2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, uint32_t step );
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
48 /** Parse the alignment properties into the geometry.
51 static int alignment_parse( char* align )
56 else if ( isdigit( align[ 0 ] ) )
58 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
60 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
66 /** Calculate real geometry.
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
71 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75 int length = mlt_geometry_get_length( geometry );
78 if ( !repeat_off && position >= length && length != 0 )
80 int section = position / length;
81 position -= section * length;
82 if ( !mirror_off && section % 2 == 1 )
83 position = length - position;
86 // Fetch the key for the position
87 mlt_geometry_fetch( geometry, &output->item, position );
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
92 // Loop variable for property interrogation
95 // Get the properties of the transition
96 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
98 // Create an empty geometries object
99 mlt_geometry geometry = mlt_geometry_init( );
102 mlt_position length = mlt_transition_get_length( this );
103 double cycle = mlt_properties_get_double( properties, "cycle" );
105 // Get the new style geometry string
106 char *property = mlt_properties_get( properties, "geometry" );
108 // Allow a geometry repeat cycle
111 else if ( cycle > 0 )
114 // Parse the geometry if we have one
115 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
117 // Check if we're using the old style geometry
118 if ( property == NULL )
120 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
121 // practical use - while deprecated, it has been slightly extended too - keys can now
122 // be specified out of order, and can be blanked or NULL to simulate removal
124 // Structure to use for parsing and inserting
125 struct mlt_geometry_item_s item;
127 // Parse the start property
129 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130 mlt_geometry_insert( geometry, &item );
132 // Parse the keys in between
133 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
135 // Get the name of the property
136 char *name = mlt_properties_get_name( properties, i );
138 // Check that it's valid
139 if ( !strncmp( name, "key[", 4 ) )
141 // Get the value of the property
142 char *value = mlt_properties_get_value( properties, i );
144 // Determine the frame number
145 item.frame = atoi( name + 4 );
147 // Parse and add to the list
148 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149 mlt_geometry_insert( geometry, &item );
151 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
157 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158 mlt_geometry_insert( geometry, &item );
164 /** Adjust position according to scaled size and alignment properties.
167 static void alignment_calculate( struct geometry_s *geometry )
169 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
173 /** Calculate the position for this frame.
176 static int position_calculate( mlt_transition this, mlt_position position )
178 // Get the in and out position
179 mlt_position in = mlt_transition_get_in( this );
182 return position - in;
185 /** Calculate the field delta for this frame - position between two frames.
188 static int get_value( mlt_properties properties, const char *preferred, const char *fallback )
190 int value = mlt_properties_get_int( properties, preferred );
192 value = mlt_properties_get_int( properties, fallback );
196 /** A linear threshold determination function.
199 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
207 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
210 /** A smoother, non-linear threshold determination function.
213 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
221 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
223 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
226 /** Load the luma map from PGM stream.
229 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
231 uint8_t *data = NULL;
243 // get the magic code
244 if ( fgets( line, 127, f ) == NULL )
248 while ( sscanf( line, " #%s", comment ) > 0 )
249 if ( fgets( line, 127, f ) == NULL )
252 if ( line[0] != 'P' || line[1] != '5' )
255 // skip white space and see if a new line must be fetched
256 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
257 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
261 while ( sscanf( line, " #%s", comment ) > 0 )
262 if ( fgets( line, 127, f ) == NULL )
265 // get the dimensions
266 if ( line[0] == 'P' )
267 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
269 i = sscanf( line, "%d %d %d", width, height, &maxval );
271 // get the height value, if not yet
274 if ( fgets( line, 127, f ) == NULL )
278 while ( sscanf( line, " #%s", comment ) > 0 )
279 if ( fgets( line, 127, f ) == NULL )
282 i = sscanf( line, "%d", height );
289 // get the maximum gray value, if not yet
292 if ( fgets( line, 127, f ) == NULL )
296 while ( sscanf( line, " #%s", comment ) > 0 )
297 if ( fgets( line, 127, f ) == NULL )
300 i = sscanf( line, "%d", &maxval );
305 // determine if this is one or two bytes per pixel
306 bpp = maxval > 255 ? 2 : 1;
308 // allocate temporary storage for the raw data
309 data = mlt_pool_alloc( *width * *height * bpp );
314 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
317 // allocate the luma bitmap
318 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
322 // proces the raw data into the luma bitmap
323 for ( i = 0; i < *width * *height * bpp; i += bpp )
326 *p++ = data[ i ] << 8;
328 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
335 mlt_pool_release( data );
338 /** Generate a luma map from any YUV image.
