]> git.sesse.net Git - x264/blobdiff - encoder/ratecontrol.c
Fix high bit depth lookahead cost compensation algorithm
[x264] / encoder / ratecontrol.c
index cf1e283ce586a2f22ebb790b0e1a1a2dc8cc6972..8b8e76e643c35370f802620d436307b7b990b590 100644 (file)
@@ -1,7 +1,7 @@
 /*****************************************************************************
- * ratecontrol.c: h264 encoder library (Rate Control)
+ * ratecontrol.c: ratecontrol
  *****************************************************************************
- * Copyright (C) 2005-2008 x264 project
+ * Copyright (C) 2005-2015 x264 project
  *
  * Authors: Loren Merritt <lorenm@u.washington.edu>
  *          Michael Niedermayer <michaelni@gmx.at>
  * You should have received a copy of the GNU General Public License
  * along with this program; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
+ *
+ * This program is also available under a commercial proprietary license.
+ * For more information, contact us at licensing@x264.com.
  *****************************************************************************/
 
 #define _ISOC99_SOURCE
 #undef NDEBUG // always check asserts, the speed effect is far too small to disable them
-#include <math.h>
 
 #include "common/common.h"
 #include "ratecontrol.h"
@@ -50,20 +52,21 @@ typedef struct
     int s_count;
     float blurred_complexity;
     char direct_mode;
-    int16_t weight[2];
-    int16_t i_weight_denom;
+    int16_t weight[3][2];
+    int16_t i_weight_denom[2];
     int refcount[16];
     int refs;
-    int i_duration;
-    int i_cpb_duration;
+    int64_t i_duration;
+    int64_t i_cpb_duration;
 } ratecontrol_entry_t;
 
 typedef struct
 {
-    double coeff;
-    double count;
-    double decay;
-    double offset;
+    float coeff_min;
+    float coeff;
+    float count;
+    float decay;
+    float offset;
 } predictor_t;
 
 struct x264_ratecontrol_t
@@ -78,32 +81,35 @@ struct x264_ratecontrol_t
     double rate_tolerance;
     double qcompress;
     int nmb;                    /* number of macroblocks in a frame */
-    int qp_constant[5];
+    int qp_constant[3];
 
     /* current frame */
     ratecontrol_entry_t *rce;
     int qp;                     /* qp for current frame */
     float qpm;                  /* qp for current macroblock: precise float for AQ */
     float qpa_rc;               /* average of macroblocks' qp before aq */
-    float qpa_aq;               /* average of macroblocks' qp after aq */
+    float qpa_rc_prev;
+    int   qpa_aq;               /* average of macroblocks' qp after aq */
+    int   qpa_aq_prev;
     float qp_novbv;             /* QP for the current frame if 1-pass VBV was disabled. */
-    int qp_force;
 
     /* VBV stuff */
     double buffer_size;
-    double buffer_fill_final;   /* real buffer as of the last finished frame */
+    int64_t buffer_fill_final;
+    int64_t buffer_fill_final_min;
     double buffer_fill;         /* planned buffer, if all in-progress frames hit their bit budget */
     double buffer_rate;         /* # of bits added to buffer_fill after each frame */
     double vbv_max_rate;        /* # of bits added to buffer_fill per second */
     predictor_t *pred;          /* predict frame size from satd */
     int single_frame_vbv;
-    double rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
+    float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
 
     /* ABR stuff */
     int    last_satd;
     double last_rceq;
     double cplxr_sum;           /* sum of bits*qscale/rceq */
     double expected_bits_sum;   /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
+    int64_t filler_bits_sum;    /* sum in bits of finished frames' filler data */
     double wanted_bits_window;  /* target bitrate * window */
     double cbr_decay;
     double short_term_cplxsum;
@@ -123,17 +129,29 @@ struct x264_ratecontrol_t
     int num_entries;            /* number of ratecontrol_entry_ts */
     ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
     double last_qscale;
-    double last_qscale_for[5];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff  */
+    double last_qscale_for[3];  /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
     int last_non_b_pict_type;
     double accum_p_qp;          /* for determining I-frame quant */
     double accum_p_norm;
     double last_accum_p_norm;
-    double lmin[5];             /* min qscale by frame type */
-    double lmax[5];
+    double lmin[3];             /* min qscale by frame type */
+    double lmax[3];
     double lstep;               /* max change (multiply) in qscale per frame */
-    uint16_t *qp_buffer[2];     /* Global buffers for converting MB-tree quantizer data. */
-    int qpbuf_pos;              /* In order to handle pyramid reordering, QP buffer acts as a stack.
+    struct
+    {
+        uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */
+        int qpbuf_pos;          /* In order to handle pyramid reordering, QP buffer acts as a stack.
                                  * This value is the current position (0 or 1). */
+        int src_mb_count;
+
+        /* For rescaling */
+        int rescale_enabled;
+        float *scale_buffer[2]; /* Intermediate buffers */
+        int filtersize[2];      /* filter size (H/V) */
+        float *coeffs[2];
+        int *pos[2];
+        int srcdim[2];          /* Source dimensions (W/H) */
+    } mbtree;
 
