]> git.sesse.net Git - ffmpeg/blob - tools/python/convert_from_tensorflow.py
avfilter/vf_psnr: remove unnecessary check
[ffmpeg] / tools / python / convert_from_tensorflow.py
1 # Copyright (c) 2019 Guo Yejun
2 #
3 # This file is part of FFmpeg.
4 #
5 # FFmpeg is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License, or (at your option) any later version.
9 #
10 # FFmpeg is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with FFmpeg; if not, write to the Free Software
17 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 # ==============================================================================
19
20 import tensorflow as tf
21 import numpy as np
22 import sys, struct
23 import convert_header as header
24
25 __all__ = ['convert_from_tensorflow']
26
27 class Operand(object):
28     IOTYPE_INPUT = 1
29     IOTYPE_OUTPUT = 2
30     IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31     DTYPE_FLOAT = 1
32     DTYPE_UINT8 = 4
33     index = 0
34     def __init__(self, name, dtype, dims):
35         self.name = name
36         self.dtype = dtype
37         self.dims = dims
38         self.iotype = 0
39         self.used_count = 0
40         self.index = Operand.index
41         Operand.index = Operand.index + 1
42         self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43         self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44
45     def add_iotype(self, iotype):
46         self.iotype = self.iotype | iotype
47         if iotype == Operand.IOTYPE_INPUT:
48             self.used_count = self.used_count + 1
49
50     def __str__(self):
51         return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
52                             self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53                             self.dims, self.used_count)
54
55     def __lt__(self, other):
56         return self.index < other.index
57
58 class TFConverter:
59     def __init__(self, graph_def, nodes, outfile, dump4tb):
60         self.graph_def = graph_def
61         self.nodes = nodes
62         self.outfile = outfile
63         self.dump4tb = dump4tb
64         self.layer_number = 0
65         self.output_names = []
66         self.name_node_dict = {}
67         self.edges = {}
68         self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69         self.conv_paddings = {'VALID':0, 'SAME':1}
70         self.pool_paddings = {'VALID':0, 'SAME':1}
71         self.converted_nodes = set()
72         self.conv2d_scope_names = set()
73         self.conv2d_scopename_inputname_dict = {}
74         self.dense_scope_names = set()
75         self.dense_scopename_inputname_dict = {}
76         self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
77                         'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
78         self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
79         self.mathun2code  = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
80                 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
81                 'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15,
82                 'Exp':16}
83         self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
84         self.name_operand_dict = {}
85
86
87     def add_operand(self, name, type):
88         node = self.name_node_dict[name]
89         if name not in self.name_operand_dict:
90             dtype = node.attr['dtype'].type
91             if dtype == 0:
92                 dtype = node.attr['T'].type
93             dims = [-1,-1,-1,-1]
94             if 'shape' in node.attr:
95                 dims[0] = node.attr['shape'].shape.dim[0].size
96                 dims[1] = node.attr['shape'].shape.dim[1].size
97                 dims[2] = node.attr['shape'].shape.dim[2].size
98                 dims[3] = node.attr['shape'].shape.dim[3].size
99             operand = Operand(name, dtype, dims)
100             self.name_operand_dict[name] = operand;
101         self.name_operand_dict[name].add_iotype(type)
102         return self.name_operand_dict[name].index
103
104
105     def dump_for_tensorboard(self):
106         graph = tf.get_default_graph()
107         tf.import_graph_def(self.graph_def, name="")
108         tf.summary.FileWriter('/tmp/graph', graph)
109         print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
110
111
112     def get_conv2d_params(self, conv2d_scope_name):
113         knode = self.name_node_dict[conv2d_scope_name + '/kernel']
114         bnode = self.name_node_dict[conv2d_scope_name + '/bias']
115
116         if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
117             dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
118         else:
119             dnode = None
120
121         # the BiasAdd name is possible be changed into the output name,
122         # if activation is None, and BiasAdd.next is the last op which is Identity
123         if conv2d_scope_name + '/BiasAdd' in self.edges:
124             anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
125             if anode.op not in self.conv_activations:
126                 anode = None
127         else:
128             anode = None
129         return knode, bnode, dnode, anode
130
131
132     def get_dense_params(self, dense_scope_name):
133         knode = self.name_node_dict[dense_scope_name + '/kernel']
134         bnode = self.name_node_dict.get(dense_scope_name + '/bias')
135         # the BiasAdd name is possible be changed into the output name,
136         # if activation is None, and BiasAdd.next is the last op which is Identity
137         anode = None