341 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
345 // allocate the luma bitmap
346 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
350 // proces the image data into the luma bitmap
351 for ( i = 0; i < width * height * 2; i += 2 )
352 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
355 static inline int calculate_mix( uint16_t *luma, int j, int softness, int weight, int alpha, uint32_t step )
357 return ( ( luma ? smoothstep( luma[ j ], luma[ j ] + softness, step ) : weight ) * alpha ) >> 8;
360 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
362 return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
365 /** Composite a source line over a destination line
368 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
373 for ( j = 0; j < width; j ++ )
375 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++, step );
376 *dest = sample_mix( *dest, *src++, mix );
378 *dest = sample_mix( *dest, *src++, mix );
380 *alpha_a = ( mix >> 8 ) | *alpha_a;
385 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
390 for ( j = 0; j < width; j ++ )
392 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a, step );
393 *dest = sample_mix( *dest, *src++, mix );
395 *dest = sample_mix( *dest, *src++, mix );
397 *alpha_a ++ = mix >> 8;
401 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
406 for ( j = 0; j < width; j ++ )
408 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a, step );
409 *dest = sample_mix( *dest, *src++, mix );
411 *dest = sample_mix( *dest, *src++, mix );
413 *alpha_a ++ = mix >> 8;
417 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft, uint32_t step )
422 for ( j = 0; j < width; j ++ )
424 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a, step );
425 *dest = sample_mix( *dest, *src++, mix );
427 *dest = sample_mix( *dest, *src++, mix );
429 *alpha_a ++ = mix >> 8;
433 /** Composite function.
436 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, double softness, composite_line_fn line_fn )
440 int x_src = -geometry.x_src, y_src = -geometry.y_src;
441 int uneven_x_src = ( x_src % 2 );
442 int step = ( field > -1 ) ? 2 : 1;
444 int stride_src = geometry.sw * bpp;
445 int stride_dest = width_dest * bpp;
446 int i_softness = ( 1 << 16 ) * softness;
447 int weight = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100;
448 uint32_t luma_step = ( ( 1 << 16 ) - 1 ) * geometry.item.mix / 100 * ( 1.0 + softness );
450 // Adjust to consumer scale
451 int x = rint( geometry.item.x * width_dest / geometry.nw );
452 int y = rint( geometry.item.y * height_dest / geometry.nh );
453 int uneven_x = ( x % 2 );
455 // optimization points - no work to do
456 if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
459 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
462 // cropping affects the source width
466 // and it implies cropping
467 if ( width_src > geometry.item.w )
468 width_src = geometry.item.w;
471 // cropping affects the source height
475 // and it implies cropping
476 if ( height_src > geometry.item.h )
477 height_src = geometry.item.h;
480 // crop overlay off the left edge of frame
488 // crop overlay beyond right edge of frame
489 if ( x + width_src > width_dest )
490 width_src = width_dest - x;
492 // crop overlay off the top edge of the frame
500 // crop overlay below bottom edge of frame
501 if ( y + height_src > height_dest )
502 height_src = height_dest - y;
504 // offset pointer into overlay buffer based on cropping
505 p_src += x_src * bpp + y_src * stride_src;
507 // offset pointer into frame buffer based upon positive coordinates only!
508 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
510 // offset pointer into alpha channel based upon cropping
511 alpha_b += x_src + y_src * stride_src / bpp;
512 alpha_a += x + y * stride_dest / bpp;
514 // offset pointer into luma channel based upon cropping
516 p_luma += x_src + y_src * stride_src / bpp;
518 // Assuming lower field first
519 // Special care is taken to make sure the b_frame is aligned to the correct field.
520 // field 0 = lower field and y should be odd (y is 0-based).
521 // field 1 = upper field and y should be even.