     /* MBRC stuff */
     float frame_size_estimated; /* Access to this variable must be atomic: double is
@@ -141,9 +159,8 @@ struct x264_ratecontrol_t
     double frame_size_maximum;  /* Maximum frame size due to MinCR */
     double frame_size_planned;
     double slice_size_planned;
-    double max_frame_error;
-    predictor_t (*row_pred)[2];
-    predictor_t row_preds[5][2];
+    predictor_t *row_pred;
+    predictor_t row_preds[3][2];
     predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
     int bframes;                /* # consecutive B-frames before this P-frame */
     int bframe_bits;            /* total cost of those frames */
@@ -157,6 +174,7 @@ struct x264_ratecontrol_t
     int initial_cpb_removal_delay_offset;
     double nrt_first_access_unit; /* nominal removal time */
     double previous_cpb_final_arrival_time;
+    uint64_t hrd_multiply_denom;
 };
 
 
@@ -165,8 +183,8 @@ static int init_pass2(x264_t *);
 static float rate_estimate_qscale( x264_t *h );
 static int update_vbv( x264_t *h, int bits );
 static void update_vbv_plan( x264_t *h, int overhead );
-static double predict_size( predictor_t *p, double q, double var );
-static void update_predictor( predictor_t *p, double q, double var, double bits );
+static float predict_size( predictor_t *p, float q, float var );
+static void update_predictor( predictor_t *p, float q, float var, float bits );
 
 #define CMP_OPT_FIRST_PASS( opt, param_val )\
 {\
@@ -181,13 +199,13 @@ static void update_predictor( predictor_t *p, double q, double var, double bits
  * qp = h.264's quantizer
  * qscale = linearized quantizer = Lagrange multiplier
  */
-static inline double qp2qscale( double qp )
+static inline float qp2qscale( float qp )
 {
-    return 0.85 * pow( 2.0, ( qp - 12.0 ) / 6.0 );
+    return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f );
 }
-static inline double qscale2qp( double qscale )
+static inline float qscale2qp( float qscale )
 {
-    return 12.0 + 6.0 * log2( qscale/0.85 );
+    return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f );
 }
 
 /* Texture bitrate is not quite inversely proportional to qscale,
@@ -203,95 +221,323 @@ static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
            + rce->misc_bits;
 }
 
-static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i )
+static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store )
+{
+    uint32_t sum = sum_ssd;
+    uint32_t ssd = sum_ssd >> 32;
+    if( b_store )
+    {
+        frame->i_pixel_sum[i] += sum;
+        frame->i_pixel_ssd[i] += ssd;
+    }
+    return ssd - ((uint64_t)sum * sum >> shift);
+}
+
+static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store )
 {
-    int w = i ? 8 : 16;
-    int shift = i ? 6 : 8;
+    int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
     int stride = frame->i_stride[i];
-    int offset = h->mb.b_interlaced
-        ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride
-        : w * (mb_x + mb_y * stride);
-    int pix = i ? PIXEL_8x8 : PIXEL_16x16;
-    stride <<= h->mb.b_interlaced;
-    uint64_t res = h->pixf.var[pix]( frame->plane[i] + offset, stride );
-    uint32_t sum = (uint32_t)res;
-    uint32_t sqr = res >> 32;
-    return sqr - (sum * sum >> shift);
+    int offset = b_field
+        ? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride
+        : 16 * mb_x + height * mb_y * stride;
+    stride <<= b_field;
+    if( b_chroma )
+    {
+        ALIGNED_ARRAY_16( pixel, pix,[FENC_STRIDE*16] );
+        int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
+        int shift = 7 - CHROMA_V_SHIFT;
+
+        h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height );
+        return ac_energy_var( h->pixf.var[chromapix]( pix,               FENC_STRIDE ), shift, frame, 1, b_store )
+             + ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store );
+    }
+    else
+        return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store );
 }
 
 // Find the total AC energy of the block in all planes.
-static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
+static NOINLINE uint32_t x264_ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
 {
     /* This function contains annoying hacks because GCC has a habit of reordering emms
      * and putting it after floating point ops.  As a result, we put the emms at the end of the
      * function and make sure that its always called before the float math.  Noinline makes
      * sure no reordering goes on. */
-    uint32_t var = ac_energy_plane( h, mb_x, mb_y, frame, 0 );
-    var         += ac_energy_plane( h, mb_x, mb_y, frame, 1 );
-    var         += ac_energy_plane( h, mb_x, mb_y, frame, 2 );
+    uint32_t var;
+    x264_prefetch_fenc( h, frame, mb_x, mb_y );
+    if( h->mb.b_adaptive_mbaff )
+    {
+        /* We don't know the super-MB mode we're going to pick yet, so
+         * simply try both and pick the lower of the two. */
+        uint32_t var_interlaced, var_progressive;
+        var_interlaced   = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 );
+        var_progressive  = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 );
+        if( CHROMA444 )
+        {
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 );
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 );
+        }
+        else
+        {
+            var_interlaced  += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 );
+            var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 );
+        }
+        var = X264_MIN( var_interlaced, var_progressive );
+    }
+    else
+    {
+        var  = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 );
+        if( CHROMA444 )
+        {
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 );
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 );
+        }
+        else
+            var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 );
+    }
     x264_emms();
     return var;
 }
 