138         if bnode:
139             if dense_scope_name + '/BiasAdd' in self.edges:
140                 anode = self.edges[dense_scope_name + '/BiasAdd'][0]
141                 if anode.op not in self.conv_activations:
142                     anode = None
143         else:
144             anode = None
145         return knode, bnode, anode
146
147
148     def dump_complex_conv2d_to_file(self, node, f):
149         assert(node.op == 'Conv2D')
150         self.layer_number = self.layer_number + 1
151         self.converted_nodes.add(node.name)
152
153         scope_name = TFConverter.get_scope_name(node.name)
154         #knode for kernel, bnode for bias, dnode for dilation, anode for activation
155         knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
156
157         if dnode is not None:
158             dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
159         else:
160             dilation = 1
161
162         if anode is not None:
163             activation = anode.op
164         else:
165             activation = 'None'
166
167         padding = node.attr['padding'].s.decode("utf-8")
168         # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
169         if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
170             if self.name_node_dict[scope_name + '/stack'].op == "Const":
171                 padding = 'SAME'
172         padding = self.conv_paddings[padding]
173
174         ktensor = knode.attr['value'].tensor
175         filter_height = ktensor.tensor_shape.dim[0].size
176         filter_width = ktensor.tensor_shape.dim[1].size
177         in_channels = ktensor.tensor_shape.dim[2].size
178         out_channels = ktensor.tensor_shape.dim[3].size
179         kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
180         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
181         kernel = np.transpose(kernel, [3, 0, 1, 2])
182
183         has_bias = 1
184         np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
185         kernel.tofile(f)
186
187         btensor = bnode.attr['value'].tensor
188         if btensor.tensor_shape.dim[0].size == 1:
189             bias = struct.pack("f", btensor.float_val[0])
190         else:
191             bias = btensor.tensor_content
192         f.write(bias)
193
194         input_name = self.conv2d_scopename_inputname_dict[scope_name]
195         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
196
197         if anode is not None:
198             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
199         else:
200             output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
201         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
202
203     def dump_dense_to_file(self, node, f):
204         assert(node.op == 'MatMul')
205         self.layer_number = self.layer_number + 1
206         self.converted_nodes.add(node.name)
207
208         scope_name = TFConverter.get_scope_name(node.name)
209         #knode for kernel, bnode for bias, anode for activation
210         knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])
211
212         if bnode is not None:
213             has_bias = 1
214             btensor = bnode.attr['value'].tensor
215             if btensor.tensor_shape.dim[0].size == 1:
216                 bias = struct.pack("f", btensor.float_val[0])
217             else:
218                 bias = btensor.tensor_content
219         else:
220             has_bias = 0
221
222         if anode is not None:
223             activation = anode.op
224         else:
225             activation = 'None'
226
227         ktensor = knode.attr['value'].tensor
228         in_channels = ktensor.tensor_shape.dim[0].size
229         out_channels = ktensor.tensor_shape.dim[1].size
230         if in_channels * out_channels == 1:
231             kernel = np.float32(ktensor.float_val[0])
232         else:
233             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
234         kernel = kernel.reshape(in_channels, out_channels)
235         kernel = np.transpose(kernel, [1, 0])
236
237         np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
238         kernel.tofile(f)
239         if has_bias:
240             f.write(bias)
241
242         input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
243         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
244
245         if anode is not None:
246             output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
247         else:
248             if bnode is not None:
249                 output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
250             else:
251                 output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
252         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
253
254
255     def dump_simple_conv2d_to_file(self, node, f):
256         assert(node.op == 'Conv2D')
257         self.layer_number = self.layer_number + 1
258         self.converted_nodes.add(node.name)
259
260         node0 = self.name_node_dict[node.input[0]]
261         node1 = self.name_node_dict[node.input[1]]
262         if node0.op == 'Const':
263             knode = node0
264             input_name = node.input[1]
265         else:
266             knode = node1
267             input_name = node.input[0]
268
269         ktensor = knode.attr['value'].tensor
270         filter_height = ktensor.tensor_shape.dim[0].size
271         filter_width = ktensor.tensor_shape.dim[1].size
272         in_channels = ktensor.tensor_shape.dim[2].size
273         out_channels = ktensor.tensor_shape.dim[3].size