522 if ( ( field > -1 ) && ( y % 2 == field ) )
524 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
525 p_dest += stride_dest;
527 p_dest -= stride_dest;
530 // On the second field, use the other lines from b_frame
534 alpha_b += stride_src / bpp;
535 alpha_a += stride_dest / bpp;
541 int alpha_b_stride = stride_src / bpp;
542 int alpha_a_stride = stride_dest / bpp;
544 // Align chroma of source and destination
545 if ( uneven_x != uneven_x_src )
552 // now do the compositing only to cropped extents
553 for ( i = 0; i < height_src; i += step )
555 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, i_softness, luma_step );
558 p_dest += stride_dest;
559 alpha_b += alpha_b_stride;
560 alpha_a += alpha_a_stride;
562 p_luma += alpha_b_stride;
569 /** Scale 16bit greyscale luma map using nearest neighbor.
573 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
576 register int x_step = ( src_width << 16 ) / dest_width;
577 register int y_step = ( src_height << 16 ) / dest_height;
578 register int x, y = 0;
580 for ( i = 0; i < dest_height; i++ )
582 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
585 for ( j = 0; j < dest_width; j++ )
587 *dest_buf++ = src[ x >> 16 ] ^ invert;
594 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
596 // The cached luma map information
597 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
598 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
599 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
600 int invert = mlt_properties_get_int( properties, "luma_invert" );
602 // If the filename property changed, reload the map
603 char *resource = mlt_properties_get( properties, "luma" );
607 if ( luma_width == 0 || luma_height == 0 )
610 luma_height = height;
613 if ( resource && resource[0] && strchr( resource, '%' ) )
615 // TODO: Clean up quick and dirty compressed/existence check
617 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
618 test = fopen( temp, "r" );
620 strcat( temp, ".png" );
626 if ( resource && resource[0] )
628 char *old_luma = mlt_properties_get( properties, "_luma" );
629 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
631 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
633 mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
638 char *old_luma = mlt_properties_get( properties, "_luma" );
639 if ( old_luma && old_luma[0] )
641 mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
643 mlt_properties_set( properties, "_luma", NULL);
647 if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
649 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
650 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
651 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
653 // Load the original luma once
654 if ( orig_bitmap == NULL )
656 char *extension = strrchr( resource, '.' );
658 // See if it is a PGM
659 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
662 FILE *f = fopen( resource, "r" );
666 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
669 // Remember the original size for subsequent scaling
670 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
671 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
672 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
677 // Get the factory producer service
678 char *factory = mlt_properties_get( properties, "factory" );
680 // Create the producer
681 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
682 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
685 if ( producer != NULL )
687 // Get the producer properties
688 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
690 // Ensure that we loop
691 mlt_properties_set( producer_properties, "eof", "loop" );
693 // Now pass all producer. properties on the transition down
694 mlt_properties_pass( producer_properties, properties, "luma." );
696 // We will get the alpha frame from the producer
697 mlt_frame luma_frame = NULL;
699 // Get the luma frame
700 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
703 mlt_image_format luma_format = mlt_image_yuv422;
705 // Get image from the luma producer
706 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
707 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
709 // Generate the luma map
710 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
711 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
713 // Remember the original size for subsequent scaling
714 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
715 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
716 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
718 // Cleanup the luma frame
719 mlt_frame_close( luma_frame );
722 // Cleanup the luma producer
723 mlt_producer_close( producer );
728 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
729 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
731 // Remember the scaled luma size to prevent unnecessary scaling
732 mlt_properties_set_int( properties, "_luma.width", width );
733 mlt_properties_set_int( properties, "_luma.height", height );
734 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
735 mlt_properties_set( properties, "_luma", resource );
736 mlt_properties_set_int( properties, "_luma_invert", invert );
741 /** Get the properly sized image from b_frame.