-void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame )
+void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
 {
-    /* constants chosen to result in approximately the same overall bitrate as without AQ.
-     * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
-    float strength;
-    float avg_adj = 0.f;
-    /* Need to init it anyways for MB tree. */
-    if( h->param.rc.f_aq_strength == 0 )
-    {
-        memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
-        memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
-        if( h->frames.b_have_lowres )
-            for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
-                frame->i_inv_qscale_factor[mb_xy] = 256;
-        return;
+    /* Initialize frame stats */
+    for( int i = 0; i < 3; i++ )
+    {
+        frame->i_pixel_sum[i] = 0;
+        frame->i_pixel_ssd[i] = 0;
     }
 
-    if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+    /* Degenerate cases */
+    if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
     {
-        float avg_adj_pow2 = 0.f;
-        for( int mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-            for( int mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+        /* Need to init it anyways for MB tree */
+        if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
+        {
+            if( quant_offsets )
             {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                float qp_adj = powf( energy + 1, 0.125f );
-                frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
-                avg_adj += qp_adj;
-                avg_adj_pow2 += qp_adj * qp_adj;
+                for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                    frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
             }
-        avg_adj /= h->mb.i_mb_count;
-        avg_adj_pow2 /= h->mb.i_mb_count;
-        strength = h->param.rc.f_aq_strength * avg_adj;
-        avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj;
+            else
+            {
+                memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
+                memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
+                if( h->frames.b_have_lowres )
+                    for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
+                        frame->i_inv_qscale_factor[mb_xy] = 256;
+            }
+        }
+        /* Need variance data for weighted prediction */
+        if( h->param.analyse.i_weighted_pred )
+        {
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                    x264_ac_energy_mb( h, mb_x, mb_y, frame );
+        }
+        else
+            return;
     }
+    /* Actual adaptive quantization */
     else
-        strength = h->param.rc.f_aq_strength * 1.0397f;
+    {
+        /* constants chosen to result in approximately the same overall bitrate as without AQ.
+         * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
+        float strength;
+        float avg_adj = 0.f;
+        float bias_strength = 0.f;
 
-    for( int mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ )
-        for( int mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ )
+        if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
         {
-            float qp_adj;
-            if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+            float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8)));
+            float avg_adj_pow2 = 0.f;
+            for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+                for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f );
+                    frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
+                    avg_adj += qp_adj;
+                    avg_adj_pow2 += qp_adj * qp_adj;
+                }
+            avg_adj /= h->mb.i_mb_count;
+            avg_adj_pow2 /= h->mb.i_mb_count;
+            strength = h->param.rc.f_aq_strength * avg_adj;
+            avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj;
+            bias_strength = h->param.rc.f_aq_strength;
+        }
+        else
+            strength = h->param.rc.f_aq_strength * 1.0397f;
+
+        for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
+            for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
             {
-                qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride];
-                qp_adj = strength * (qp_adj - avg_adj);
+                float qp_adj;
+                int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
+                if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
+                {
+                    qp_adj = frame->f_qp_offset[mb_xy];
+                    qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj));
+                }
+                else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
+                {
+                    qp_adj = frame->f_qp_offset[mb_xy];
+                    qp_adj = strength * (qp_adj - avg_adj);
+                }
+                else
+                {
+                    uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame );
+                    qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
+                }
+                if( quant_offsets )
+                    qp_adj += quant_offsets[mb_xy];
+                frame->f_qp_offset[mb_xy] =
+                frame->f_qp_offset_aq[mb_xy] = qp_adj;
+                if( h->frames.b_have_lowres )
+                    frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
             }
-            else
+    }
+
+    /* Remove mean from SSD calculation */
+    for( int i = 0; i < 3; i++ )
+    {
+        uint64_t ssd = frame->i_pixel_ssd[i];
+        uint64_t sum = frame->i_pixel_sum[i];
+        int width  = 16*h->mb.i_mb_width  >> (i && CHROMA_H_SHIFT);
+        int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT);
+        frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
+    }
+}
+
+static int x264_macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc )
+{
+    /* Use fractional QP array dimensions to compensate for edge padding */
+    float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f};
+    float dstdim[2] = {    h->param.i_width / 16.f,    h->param.i_height / 16.f};
+    int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])};
+    int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])};
+    if( PARAM_INTERLACED )
+    {
+        srcdimi[1] = (srcdimi[1]+1)&~1;
+        dstdimi[1] = (dstdimi[1]+1)&~1;
+    }
+
+    rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1];
+
+    CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) );
+    if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
+        CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) );
+    rc->mbtree.qpbuf_pos = -1;
+
+    /* No rescaling to do */
+    if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] )
+        return 0;
+
+    rc->mbtree.rescale_enabled = 1;
+
+    /* Allocate intermediate scaling buffers */
+    CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) );
+    CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) );
+
+    /* Allocate and calculate resize filter parameters and coefficients */
+    for( int i = 0; i < 2; i++ )
+    {
+        if( srcdim[i] > dstdim[i] ) // downscale
+            rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i];
+        else                        // upscale
+            rc->mbtree.filtersize[i] = 3;
+
+        CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) );
+        CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) );
+
+        /* Initialize filter coefficients */
+        float inc = srcdim[i] / dstdim[i];
+        float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f;
+        float dstinsrc = 0.5f * inc - 0.5f;
+        int filtersize = rc->mbtree.filtersize[i];
+        for( int j = 0; j < dstdimi[i]; j++ )
+        {
+            int pos = dstinsrc - (filtersize - 2.f) * 0.5f;
+            float sum = 0.0;
+            rc->mbtree.pos[i][j] = pos;
+            for( int k = 0; k < filtersize; k++ )
             {
-                uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
-                qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f);
+                float d = fabs( pos + k - dstinsrc ) * dmul;
+                float coeff = X264_MAX( 1.f - d, 0 );
+                rc->mbtree.coeffs[i][j * filtersize + k] = coeff;
+                sum += coeff;
             }
-            frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] =
-            frame->f_qp_offset_aq[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
-            if( h->frames.b_have_lowres )
-                frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj);
+            sum = 1.0f / sum;
+            for( int k = 0; k < filtersize; k++ )
+                rc->mbtree.coeffs[i][j * filtersize + k] *= sum;
+            dstinsrc += inc;
         }
+    }
+
+    /* Write back actual qp array dimensions */
+    rc->mbtree.srcdim[0] = srcdimi[0];
+    rc->mbtree.srcdim[1] = srcdimi[1];
+    return 0;
+fail:
+    return -1;
 }
 
