )
991                 return b_frame;
992
993         // Pointers for copy operation
994         uint8_t *p;
995
996         // Coordinates
997         int w = 0;
998         int h = 0;
999         int x = 0;
1000         int y = 0;
1001
1002         int ss = 0;
1003         int ds = 0;
1004
1005         // Will need to know region to copy
1006         struct geometry_s result;
1007
1008         // Calculate the region now
1009         composite_calculate( this, &result, a_frame, position );
1010
1011         // Need to scale down to actual dimensions
1012         x = rint( result.item.x * width / result.nw );
1013         y = rint( result.item.y * height / result.nh );
1014         w = rint( result.item.w * width / result.nw );
1015         h = rint( result.item.h * height / result.nh );
1016
1017         if ( x % 2 )
1018         {
1019                 x --;
1020                 w ++;
1021         }
1022
1023         // Store the key
1024         sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1025         mlt_properties_parse( a_props, key );
1026         sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1027         mlt_properties_parse( a_props, key );
1028
1029         ds = w * 2;
1030         ss = width * 2;
1031
1032         // Now we need to create a new destination image
1033         dest = mlt_pool_alloc( w * h * 2 );
1034
1035         // Assign to the new frame
1036         mlt_frame_set_image( b_frame, dest, w * h * 2, mlt_pool_release );
1037         mlt_properties_set_int( b_props, "width", w );
1038         mlt_properties_set_int( b_props, "height", h );
1039         mlt_properties_set_int( b_props, "format", format );
1040
1041         if ( y < 0 )
1042         {
1043                 dest += ( ds * -y );
1044                 h += y;
1045                 y = 0;
1046         }
1047
1048         if ( y + h > height )
1049                 h -= ( y + h - height );
1050
1051         if ( x < 0 )
1052         {
1053                 dest += -x * 2;
1054                 w += x;
1055                 x = 0;
1056         }
1057
1058         if ( w > 0 && h > 0 )
1059         {
1060                 // Copy the region of the image
1061                 p = image + y * ss + x * 2;
1062
1063                 while ( h -- )
1064                 {
1065                         memcpy( dest, p, w * 2 );
1066                         dest += ds;
1067                         p += ss;
1068                 }
1069         }
1070
1071         // Assign this position to the b frame
1072         mlt_frame_set_position( b_frame, frame_position );
1073         mlt_properties_set_int( b_props, "distort", 1 );
1074
1075         // Return the frame
1076         return b_frame;
1077 }
1078
1079 /** Get the image.
1080 */
1081
1082 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1083 {
1084         // Get the b frame from the stack
1085         mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1086
1087         // Get the transition from the a frame
1088         mlt_transition this = mlt_frame_pop_service( a_frame );
1089
1090         // Get in and out
1091         double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1092         int out = mlt_frame_pop_service_int( a_frame );
1093         int in = mlt_frame_pop_service_int( a_frame );
1094
1095         // Get the properties from the transition
1096         mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1097
1098         // TODO: clean up always_active behaviour
1099         if ( mlt_properties_get_int( properties, "always_active" ) )
1100         {
1101                 mlt_events_block( properties, properties );
1102                 mlt_properties_set_int( properties, "in", in );
1103                 mlt_properties_set_int( properties, "out", out );
1104                 mlt_events_unblock( properties, properties );
1105         }
1106
1107         // This compositer is yuv422 only
1108         *format = mlt_image_yuv422;
1109
1110         if ( b_frame != NULL )
1111         {
1112                 // Get the properties of the a frame
1113                 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1114
1115                 // Get the properties of the b frame
1116                 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1117
1118                 // Structures for geometry
1119                 struct geometry_s result;
1120
1121                 // Calculate the position
1122                 double delta = mlt_transition_get_progress_delta( this, a_frame );
1123                 mlt_position length = mlt_transition_get_length( this );
1124
1125                 // Get the image from the b frame
1126                 uint8_t *image_b = NULL;
1127                 int width_b = *width > 0 ? *width : mlt_properties_get_int( a_props, "normalised_width" );
1128                 int height_b = *height > 0 ? *height : mlt_properties_get_int( a_props, "normalised_height" );
1129         
1130                 // Vars for alphas
1131                 uint8_t *alpha_a = NULL;
1132                 uint8_t *alpha_b = NULL;
1133
1134                 // Do the calculation
1135                 // NB: Locks needed here since the properties are being modified
1136                 int invert = mlt_properties_get_int( properties, "invert" );
1137                 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1138                 composite_calculate( this, &result, invert ? b_frame : a_frame, position );
1139                 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1140
1141                 // Manual option to deinterlace
1142                 if ( mlt_properties_get_int( properties, "deinterlace" ) )
1143                 {
1144                         mlt_properties_set_int( a_props, "consumer_deinterlace", 1 );
1145                         mlt_properties_set_int( b_props, "consumer_deinterlace", 1 );
1146                 }
1147
1148                 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1149                 if ( mlt_properties_get_int( properties, "no_alpha" ) && 
1150                          result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1151                 {
1152                         mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1153                         if ( !mlt_frame_is_test_card( a_frame ) )
1154                                 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1155                         return 0;
1156                 }
1157
1158                 if ( a_frame == b_frame )
1159                 {
1160                         double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1161                         get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1162                         alpha_b = mlt_frame_get_alpha_mask( b_frame );
1163                         mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1164                 }
1165
1166                 // Get the image from the a frame
1167                 mlt_frame_get_image( a_frame, invert ? &image_b : image, format, width, height, 1 );
1168                 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1169
1170                 // Optimisation - no compositing required
1171                 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1172                         return 0;
1173
1174                 // Need to keep the width/height of the a_frame on the b_frame for titling
1175                 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1176                 {
1177                         mlt_properties_set_int( a_props, "dest_width", *width );
1178                         mlt_properties_set_int( a_props, "dest_height", *height );
1179                         mlt_properties_set_int( b_props, "dest_width", *width );
1180                         mlt_properties_set_int( b_props, "dest_height", *height );
1181                 }
1182                 else
1183                 {
1184                         mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1185                         mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1186                 }
1187
1188                 // Special case for titling...