744 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
747 mlt_image_format format = mlt_image_yuv422;
749 // Get the properties objects
750 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
751 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
752 uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
753 double consumer_ar = mlt_profile_sar( mlt_service_profile( MLT_TRANSITION_SERVICE(this) ) );
755 // Do not scale if we are cropping - the compositing rectangle can crop the b image
756 // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
757 if ( mlt_properties_get( properties, "crop" ) )
759 int real_width = get_value( b_props, "real_width", "width" );
760 int real_height = get_value( b_props, "real_height", "height" );
761 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
762 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
763 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
764 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
765 int scaled_height = real_height;
766 geometry->sw = scaled_width;
767 geometry->sh = scaled_height;
769 // Normalise aspect ratios and scale preserving aspect ratio
770 else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
772 // Adjust b_frame pixel aspect
773 int normalised_width = geometry->item.w;
774 int normalised_height = geometry->item.h;
775 int real_width = get_value( b_props, "real_width", "width" );
776 int real_height = get_value( b_props, "real_height", "height" );
777 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
778 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
779 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
780 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
781 int scaled_height = real_height;
782 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
783 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
784 // background_ar, output_ar);
786 // Now ensure that our images fit in the normalised frame
787 if ( scaled_width > normalised_width )
789 scaled_height = rint( scaled_height * normalised_width / scaled_width );
790 scaled_width = normalised_width;
792 if ( scaled_height > normalised_height )
794 scaled_width = rint( scaled_width * normalised_height / scaled_height );
795 scaled_height = normalised_height;
798 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
799 // ????: Shouln't this be the default behaviour?
800 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
802 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
804 scaled_width = rint( scaled_width * normalised_height / scaled_height );
805 scaled_height = normalised_height;
807 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
809 scaled_height = rint( scaled_height * normalised_width / scaled_width );
810 scaled_width = normalised_width;
814 // Save the new scaled dimensions
815 geometry->sw = scaled_width;
816 geometry->sh = scaled_height;
820 geometry->sw = geometry->item.w;
821 geometry->sh = geometry->item.h;
824 // We want to ensure that we bypass resize now...
825 if ( resize_alpha == 0 )
826 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
828 // If we're not aligned, we want a non-transparent background
829 if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
830 mlt_properties_set_int( b_props, "resize_alpha", 255 );
832 // Take into consideration alignment for optimisation (titles are a special case)
833 if ( !mlt_properties_get_int( properties, "titles" ) &&
834 mlt_properties_get( properties, "crop" ) == NULL )
835 alignment_calculate( geometry );
837 // Adjust to consumer scale
838 *width = rint( geometry->sw * *width / geometry->nw );
839 *width -= *width % 2; // coerce to even width for yuv422
840 *height = rint( geometry->sh * *height / geometry->nh );
841 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
842 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
844 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
846 // composite_yuv uses geometry->sw to determine source stride, which
847 // should equal the image width if not using crop property.
848 if ( !mlt_properties_get( properties, "crop" ) )
849 geometry->sw = *width;
851 // Set the frame back
852 mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
854 return ret && image != NULL;
857 static void crop_calculate( mlt_transition this, mlt_properties properties, struct geometry_s *result, double position )
859 // Initialize panning info
862 if ( mlt_properties_get( properties, "crop" ) )
864 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
867 crop = mlt_geometry_init();
868 mlt_position length = mlt_transition_get_length( this );
869 double cycle = mlt_properties_get_double( properties, "cycle" );
871 // Allow a geometry repeat cycle
874 else if ( cycle > 0 )
876 mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
877 mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
881 int length = mlt_geometry_get_length( crop );
882 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
883 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
884 if ( !repeat_off && position >= length && length != 0 )
886 int section = position / length;
887 position -= section * length;
888 if ( !mirror_off && section % 2 == 1 )
889 position = length - position;
893 struct mlt_geometry_item_s crop_item;
894 mlt_geometry_fetch( crop, &crop_item, position );
895 result->x_src = rint( crop_item.x );
896 result->y_src = rint( crop_item.y );
900 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
902 // Get the properties from the transition
903 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
905 // Get the properties from the frame
906 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
908 // Structures for geometry
909 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
911 // Obtain the normalised width and height from the a_frame
912 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
913 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
915 char *name = mlt_properties_get( properties, "_unique_id" );
918 sprintf( key, "%s.in", name );
919 if ( mlt_properties_get( a_props, key ) )
921 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
925 // Now parse the geometries
928 // Parse the transitions properties
929 start = transition_parse_keys( this, normalised_width, normalised_height );
931 // Assign to properties to ensure we get destroyed
932 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
936 mlt_position length = mlt_transition_get_length( this );