-int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
+static void x264_macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc )
+{
+    for( int i = 0; i < 2; i++ )
+    {
+        x264_free( rc->mbtree.qp_buffer[i] );
+        x264_free( rc->mbtree.scale_buffer[i] );
+        x264_free( rc->mbtree.coeffs[i] );
+        x264_free( rc->mbtree.pos[i] );
+    }
+}
+
+static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize )
+{
+    float sum = 0.f;
+    for( int i = 0; i < filtersize; i++, pos++ )
+        sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i];
+    return sum;
+}
+
+static void x264_macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst )
+{
+    float *input, *output;
+    int filtersize, stride, height;
+
+    /* H scale first */
+    input = rc->mbtree.scale_buffer[0];
+    output = rc->mbtree.scale_buffer[1];
+    filtersize = rc->mbtree.filtersize[0];
+    stride = rc->mbtree.srcdim[0];
+    height = rc->mbtree.srcdim[1];
+    for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width )
+    {
+        float *coeff = rc->mbtree.coeffs[0];
+        for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize )
+            output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize );
+    }
+
+    /* V scale next */
+    input = rc->mbtree.scale_buffer[1];
+    output = dst;
+    filtersize = rc->mbtree.filtersize[1];
+    stride = h->mb.i_mb_width;
+    height = rc->mbtree.srcdim[1];
+    for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ )
+    {
+        float *coeff = rc->mbtree.coeffs[1];
+        for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize )
+            output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize );
+    }
+}
+
+int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
 {
     x264_ratecontrol_t *rc = h->rc;
     uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
@@ -299,38 +545,43 @@ int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame )
     if( rc->entry[frame->i_frame].kept_as_ref )
     {
         uint8_t i_type;
-        if( rc->qpbuf_pos < 0 )
+        if( rc->mbtree.qpbuf_pos < 0 )
         {
             do
             {
-                rc->qpbuf_pos++;
+                rc->mbtree.qpbuf_pos++;
 
                 if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
                     goto fail;
-                if( fread( rc->qp_buffer[rc->qpbuf_pos], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_in ) != h->mb.i_mb_count )
+                if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != rc->mbtree.src_mb_count )
                     goto fail;
 
-                if( i_type != i_type_actual && rc->qpbuf_pos == 1 )
+                if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 )
                 {
-                    x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual);
+                    x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual );
                     return -1;
                 }
             } while( i_type != i_type_actual );
         }
 
-        for( int i = 0; i < h->mb.i_mb_count; i++ )
+        float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset;
+        for( int i = 0; i < rc->mbtree.src_mb_count; i++ )
         {
-            frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[rc->qpbuf_pos][i] )) * (1/256.0);
-            if( h->frames.b_have_lowres )
-                frame->i_inv_qscale_factor[i] = x264_exp2fix8(frame->f_qp_offset[i]);
+            int16_t qp_fix8 = endian_fix16( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos][i] );
+            dst[i] = qp_fix8 * (1.f/256.f);
         }
-        rc->qpbuf_pos--;
+        if( rc->mbtree.rescale_enabled )
+            x264_macroblock_tree_rescale( h, rc, frame->f_qp_offset );
+        if( h->frames.b_have_lowres )
+            for( int i = 0; i < h->mb.i_mb_count; i++ )
+                frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] );
+        rc->mbtree.qpbuf_pos--;
     }
     else
-        x264_adaptive_quant_frame( h, frame );
+        x264_stack_align( x264_adaptive_quant_frame, h, frame, quant_offsets );
     return 0;
 fail:
-    x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n");
+    x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" );
     return -1;
 }
 
