]> git.sesse.net Git - ffmpeg/blob - tools/python/convert_from_tensorflow.py
dnn/native: add native support for minimum
[ffmpeg] / tools / python / convert_from_tensorflow.py
1 # Copyright (c) 2019 Guo Yejun
2 #
3 # This file is part of FFmpeg.
4 #
5 # FFmpeg is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License, or (at your option) any later version.
9 #
10 # FFmpeg is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with FFmpeg; if not, write to the Free Software
17 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 # ==============================================================================
19
20 import tensorflow as tf
21 import numpy as np
22 import sys, struct
23 import convert_header as header
24
25 __all__ = ['convert_from_tensorflow']
26
27 class Operand(object):
28     IOTYPE_INPUT = 1
29     IOTYPE_OUTPUT = 2
30     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31     DTYPE_FLOAT = 1
32     DTYPE_UINT8 = 4
33     index = 0
34     def __init__(self, name, dtype, dims):
35         self.name = name
36         self.dtype = dtype
37         self.dims = dims
38         self.iotype = 0
39         self.used_count = 0
40         self.index = Operand.index
41         Operand.index = Operand.index + 1
42         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44
45     def add_iotype(self, iotype):
46         self.iotype = self.iotype | iotype
47         if iotype == Operand.IOTYPE_INPUT:
48             self.used_count = self.used_count + 1
49
50     def __str__(self):
51         return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index,
52                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53                             self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count)
54
55     def __lt__(self, other):
56         return self.index < other.index
57
58 class TFConverter:
59     def __init__(self, graph_def, nodes, outfile, dump4tb):
60         self.graph_def = graph_def
61         self.nodes = nodes
62         self.outfile = outfile
63         self.dump4tb = dump4tb
64         self.layer_number = 0
65         self.output_names = []
66         self.name_node_dict = {}
67         self.edges = {}
68         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69         self.conv_paddings = {'VALID':0, 'SAME':1}
70         self.converted_nodes = set()
71         self.conv2d_scope_names = set()
72         self.conv2d_scopename_inputname_dict = {}
73         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5}
74         self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4}
75         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
76         self.name_operand_dict = {}
77
78
79     def add_operand(self, name, type):
80         node = self.name_node_dict[name]
81         if name not in self.name_operand_dict:
82             dtype = node.attr['dtype'].type
83             if dtype == 0:
84                 dtype = node.attr['T'].type
85             dims = [-1,-1,-1,-1]
86             if 'shape' in node.attr:
87                 dims[0] = node.attr['shape'].shape.dim[0].size
88                 dims[1] = node.attr['shape'].shape.dim[1].size
89                 dims[2] = node.attr['shape'].shape.dim[2].size
90                 dims[3] = node.attr['shape'].shape.dim[3].size
91             operand = Operand(name, dtype, dims)
92             self.name_operand_dict[name] = operand;
93         self.name_operand_dict[name].add_iotype(type)
94         return self.name_operand_dict[name].index
95
96
97     def dump_for_tensorboard(self):
98         graph = tf.get_default_graph()
99         tf.import_graph_def(self.graph_def, name="")
100         tf.summary.FileWriter('/tmp/graph', graph)
101         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
102
103
104     def get_conv2d_params(self, conv2d_scope_name):
105         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
106         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
107
108         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
109             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
110         else:
111             dnode = None
112
113         # the BiasAdd name is possible be changed into the output name,
114         # if activation is None, and BiasAdd.next is the last op which is Identity
115         if conv2d_scope_name + '/BiasAdd' in self.edges:
116             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
117             if anode.op not in self.conv_activations:
118                 anode = None
119         else:
120             anode = None
121         return knode, bnode, dnode, anode
122
123
124     def dump_complex_conv2d_to_file(self, node, f):
125         assert(node.op == 'Conv2D')
126         self.layer_number = self.layer_number + 1
127         self.converted_nodes.add(node.name)
128
129         scope_name = TFConverter.get_scope_name(node.name)
130         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
131         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
132
133         if dnode is not None:
134             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
135         else:
136             dilation = 1
137
138         if anode is not None:
139             activation = anode.op
140         else:
141             activation = 'None'
142
143         padding = node.attr['padding'].s.decode("utf-8")
144         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
145         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
146             if self.name_node_dict[scope_name + '/stack'].op == "Const":
147                 padding = 'SAME'
148         padding = self.conv_paddings[padding]
149
150         ktensor = knode.attr['value'].tensor
151         filter_height = ktensor.tensor_shape.dim[0].size
152         filter_width = ktensor.tensor_shape.dim[1].size
153         in_channels = ktensor.tensor_shape.dim[2].size
154         out_channels = ktensor.tensor_shape.dim[3].size
155         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
156         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