937 double cycle = mlt_properties_get_double( properties, "cycle" );
940 else if ( cycle > 0 )
942 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
945 // Do the calculation
946 geometry_calculate( this, result, position );
948 // Assign normalised info
949 result->nw = normalised_width;
950 result->nh = normalised_height;
953 // Now parse the alignment
954 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
955 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
957 crop_calculate( this, properties, result, position );
962 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
964 // Create a frame to return
965 mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
967 // Get the properties of the a frame
968 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
970 // Get the properties of the b frame
971 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
974 int position = position_calculate( this, frame_position );
976 // Get the unique id of the transition
977 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
981 uint8_t *dest = NULL;
983 // Get the image and dimensions
984 uint8_t *image = NULL;
985 int width = mlt_properties_get_int( a_props, "width" );
986 int height = mlt_properties_get_int( a_props, "height" );
987 mlt_image_format format = mlt_image_yuv422;
989 mlt_frame_get_image( a_frame, &image, &format, &width, &height, 0 );
993 // Pointers for copy operation
1005 // Will need to know region to copy
1006 struct geometry_s result;
1008 // Calculate the region now
1009 composite_calculate( this, &result, a_frame, position );
1011 // Need to scale down to actual dimensions
1012 x = rint( result.item.x * width / result.nw );
1013 y = rint( result.item.y * height / result.nh );
1014 w = rint( result.item.w * width / result.nw );
1015 h = rint( result.item.h * height / result.nh );
1024 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1025 mlt_properties_parse( a_props, key );
1026 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1027 mlt_properties_parse( a_props, key );
1032 // Now we need to create a new destination image
1033 dest = mlt_pool_alloc( w * h * 2 );
1035 // Assign to the new frame
1036 mlt_frame_set_image( b_frame, dest, w * h * 2, mlt_pool_release );
1037 mlt_properties_set_int( b_props, "width", w );
1038 mlt_properties_set_int( b_props, "height", h );
1039 mlt_properties_set_int( b_props, "format", format );
1043 dest += ( ds * -y );
1048 if ( y + h > height )
1049 h -= ( y + h - height );
1058 if ( w > 0 && h > 0 )
1060 // Copy the region of the image
1061 p = image + y * ss + x * 2;
1065 memcpy( dest, p, w * 2 );
1071 // Assign this position to the b frame
1072 mlt_frame_set_position( b_frame, frame_position );
1073 mlt_properties_set_int( b_props, "distort", 1 );
1082 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1084 // Get the b frame from the stack
1085 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1087 // Get the transition from the a frame
1088 mlt_transition this = mlt_frame_pop_service( a_frame );
1091 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1092 int out = mlt_frame_pop_service_int( a_frame );
1093 int in = mlt_frame_pop_service_int( a_frame );
1095 // Get the properties from the transition
1096 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1098 // TODO: clean up always_active behaviour
1099 if ( mlt_properties_get_int( properties, "always_active" ) )
1101 mlt_events_block( properties, properties );
1102 mlt_properties_set_int( properties, "in", in );
1103 mlt_properties_set_int( properties, "out", out );
1104 mlt_events_unblock( properties, properties );
1107 // This compositer is yuv422 only
1108 *format = mlt_image_yuv422;
1110 if ( b_frame != NULL )
1112 // Get the properties of the a frame
1113 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1115 // Get the properties of the b frame
1116 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1118 // Structures for geometry
1119 struct geometry_s result;
1121 // Calculate the position
1122 double delta = mlt_transition_get_progress_delta( this, a_frame );
1123 mlt_position length = mlt_transition_get_length( this );
1125 // Get the image from the b frame
1126 uint8_t *image_b = NULL;
1127 int width_b = *width > 0 ? *width : mlt_properties_get_int( a_props, "normalised_width" );
1128 int height_b = *height > 0 ? *height : mlt_properties_get_int( a_props, "normalised_height" );
1131 uint8_t *alpha_a = NULL;
1132 uint8_t *alpha_b = NULL;
1134 // Do the calculation
1135 // NB: Locks needed here since the properties are being modified
1136 int invert = mlt_properties_get_int( properties, "invert" );
1137 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1138 composite_calculate( this, &result, invert ? b_frame : a_frame, position );
1139 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1141 // Manual option to deinterlace
1142 if ( mlt_properties_get_int( properties, "deinterlace" ) )
1144 mlt_properties_set_int( a_props, "consumer_deinterlace", 1 );
1145 mlt_properties_set_int( b_props, "consumer_deinterlace", 1 );
1148 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1149 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1150 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1152 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1153 if ( !mlt_frame_is_test_card( a_frame ) )
1154 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1158 if ( a_frame == b_frame )
1160 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1161 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1162 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1163 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1166 // Get the image from the a frame
1167 mlt_frame_get_image( a_frame, invert ? &image_b : image, format, width, height, 1 );
1168 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1170 // Optimisation - no compositing required
1171 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1174 // Need to keep the width/height of the a_frame on the b_frame for titling
1175 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1177 mlt_properties_set_int( a_props, "dest_width", *width );
1178 mlt_properties_set_int( a_props, "dest_height", *height );
1179 mlt_properties_set_int( b_props, "dest_width", *width );
1180 mlt_properties_set_int( b_props, "dest_height", *height );
1184 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1185 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1188 // Special case for titling...