@@ -341,22 +592,22 @@ int x264_reference_build_list_optimal( x264_t *h )
     x264_weight_t weights[16][3];
     int refcount[16];
 
-    if( rce->refs != h->i_ref0 )
+    if( rce->refs != h->i_ref[0] )
         return -1;
 
-    memcpy( frames, h->fref0, sizeof(frames) );
+    memcpy( frames, h->fref[0], sizeof(frames) );
     memcpy( refcount, rce->refcount, sizeof(refcount) );
     memcpy( weights, h->fenc->weight, sizeof(weights) );
     memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
 
     /* For now don't reorder ref 0; it seems to lower quality
        in most cases due to skips. */
-    for( int ref = 1; ref < h->i_ref0; ref++ )
+    for( int ref = 1; ref < h->i_ref[0]; ref++ )
     {
         int max = -1;
         int bestref = 1;
 
-        for( int i = 1; i < h->i_ref0; i++ )
+        for( int i = 1; i < h->i_ref[0]; i++ )
             /* Favor lower POC as a tiebreaker. */
             COPY2_IF_GT( max, refcount[i], bestref, i );
 
@@ -364,7 +615,7 @@ int x264_reference_build_list_optimal( x264_t *h )
          * that the optimal ordering doesnt place every duplicate. */
 
         refcount[bestref] = -1;
-        h->fref0[ref] = frames[bestref];
+        h->fref[0][ref] = frames[bestref];
         memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
     }
 
@@ -394,11 +645,16 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
         double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
         double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
         rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
-                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset );
+                                 / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET );
     }
 
     if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
     {
+        /* We don't support changing the ABR bitrate right now,
+           so if the stream starts as CBR, keep it CBR. */
+        if( rc->b_vbv_min_rate )
+            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
+
         if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
         {
             h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
@@ -406,13 +662,9 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
                       h->param.rc.i_vbv_buffer_size );
         }
 
-        /* We don't support changing the ABR bitrate right now,
-           so if the stream starts as CBR, keep it CBR. */
-        if( rc->b_vbv_min_rate )
-            h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
-
-        int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * 1000;
-        int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * 1000;
+        int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000;
+        int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size;
+        int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size;
 
         /* Init HRD */
         if( h->param.i_nal_hrd && b_init )
@@ -424,15 +676,12 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
             #define BR_SHIFT  6
             #define CPB_SHIFT 4
 
-            int bitrate = 1000*h->param.rc.i_vbv_max_bitrate;
-            int bufsize = 1000*h->param.rc.i_vbv_buffer_size;
-
             // normalize HRD size and rate to the value / scale notation
-            h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( bitrate ) - BR_SHIFT, 0, 15 );
-            h->sps->vui.hrd.i_bit_rate_value = bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
+            h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
             h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
-            h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( bufsize ) - CPB_SHIFT, 0, 15 );
-            h->sps->vui.hrd.i_cpb_size_value = bufsize >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
+            h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 );
+            h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
             h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
 
             #undef CPB_SHIFT
@@ -441,25 +690,29 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
             // arbitrary
             #define MAX_DURATION 0.5
 
-            int max_cpb_output_delay = h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
+            int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
             int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
             int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
 
             h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
-            h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 32 );
-            h->sps->vui.hrd.i_dpb_output_delay_length  = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 32 );
+            h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
+            h->sps->vui.hrd.i_dpb_output_delay_length  = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
 
             #undef MAX_DURATION
 
-            vbv_buffer_size = X264_MIN( vbv_buffer_size, h->sps->vui.hrd.i_cpb_size_unscaled );
-            vbv_max_bitrate = X264_MIN( vbv_max_bitrate, h->sps->vui.hrd.i_bit_rate_unscaled );
+            vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
+            vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
         }
         else if( h->param.i_nal_hrd && !b_init )
         {
             x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
             return;
         }
+        h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
+        h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
 
+        if( rc->b_vbv_min_rate )
+            rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size;
         rc->buffer_rate = vbv_max_bitrate / rc->fps;
         rc->vbv_max_rate = vbv_max_bitrate;
         rc->buffer_size = vbv_buffer_size;
@@ -480,7 +733,8 @@ void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
             if( h->param.rc.f_vbv_buffer_init > 1. )
                 h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
             h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
-            rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init;
+            rc->buffer_fill_final =
+            rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
             rc->b_vbv = 1;
             rc->b_vbv_min_rate = !rc->b_2pass
                           && h->param.rc.i_rc_method == X264_RC_ABR
@@ -515,7 +769,7 @@ int x264_ratecontrol_new( x264_t *h )
     else
         rc->qcompress = h->param.rc.f_qcompress;
 
-    rc->bitrate = h->param.rc.i_bitrate * 1000.;
+    rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.);
     rc->rate_tolerance = h->param.rc.f_rate_tolerance;
     rc->nmb = h->mb.i_mb_count;
     rc->last_non_b_pict_type = -1;
@@ -523,15 +777,32 @@ int x264_ratecontrol_new( x264_t *h )
 
     if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read )
     {
-        x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n");
+        x264_log( h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n" );
         return -1;
     }
 
     x264_ratecontrol_init_reconfigurable( h, 1 );
 