157         kernel = np.transpose(kernel, [3, 0, 1, 2])
158
159         has_bias = 1
160         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
161         kernel.tofile(f)
162
163         btensor = bnode.attr['value'].tensor
164         if btensor.tensor_shape.dim[0].size == 1:
165             bias = struct.pack("f", btensor.float_val[0])
166         else:
167             bias = btensor.tensor_content
168         f.write(bias)
169
170         input_name = self.conv2d_scopename_inputname_dict[scope_name]
171         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
172
173         if anode is not None:
174             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
175         else:
176             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
177         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
178
179
180     def dump_simple_conv2d_to_file(self, node, f):
181         assert(node.op == 'Conv2D')
182         self.layer_number = self.layer_number + 1
183         self.converted_nodes.add(node.name)
184
185         node0 = self.name_node_dict[node.input[0]]
186         node1 = self.name_node_dict[node.input[1]]
187         if node0.op == 'Const':
188             knode = node0
189             input_name = node.input[1]
190         else:
191             knode = node1
192             input_name = node.input[0]
193
194         ktensor = knode.attr['value'].tensor
195         filter_height = ktensor.tensor_shape.dim[0].size
196         filter_width = ktensor.tensor_shape.dim[1].size
197         in_channels = ktensor.tensor_shape.dim[2].size
198         out_channels = ktensor.tensor_shape.dim[3].size
199         if filter_height * filter_width * in_channels * out_channels == 1:
200             kernel = np.float32(ktensor.float_val[0])
201         else:
202             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
203         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
204         kernel = np.transpose(kernel, [3, 0, 1, 2])
205
206         has_bias = 0
207         dilation = 1
208         padding = node.attr['padding'].s.decode("utf-8")
209         np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
210                   in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
211         kernel.tofile(f)
212
213         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
214         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
215         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
216
217
218     def dump_depth2space_to_file(self, node, f):
219         assert(node.op == 'DepthToSpace')
220         self.layer_number = self.layer_number + 1
221         block_size = node.attr['block_size'].i
222         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
223         self.converted_nodes.add(node.name)
224         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
225         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
226         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
227
228
229     def dump_mirrorpad_to_file(self, node, f):
230         assert(node.op == 'MirrorPad')
231         self.layer_number = self.layer_number + 1
232         mode = node.attr['mode'].s
233         mode = self.mirrorpad_mode[mode.decode("utf-8")]
234         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
235         pnode = self.name_node_dict[node.input[1]]
236         self.converted_nodes.add(pnode.name)
237         paddings = pnode.attr['value'].tensor.tensor_content
238         f.write(paddings)
239         self.converted_nodes.add(node.name)
240         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
241         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
242         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
243
244
245     def dump_maximum_to_file(self, node, f):
246         assert(node.op == 'Maximum')
247         self.layer_number = self.layer_number + 1
248         ynode = self.name_node_dict[node.input[1]]
249         y = ynode.attr['value'].tensor.float_val[0]
250         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
251         np.array([y], dtype=np.float32).tofile(f)
252         self.converted_nodes.add(node.name)
253         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
254         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
255         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
256
257
258     def dump_mathbinary_to_file(self, node, f):
259         self.layer_number = self.layer_number + 1
260         self.converted_nodes.add(node.name)
261         i0_node = self.name_node_dict[node.input[0]]
262         i1_node = self.name_node_dict[node.input[1]]
263         np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
264         if i0_node.op == 'Const':
265             scalar = i0_node.attr['value'].tensor.float_val[0]
266             np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
267             np.array([scalar], dtype=np.float32).tofile(f)
268             np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
269             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
270             np.array([input_operand_index], dtype=np.uint32).tofile(f)
271         elif i1_node.op == 'Const':
272             scalar = i1_node.attr['value'].tensor.float_val[0]
273             np.array([0], dtype=np.uint32).tofile(f)
274             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
275             np.array([input_operand_index], dtype=np.uint32).tofile(f)
276             np.array([1], dtype=np.uint32).tofile(f)
277             np.array([scalar], dtype=np.float32).tofile(f)
278         else:
279             np.array([0], dtype=np.uint32).tofile(f)
280             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
281             np.array([input_operand_index], dtype=np.uint32).tofile(f)
282             np.array([0], dtype=np.uint32).tofile(f)
283             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
284             np.array([input_operand_index], dtype=np.uint32).tofile(f)