1189 if ( mlt_properties_get_int( properties, "titles" ) )
1191 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1192 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1193 width_b = mlt_properties_get_int( a_props, "dest_width" );
1194 height_b = mlt_properties_get_int( a_props, "dest_height" );
1197 if ( *image != image_b && ( ( invert ? 0 : image_b ) || get_b_frame_image( this, b_frame, invert ? image : &image_b, &width_b, &height_b, &result ) == 0 ) )
1199 uint8_t *dest = *image;
1200 uint8_t *src = image_b;
1202 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1203 mlt_properties_get_int( properties, "progressive" );
1206 double luma_softness = mlt_properties_get_double( properties, "softness" );
1207 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1208 uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1209 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1210 char *operator = mlt_properties_get( properties, "operator" );
1212 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1214 composite_line_fn line_fn = composite_line_yuv;
1216 // Replacement and override
1217 if ( operator != NULL )
1219 if ( !strcmp( operator, "or" ) )
1220 line_fn = composite_line_yuv_or;
1221 if ( !strcmp( operator, "and" ) )
1222 line_fn = composite_line_yuv_and;
1223 if ( !strcmp( operator, "xor" ) )
1224 line_fn = composite_line_yuv_xor;
1227 // Allow the user to completely obliterate the alpha channels from both frames
1228 if ( mlt_properties_get( properties, "alpha_a" ) )
1229 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1231 if ( mlt_properties_get( properties, "alpha_b" ) )
1232 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1234 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1236 // Assume lower field (0) first
1237 double field_position = position + field * delta * length;
1239 // Do the calculation if we need to
1240 // NB: Locks needed here since the properties are being modified
1241 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1242 composite_calculate( this, &result, invert ? b_frame : a_frame, field_position );
1243 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1245 if ( mlt_properties_get_int( properties, "titles" ) )
1247 result.item.w = rint( *width * ( result.item.w / result.nw ) );
1248 result.nw = result.item.w;
1249 result.item.h = rint( *height * ( result.item.h / result.nh ) );
1250 result.nh = *height;
1251 result.sw = width_b;
1252 result.sh = height_b;
1256 if ( mlt_properties_get( properties, "crop" ) )
1258 if ( result.x_src == 0 )
1259 width_b = width_b > result.item.w ? result.item.w : width_b;
1260 if ( result.y_src == 0 )
1261 height_b = height_b > result.item.h ? result.item.h : height_b;
1266 alignment_calculate( &result );
1269 // Composite the b_frame on the a_frame
1271 composite_yuv( dest, width_b, height_b, src, *width, *height, alpha_a, alpha_b, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1273 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1279 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1285 /** Composition transition processing.
1288 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1290 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1291 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1293 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1294 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1295 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1299 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1300 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1301 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1302 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1305 mlt_frame_push_service( a_frame, this );
1306 mlt_frame_push_frame( a_frame, b_frame );
1307 mlt_frame_push_get_image( a_frame, transition_get_image );
1311 /** Constructor for the filter.
1314 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1316 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1317 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1319 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1321 this->process = composite_process;
1323 // Default starting motion and zoom
1324 mlt_properties_set( properties, "start", arg != NULL ? arg : "0/0:100%x100%" );
1327 mlt_properties_set( properties, "factory", mlt_environment( "MLT_PRODUCER" ) );
1329 // Use alignment (and hence alpha of b frame)
1330 mlt_properties_set_int( properties, "aligned", 1 );
1332 // Default to progressive rendering
1333 mlt_properties_set_int( properties, "progressive", 1 );
1335 // Inform apps and framework that this is a video only transition
1336 mlt_properties_set_int( properties, "_transition_type", 1 );