+    if( h->param.i_nal_hrd )
+    {
+        uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
+        uint64_t num = 90000;
+        x264_reduce_fraction64( &num, &denom );
+        rc->hrd_multiply_denom = 90000 / num;
+
+        double bits_required = log2( 90000 / rc->hrd_multiply_denom )
+                             + log2( h->sps->vui.i_time_scale )
+                             + log2( h->sps->vui.hrd.i_cpb_size_unscaled );
+        if( bits_required >= 63 )
+        {
+            x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
+            return -1;
+        }
+    }
+
     if( rc->rate_tolerance < 0.01 )
     {
-        x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n");
+        x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" );
         rc->rate_tolerance = 0.01;
     }
 
@@ -540,7 +811,7 @@ int x264_ratecontrol_new( x264_t *h )
     if( rc->b_abr )
     {
         /* FIXME ABR_INIT_QP is actually used only in CRF */
-#define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 )
+#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET)
         rc->accum_p_norm = .01;
         rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
         /* estimated ratio that produces a reasonable QP for the first I-frame */
@@ -552,36 +823,43 @@ int x264_ratecontrol_new( x264_t *h )
     rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
     rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
     rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
-    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
-    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
+    rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
+    rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
     h->mb.ip_offset = rc->ip_offset + 0.5;
 
     rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
-    rc->last_qscale = qp2qscale( 26 );
+    rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET );
     int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
     CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
     CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
-    for( int i = 0; i < 5; i++ )
+    static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 };
+    for( int i = 0; i < 3; i++ )
     {
         rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
         rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
         rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
         for( int j = 0; j < num_preds; j++ )
         {
-            rc->pred[i+j*5].coeff= 2.0;
-            rc->pred[i+j*5].count= 1.0;
-            rc->pred[i+j*5].decay= 0.5;
-            rc->pred[i+j*5].offset= 0.0;
+            rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2;
+            rc->pred[i+j*5].coeff = pred_coeff_table[i];
+            rc->pred[i+j*5].count = 1.0;
+            rc->pred[i+j*5].decay = 0.5;
+            rc->pred[i+j*5].offset = 0.0;
         }
         for( int j = 0; j < 2; j++ )
         {
-            rc->row_preds[i][j].coeff= .25;
-            rc->row_preds[i][j].count= 1.0;
-            rc->row_preds[i][j].decay= 0.5;
-            rc->row_preds[i][j].offset= 0.0;
+            rc->row_preds[i][j].coeff_min = .25 / 4;
+            rc->row_preds[i][j].coeff = .25;
+            rc->row_preds[i][j].count = 1.0;
+            rc->row_preds[i][j].decay = 0.5;
+            rc->row_preds[i][j].offset = 0.0;
         }
     }
-    *rc->pred_b_from_p = rc->pred[0];
+    rc->pred_b_from_p->coeff_min = 0.5 / 2;
+    rc->pred_b_from_p->coeff = 0.5;
+    rc->pred_b_from_p->count = 1.0;
+    rc->pred_b_from_p->decay = 0.5;
+    rc->pred_b_from_p->offset = 0.0;
 
     if( parse_zones( h ) < 0 )
     {
@@ -599,7 +877,7 @@ int x264_ratecontrol_new( x264_t *h )
         stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
         if( !stats_buf )
         {
-            x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
+            x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
             return -1;
         }
         if( h->param.rc.b_mb_tree )
@@ -607,17 +885,23 @@ int x264_ratecontrol_new( x264_t *h )
             char *mbtree_stats_in = x264_strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
             if( !mbtree_stats_in )
                 return -1;
-            rc->p_mbtree_stat_file_in = fopen( mbtree_stats_in, "rb" );
+            rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" );
             x264_free( mbtree_stats_in );
             if( !rc->p_mbtree_stat_file_in )
             {
-                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
                 return -1;
             }
         }
 
         /* check whether 1st pass options were compatible with current options */
-        if( !strncmp( stats_buf, "#options:", 9 ) )
+        if( strncmp( stats_buf, "#options:", 9 ) )
+        {
+            x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" );
+            return -1;
+        }
+
+        float res_factor, res_factor_bits;
         {
             int i, j;
             uint32_t k, l;
@@ -632,14 +916,17 @@ int x264_ratecontrol_new( x264_t *h )
                 x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" );
                 return -1;
             }
-            else if( h->param.rc.b_mb_tree && (i != h->param.i_width || j != h->param.i_height)  )
+            else if( h->param.rc.b_mb_tree )
             {
-                x264_log( h, X264_LOG_ERROR, "MB-tree doesn't support different resolution than 1st pass (%dx%d vs %dx%d)\n",
-                          h->param.i_width, h->param.i_height, i, j );
-                return -1;
+                rc->mbtree.srcdim[0] = i;
+                rc->mbtree.srcdim[1] = j;
             }
+            res_factor = (float)h->param.i_width * h->param.i_height / (i*j);
+            /* Change in bits relative to resolution isn't quite linear on typical sources,
+             * so we'll at least try to roughly approximate this effect. */
+            res_factor_bits = powf( res_factor, 0.7 );
 