274         if filter_height * filter_width * in_channels * out_channels == 1:
275             kernel = np.float32(ktensor.float_val[0])
276         else:
277             kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
278         kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
279         kernel = np.transpose(kernel, [3, 0, 1, 2])
280
281         has_bias = 0
282         dilation = 1
283         padding = node.attr['padding'].s.decode("utf-8")
284         np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
285                   in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
286         kernel.tofile(f)
287
288         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
289         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
290         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
291
292
293     def dump_depth2space_to_file(self, node, f):
294         assert(node.op == 'DepthToSpace')
295         self.layer_number = self.layer_number + 1
296         block_size = node.attr['block_size'].i
297         np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
298         self.converted_nodes.add(node.name)
299         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
300         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
301         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
302
303
304     def dump_mirrorpad_to_file(self, node, f):
305         assert(node.op == 'MirrorPad')
306         self.layer_number = self.layer_number + 1
307         mode = node.attr['mode'].s
308         mode = self.mirrorpad_mode[mode.decode("utf-8")]
309         np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
310         pnode = self.name_node_dict[node.input[1]]
311         self.converted_nodes.add(pnode.name)
312         paddings = pnode.attr['value'].tensor.tensor_content
313         f.write(paddings)
314         self.converted_nodes.add(node.name)
315         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
316         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
317         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
318
319
320     def dump_maximum_to_file(self, node, f):
321         assert(node.op == 'Maximum')
322         self.layer_number = self.layer_number + 1
323         ynode = self.name_node_dict[node.input[1]]
324         y = ynode.attr['value'].tensor.float_val[0]
325         np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
326         np.array([y], dtype=np.float32).tofile(f)
327         self.converted_nodes.add(node.name)
328         input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
329         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
330         np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
331
332
333     def dump_mathbinary_to_file(self, node, f):
334         self.layer_number = self.layer_number + 1
335         self.converted_nodes.add(node.name)
336         i0_node = self.name_node_dict[node.input[0]]
337         i1_node = self.name_node_dict[node.input[1]]
338         np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
339         if i0_node.op == 'Const':
340             scalar = i0_node.attr['value'].tensor.float_val[0]
341             np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
342             np.array([scalar], dtype=np.float32).tofile(f)
343             np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
344             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
345             np.array([input_operand_index], dtype=np.uint32).tofile(f)
346         elif i1_node.op == 'Const':
347             scalar = i1_node.attr['value'].tensor.float_val[0]
348             np.array([0], dtype=np.uint32).tofile(f)
349             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
350             np.array([input_operand_index], dtype=np.uint32).tofile(f)
351             np.array([1], dtype=np.uint32).tofile(f)
352             np.array([scalar], dtype=np.float32).tofile(f)
353         else:
354             np.array([0], dtype=np.uint32).tofile(f)
355             input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
356             np.array([input_operand_index], dtype=np.uint32).tofile(f)
357             np.array([0], dtype=np.uint32).tofile(f)
358             input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
359             np.array([input_operand_index], dtype=np.uint32).tofile(f)
360         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
361         np.array([output_operand_index], dtype=np.uint32).tofile(f)
362
363
364     def dump_mathunary_to_file(self, node, f):
365         self.layer_number = self.layer_number + 1
366         self.converted_nodes.add(node.name)
367         i0_node = self.name_node_dict[node.input[0]]
368         np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
369         input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
370         np.array([input_operand_index], dtype=np.uint32).tofile(f)
371         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
372         np.array([output_operand_index],dtype=np.uint32).tofile(f)
373
374
375     def dump_avg_pool_to_file(self, node, f):
376         assert(node.op == 'AvgPool')
377         self.layer_number = self.layer_number + 1
378         self.converted_nodes.add(node.name)
379         node0 = self.name_node_dict[node.input[0]]
380         strides = node.attr['strides']
381
382         # Tensorflow do not support pooling strides in batch dimension and
383         # current native NN do not support pooling strides in channel dimension, added assert() here.