1189                 if ( mlt_properties_get_int( properties, "titles" ) )
1190                 {
1191                         if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1192                                 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1193                         width_b = mlt_properties_get_int( a_props, "dest_width" );
1194                         height_b = mlt_properties_get_int( a_props, "dest_height" );
1195                 }
1196
1197                 if ( *image != image_b && ( ( invert ? 0 : image_b ) || get_b_frame_image( this, b_frame, invert ? image : &image_b, &width_b, &height_b, &result ) == 0 ) )
1198                 {
1199                         uint8_t *dest = *image;
1200                         uint8_t *src = image_b;
1201                         int progressive = 
1202                                         mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1203                                         mlt_properties_get_int( properties, "progressive" );
1204                         int field;
1205                         
1206                         double luma_softness = mlt_properties_get_double( properties, "softness" );
1207                         mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1208                         uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1209                         mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1210                         char *operator = mlt_properties_get( properties, "operator" );
1211
1212                         alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1213
1214                         composite_line_fn line_fn = composite_line_yuv;
1215
1216                         // Replacement and override
1217                         if ( operator != NULL )
1218                         {
1219                                 if ( !strcmp( operator, "or" ) )
1220                                         line_fn = composite_line_yuv_or;
1221                                 if ( !strcmp( operator, "and" ) )
1222                                         line_fn = composite_line_yuv_and;
1223                                 if ( !strcmp( operator, "xor" ) )
1224                                         line_fn = composite_line_yuv_xor;
1225                         }
1226
1227                         // Allow the user to completely obliterate the alpha channels from both frames
1228                         if ( mlt_properties_get( properties, "alpha_a" ) )
1229                                 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1230
1231                         if ( mlt_properties_get( properties, "alpha_b" ) )
1232                                 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1233
1234                         for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1235                         {
1236                                 // Assume lower field (0) first
1237                                 double field_position = position + field * delta * length;
1238                                 
1239                                 // Do the calculation if we need to
1240                                 // NB: Locks needed here since the properties are being modified
1241                                 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1242                                 composite_calculate( this, &result, invert ? b_frame : a_frame, field_position );
1243                                 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1244
1245                                 if ( mlt_properties_get_int( properties, "titles" ) )
1246                                 {
1247                                         result.item.w = rint( *width * ( result.item.w / result.nw ) );
1248                                         result.nw = result.item.w;
1249                                         result.item.h = rint( *height * ( result.item.h / result.nh ) );
1250                                         result.nh = *height;
1251                                         result.sw = width_b;
1252                                         result.sh = height_b;
1253                                 }
1254
1255                                 // Enforce cropping
1256                                 if ( mlt_properties_get( properties, "crop" ) )
1257                                 {
1258                                         if ( result.x_src == 0 )
1259                                                 width_b = width_b > result.item.w ? result.item.w : width_b;
1260                                         if ( result.y_src == 0 )
1261                                                 height_b = height_b > result.item.h ? result.item.h : height_b;
1262                                 }
1263                                 else
1264                                 {
1265                                         // Otherwise, align
1266                                         alignment_calculate( &result );
1267                                 }
1268
1269                                 // Composite the b_frame on the a_frame
1270                                 if ( invert )
1271                                         composite_yuv( dest, width_b, height_b, src, *width, *height, alpha_a, alpha_b, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1272                                 else
1273                                         composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1274                         }
1275                 }
1276         }
1277         else
1278         {
1279                 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1280         }
1281
1282         return 0;
1283 }
1284
1285 /** Composition transition processing.
1286 */
1287
1288 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1289 {
1290         // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1291         if ( mlt_properties_get_int(  MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1292         {
1293                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1294                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1295                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1296         }
1297         else
1298         {
1299                 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1300                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1301                 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1302                 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1303         }
1304         
1305         mlt_frame_push_service( a_frame, this );
1306         mlt_frame_push_frame( a_frame, b_frame );
1307         mlt_frame_push_get_image( a_frame, transition_get_image );
1308         return a_frame;
1309 }
1310
1311 /** Constructor for the filter.
1312 */
1313
1314 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1315 {
1316         mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1317         if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1318         {
1319                 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1320                 
1321                 this->process = composite_process;
1322                 
1323                 // Default starting motion and zoom
1324                 mlt_properties_set( properties, "start", arg != NULL ? arg : "0/0:100%x100%" );
1325                 
1326                 // Default factory
1327                 mlt_properties_set( properties, "factory", mlt_environment( "MLT_PRODUCER" ) );
1328
1329                 // Use alignment (and hence alpha of b frame)
1330                 mlt_properties_set_int( properties, "aligned", 1 );
1331
1332                 // Default to progressive rendering
1333                 mlt_properties_set_int( properties, "progressive", 1 );
1334                 
1335                 // Inform apps and framework that this is a video only transition
1336                 mlt_properties_set_int( properties, "_transition_type", 1 );
1337         }
1338         return this;
1339 }