285         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
286         np.array([output_operand_index], dtype=np.uint32).tofile(f)
287
288
289     def dump_layers_to_file(self, f):
290         for node in self.nodes:
291             if node.name in self.converted_nodes:
292                 continue
293
294             # conv2d with dilation generates very complex nodes, so handle it in special
295             if self.in_conv2d_scope(node.name):
296                 if node.op == 'Conv2D':
297                     self.dump_complex_conv2d_to_file(node, f)
298                 continue
299
300             if node.op == 'Conv2D':
301                 self.dump_simple_conv2d_to_file(node, f)
302             elif node.op == 'DepthToSpace':
303                 self.dump_depth2space_to_file(node, f)
304             elif node.op == 'MirrorPad':
305                 self.dump_mirrorpad_to_file(node, f)
306             elif node.op == 'Maximum':
307                 self.dump_maximum_to_file(node, f)
308             elif node.op in self.mathbin2code:
309                 self.dump_mathbinary_to_file(node, f)
310
311
312     def dump_operands_to_file(self, f):
313             operands = sorted(self.name_operand_dict.values())
314             for operand in operands:
315                 #print('{}'.format(operand))
316                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
317                 f.write(operand.name.encode('utf-8'))
318                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
319                 np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f)
320
321
322     def dump_to_file(self):
323         with open(self.outfile, 'wb') as f:
324             f.write(header.str.encode('utf-8'))
325             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
326             self.dump_layers_to_file(f)
327             self.dump_operands_to_file(f)
328             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
329
330
331     def generate_name_node_dict(self):
332         for node in self.nodes:
333             self.name_node_dict[node.name] = node
334
335
336     def generate_output_names(self):
337         used_names = []
338         for node in self.nodes:
339             for input in node.input:
340                 used_names.append(input)
341
342         for node in self.nodes:
343             if node.name not in used_names:
344                 self.output_names.append(node.name)
345
346
347     def remove_identity(self):
348         id_nodes = []
349         id_dict = {}
350         for node in self.nodes:
351             if node.op == 'Identity':
352                 name = node.name
353                 input = node.input[0]
354                 id_nodes.append(node)
355                 # do not change the output name
356                 if name in self.output_names:
357                     self.name_node_dict[input].name = name
358                     self.name_node_dict[name] = self.name_node_dict[input]
359                     del self.name_node_dict[input]
360                 else:
361                     id_dict[name] = input
362
363         for idnode in id_nodes:
364             self.nodes.remove(idnode)
365
366         for node in self.nodes:
367             for i in range(len(node.input)):
368                 input = node.input[i]
369                 if input in id_dict:
370                     node.input[i] = id_dict[input]
371
372
373     def generate_edges(self):
374         for node in self.nodes:
375             for input in node.input:
376                 if input in self.edges:
377                     self.edges[input].append(node)
378                 else:
379                     self.edges[input] = [node]
380
381
382     @staticmethod
383     def get_scope_name(name):
384         index = name.rfind('/')
385         if index == -1:
386             return ""
387         return name[0:index]
388
389
390     def in_conv2d_scope(self, name):
391         inner_scope = TFConverter.get_scope_name(name)
392         if inner_scope == "":
393             return False;
394         for scope in self.conv2d_scope_names:
395             index = inner_scope.find(scope)
396             if index == 0:
397                 return True
398         return False
399
400
401     def generate_conv2d_scope_info(self):
402         # mostly, conv2d is a sub block in graph, get the scope name
403         for node in self.nodes:
404             if node.op == 'Conv2D':
405                 scope = TFConverter.get_scope_name(node.name)
406                 # for the case tf.nn.conv2d is called directly
407                 if scope == '':
408                     continue
409                 # for the case tf.nn.conv2d is called within a scope
410                 if scope + '/kernel' not in self.name_node_dict:
411                     continue
412                 self.conv2d_scope_names.add(scope)
413
414         # get the input name to the conv2d sub block
415         for node in self.nodes:
416             scope = TFConverter.get_scope_name(node.name)
417             if scope in self.conv2d_scope_names:
418                 if node.op == 'Conv2D' or node.op == 'Shape':
419                     for inp in node.input:
420                         if TFConverter.get_scope_name(inp) != scope:
421                             self.conv2d_scopename_inputname_dict[scope] = inp
422
423
424     def run(self):
425         self.generate_name_node_dict()
426         self.generate_output_names()
427         self.remove_identity()
428         self.generate_edges()
429         self.generate_conv2d_scope_info()
430
431         if self.dump4tb:
432             self.dump_for_tensorboard()
433
434         self.dump_to_file()
435
436
437 def convert_from_tensorflow(infile, outfile, dump4tb):
438     with open(infile, 'rb') as f:
439         # read the file in .proto format
440         graph_def = tf.GraphDef()
441         graph_def.ParseFromString(f.read())
442         nodes = graph_def.node
443
444     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
445     converter.run()