384         assert(strides.list.i[1]==strides.list.i[2])
385         assert(strides.list.i[0]==1)
386         assert(strides.list.i[3]==1)
387         strides = strides.list.i[1]
388         filter_node = node.attr['ksize']
389         input_name = node.input[0]
390
391         # Tensorflow do not support pooling ksize in batch dimension and channel dimension.
392         assert(filter_node.list.i[0]==1)
393         assert(filter_node.list.i[3]==1)
394         filter_height = filter_node.list.i[1]
395         filter_width = filter_node.list.i[2]
396
397         padding = node.attr['padding'].s.decode("utf-8")
398         np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height],
399                  dtype=np.uint32).tofile(f)
400
401         input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
402         output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
403         np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)
404
405
406     def dump_layers_to_file(self, f):
407         for node in self.nodes:
408             if node.name in self.converted_nodes:
409                 continue
410
411             # conv2d with dilation generates very complex nodes, so handle it in special
412             if self.in_conv2d_scope(node.name):
413                 if node.op == 'Conv2D':
414                     self.dump_complex_conv2d_to_file(node, f)
415                 continue
416             if self.in_dense_scope(node.name):
417                 if node.op == 'MatMul':
418                     self.dump_dense_to_file(node, f)
419                 continue
420
421
422             if node.op == 'Conv2D':
423                 self.dump_simple_conv2d_to_file(node, f)
424                 continue
425             if node.name in self.output_names:
426                 input_name = self.id_different_scope_dict[node.name]
427                 if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
428                     continue
429             if node.op == 'AvgPool':
430                 self.dump_avg_pool_to_file(node, f)
431             elif node.op == 'DepthToSpace':
432                 self.dump_depth2space_to_file(node, f)
433             elif node.op == 'MirrorPad':
434                 self.dump_mirrorpad_to_file(node, f)
435             elif node.op == 'Maximum':
436                 self.dump_maximum_to_file(node, f)
437             elif node.op in self.mathbin2code:
438                 self.dump_mathbinary_to_file(node, f)
439             elif node.op in self.mathun2code:
440                 self.dump_mathunary_to_file(node, f)
441
442
443     def dump_operands_to_file(self, f):
444             operands = sorted(self.name_operand_dict.values())
445             for operand in operands:
446                 #print('{}'.format(operand))
447                 np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
448                 f.write(operand.name.encode('utf-8'))
449                 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
450                 np.array(operand.dims, dtype=np.uint32).tofile(f)
451
452
453     def dump_to_file(self):
454         with open(self.outfile, 'wb') as f:
455             f.write(header.str.encode('utf-8'))
456             np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
457             self.dump_layers_to_file(f)
458             self.dump_operands_to_file(f)
459             np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
460
461
462     def generate_name_node_dict(self):
463         for node in self.nodes:
464             self.name_node_dict[node.name] = node
465
466
467     def generate_output_names(self):
468         used_names = []
469         for node in self.nodes:
470             for input in node.input:
471                 used_names.append(input)
472
473         for node in self.nodes:
474             if node.name not in used_names:
475                 self.output_names.append(node.name)
476
477
478     def remove_identity(self):
479         self.id_different_scope_dict = {}
480         id_nodes = []
481         id_dict = {}
482         for node in self.nodes:
483             if node.op == 'Identity':
484                 name = node.name
485                 input = node.input[0]
486                 id_nodes.append(node)
487                 # do not change the output name
488                 if name in self.output_names:
489                     self.name_node_dict[input].name = name
490                     self.name_node_dict[name] = self.name_node_dict[input]
491                     del self.name_node_dict[input]
492                     self.id_different_scope_dict[name] = input