-            if( ( p = strstr( opts, "timebase=" ) ) && sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
+            if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
             {
                 x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
                 return -1;
@@ -651,11 +938,39 @@ int x264_ratecontrol_new( x264_t *h )
                 return -1;
             }
 
+            CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH );
             CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
             CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
             CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
             CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
-            CMP_OPT_FIRST_PASS( "keyint", h->param.i_keyint_max );
+            CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop );
+            CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat );
+
+            if( (p = strstr( opts, "interlaced=" )) )
+            {
+                char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0";
+                char buf[5];
+                sscanf( p, "interlaced=%4s", buf );
+                if( strcmp( current, buf ) )
+                {
+                    x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf );
+                    return -1;
+                }
+            }
+
+            if( (p = strstr( opts, "keyint=" )) )
+            {
+                p += 7;
+                char buf[13] = "infinite ";
+                if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
+                    sprintf( buf, "%d ", h->param.i_keyint_max );
+                if( strncmp( p, buf, strlen(buf) ) )
+                {
+                    x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
+                              strlen(buf)-1, buf, strcspn(p, " "), p );
+                    return -1;
+                }
+            }
 
             if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
                 x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
@@ -685,7 +1000,7 @@ int x264_ratecontrol_new( x264_t *h )
             p = strchr( p + 1, ';' );
         if( !num_entries )
         {
-            x264_log(h, X264_LOG_ERROR, "empty stats file\n");
+            x264_log( h, X264_LOG_ERROR, "empty stats file\n" );
             return -1;
         }
         rc->num_entries = num_entries;
@@ -709,13 +1024,14 @@ int x264_ratecontrol_new( x264_t *h )
         {
             ratecontrol_entry_t *rce = &rc->entry[i];
             rce->pict_type = SLICE_TYPE_P;
-            rce->qscale = rce->new_qscale = qp2qscale( 20 );
+            rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET );
             rce->misc_bits = rc->nmb + 10;
             rce->new_qp = 0;
         }
 
         /* read stats */
         p = stats_in;
+        double total_qp_aq = 0;
         for( int i = 0; i < rc->num_entries; i++ )
         {
             ratecontrol_entry_t *rce;
@@ -723,7 +1039,7 @@ int x264_ratecontrol_new( x264_t *h )
             char pict_type;
             int e;
             char *next;
-            float qp;
+            float qp_rc, qp_aq;
             int ref;
 
             next= strchr(p, ';');
@@ -739,10 +1055,16 @@ int x264_ratecontrol_new( x264_t *h )
             rce = &rc->entry[frame_number];
             rce->direct_mode = 0;
 
-            e += sscanf( p, " in:%*d out:%*d type:%c dur:%d cpbdur:%d q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
-                   &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp, &rce->tex_bits,
+            e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
+                   &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits,
                    &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
                    &rce->s_count, &rce->direct_mode );
+            rce->tex_bits  *= res_factor_bits;
+            rce->mv_bits   *= res_factor_bits;
+            rce->misc_bits *= res_factor_bits;
+            rce->i_count   *= res_factor;
+            rce->p_count   *= res_factor;
+            rce->s_count   *= res_factor;
 
             p = strstr( p, "ref:" );
             if( !p )
@@ -759,11 +1081,19 @@ int x264_ratecontrol_new( x264_t *h )
             rce->refs = ref;
 
             /* find weights */
-            rce->i_weight_denom = -1;
+            rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
             char *w = strchr( p, 'w' );
             if( w )
-                if( sscanf( w, "w:%hd,%hd,%hd", &rce->i_weight_denom, &rce->weight[0], &rce->weight[1] ) != 3 )
-                    rce->i_weight_denom = -1;
+            {
+                int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd",
+                                    &rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1],
+                                    &rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1],
+                                    &rce->weight[2][0], &rce->weight[2][1] );
+                if( count == 3 )
+                    rce->i_weight_denom[1] = -1;
+                else if ( count != 8 )
+                    rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
+            }
 
             if( pict_type != 'b' )
                 rce->kept_as_ref = 1;
@@ -791,15 +1121,18 @@ int x264_ratecontrol_new( x264_t *h )
                     break;
                 default:  e = -1; break;
             }
-            if( e < 12 )
+            if( e < 13 )
             {
 parse_error:
                 x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
                 return -1;
             }
-            rce->qscale = qp2qscale( qp );
+            rce->qscale = qp2qscale( qp_rc );
+            total_qp_aq += qp_aq;
             p = next;
         }
+        if( !h->param.b_stitchable )
+            h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) );
 
         x264_free( stats_buf );
 
@@ -820,10 +1153,10 @@ parse_error:
         if( !rc->psz_stat_file_tmpname )
             return -1;
 
-        rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" );
+        rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" );
         if( rc->p_stat_file_out == NULL )
         {
-            x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n");
+            x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
             return -1;
         }
 
@@ -838,10 +1171,10 @@ parse_error:
             if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
                 return -1;
 