493                 else:
494                     id_dict[name] = input
495
496         for idnode in id_nodes:
497             self.nodes.remove(idnode)
498
499         for node in self.nodes:
500             for i in range(len(node.input)):
501                 input = node.input[i]
502                 if input in id_dict:
503                     node.input[i] = id_dict[input]
504
505
506     def generate_edges(self):
507         for node in self.nodes:
508             for input in node.input:
509                 if input in self.edges:
510                     self.edges[input].append(node)
511                 else:
512                     self.edges[input] = [node]
513
514
515     @staticmethod
516     def get_scope_name(name):
517         index = name.rfind('/')
518         if index == -1:
519             return ""
520         return name[0:index]
521
522
523     def in_conv2d_scope(self, name):
524         inner_scope = TFConverter.get_scope_name(name)
525         if inner_scope == "":
526             return False;
527         for scope in self.conv2d_scope_names:
528             index = inner_scope.find(scope)
529             if index == 0:
530                 return True
531         return False
532
533
534     def in_dense_scope(self, name):
535         inner_scope = TFConverter.get_scope_name(name)
536         if inner_scope == "":
537             return False;
538         for scope in self.dense_scope_names:
539             index = inner_scope.find(scope)
540             if index == 0:
541                 return True
542         return False
543
544     def generate_sub_block_op_scope_info(self):
545         # mostly, conv2d/dense is a sub block in graph, get the scope name
546         for node in self.nodes:
547             if node.op == 'Conv2D':
548                 scope = TFConverter.get_scope_name(node.name)
549                 # for the case tf.nn.conv2d is called directly
550                 if scope == '':
551                     continue
552                 # for the case tf.nn.conv2d is called within a scope
553                 if scope + '/kernel' not in self.name_node_dict:
554                     continue
555                 self.conv2d_scope_names.add(scope)
556             elif node.op == 'MatMul':
557                 scope = TFConverter.get_scope_name(node.name)
558                 # for the case tf.nn.dense is called directly
559                 if scope == '':
560                     continue
561                 # for the case tf.nn.dense is called within a scope
562                 if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
563                     continue
564                 self.dense_scope_names.add(scope.split('/Tensordot')[0])
565
566         # get the input name to the conv2d/dense sub block
567         for node in self.nodes:
568             scope = TFConverter.get_scope_name(node.name)
569             if scope in self.conv2d_scope_names:
570                 if node.op == 'Conv2D' or node.op == 'Shape':
571                     for inp in node.input:
572                         if TFConverter.get_scope_name(inp) != scope:
573                             self.conv2d_scopename_inputname_dict[scope] = inp
574             elif scope in self.dense_scope_names:
575                 if node.op == 'MatMul' or node.op == 'Shape':
576                     for inp in node.input:
577                         if TFConverter.get_scope_name(inp) != scope:
578                             self.dense_scopename_inputname_dict[scope] = inp
579             elif scope.split('/Tensordot')[0] in self.dense_scope_names:
580                 if node.op == 'Transpose':
581                     for inp in node.input:
582                         if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
583                             self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp
584
585
586     def run(self):
587         self.generate_name_node_dict()
588         self.generate_output_names()
589         self.remove_identity()
590         self.generate_edges()
591         self.generate_sub_block_op_scope_info()
592
593         if self.dump4tb:
594             self.dump_for_tensorboard()
595
596         self.dump_to_file()
597
598
599 def convert_from_tensorflow(infile, outfile, dump4tb):
600     with open(infile, 'rb') as f:
601         # read the file in .proto format
602         graph_def = tf.GraphDef()
603         graph_def.ParseFromString(f.read())
604         nodes = graph_def.node
605
606     converter = TFConverter(graph_def, nodes, outfile, dump4tb)
607     converter.run()