-            rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
+            rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
             if( rc->p_mbtree_stat_file_out == NULL )
             {
-                x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n");
+                x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
                 return -1;
             }
         }
@@ -849,10 +1182,13 @@ parse_error:
 
     if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
     {
-        CHECKED_MALLOC( rc->qp_buffer[0], h->mb.i_mb_count * sizeof(uint16_t) );
-        if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
-            CHECKED_MALLOC( rc->qp_buffer[1], h->mb.i_mb_count * sizeof(uint16_t) );
-        rc->qpbuf_pos = -1;
+        if( !h->param.rc.b_stat_read )
+        {
+            rc->mbtree.srcdim[0] = h->param.i_width;
+            rc->mbtree.srcdim[1] = h->param.i_height;
+        }
+        if( x264_macroblock_tree_rescale_init( h, rc ) < 0 )
+            return -1;
     }
 
     for( int i = 0; i<h->param.i_threads; i++ )
@@ -863,6 +1199,7 @@ parse_error:
             rc[i] = rc[0];
             h->thread[i]->param = h->param;
             h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
+            h->thread[i]->mb.ip_offset = h->mb.ip_offset;
         }
     }
 
@@ -877,11 +1214,11 @@ static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
     char *tok, UNUSED *saveptr=NULL;
     z->param = NULL;
     z->f_bitrate_factor = 1;
-    if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
+    if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
         z->b_force_qp = 1;
-    else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
+    else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
         z->b_force_qp = 0;
-    else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) )
+    else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) )
         z->b_force_qp = 0;
     else
     {
@@ -1000,7 +1337,7 @@ void x264_ratecontrol_summary( x264_t *h )
         double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
         x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
                   qscale2qp( pow( base_cplx, 1 - rc->qcompress )
-                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset );
+                             * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET );
     }
 }
 
@@ -1014,7 +1351,7 @@ void x264_ratecontrol_delete( x264_t *h )
         b_regular_file = x264_is_regular_file( rc->p_stat_file_out );
         fclose( rc->p_stat_file_out );
         if( h->i_frame >= rc->num_entries && b_regular_file )
-            if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
+            if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
             {
                 x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
                           rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
@@ -1026,7 +1363,7 @@ void x264_ratecontrol_delete( x264_t *h )
         b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out );
         fclose( rc->p_mbtree_stat_file_out );
         if( h->i_frame >= rc->num_entries && b_regular_file )
-            if( rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
+            if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
             {
                 x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
                           rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
@@ -1039,8 +1376,7 @@ void x264_ratecontrol_delete( x264_t *h )
     x264_free( rc->pred );
     x264_free( rc->pred_b_from_p );
     x264_free( rc->entry );
-    x264_free( rc->qp_buffer[0] );
-    x264_free( rc->qp_buffer[1] );
+    x264_macroblock_tree_rescale_destroy( rc );
     if( rc->zones )
     {
         x264_free( rc->zones[0].param );
@@ -1075,11 +1411,9 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
     x264_emms();
 
     if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
-        x264_encoder_reconfig( h, zone->param );
+        x264_encoder_reconfig_apply( h, zone->param );
     rc->prev_zone = zone;
 
-    rc->qp_force = i_force_qp;
-
     if( h->param.rc.b_stat_read )
     {
         int frame = h->fenc->i_frame;
@@ -1096,8 +1430,10 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
 
     if( rc->b_vbv )
     {
-        memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) );
-        rc->row_pred = &rc->row_preds[h->sh.i_type];
+        memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
+        memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) );
+        memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) );
+        rc->row_pred = rc->row_preds[h->sh.i_type];
         rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
         update_vbv_plan( h, overhead );
 
@@ -1107,33 +1443,34 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
 
         int mincr = l->mincr;
 
-        /* Blu-ray requires this */
-        if( l->level_idc == 41 && h->param.i_nal_hrd )
+        if( h->param.b_bluray_compat )
             mincr = 4;
 
-        /* The spec has a bizarre special case for the first frame. */
-        if( h->i_frame == 0 )
-        {
-            //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
-            double fr = 1. / 172;
-            int pic_size_in_mbs = h->sps->i_mb_width * h->sps->i_mb_height;
-            rc->frame_size_maximum = 384 * 8 * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
-        }
+        /* Profiles above High don't require minCR, so just set the maximum to a large value. */
+        if( h->sps->i_profile_idc > PROFILE_HIGH )
+            rc->frame_size_maximum = 1e9;
         else
         {
-            //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
-            rc->frame_size_maximum = 384 * 8 * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
+            /* The spec has a bizarre special case for the first frame. */
+            if( h->i_frame == 0 )
+            {
+                //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
+                double fr = 1. / 172;
+                int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
+                rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
+            }
+            else
+            {
+                //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
+                rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
+            }
         }
     }
 
     if( h->sh.i_type != SLICE_TYPE_B )
         rc->bframes = h->fenc->i_bframes;
 
-    if( i_force_qp )
-    {
-        q = i_force_qp - 1;
-    }
-    else if( rc->b_abr )
+    if( rc->b_abr )
     {
         q = qscale2qp( rate_estimate_qscale( h ) );
     }
@@ -1157,12 +1494,14 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
                 q -= 6*log2f( zone->f_bitrate_factor );
         }
     }
+    if( i_force_qp != X264_QP_AUTO )
+        q = i_force_qp - 1;
 
     q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 
-    rc->qpa_rc =
-    rc->qpa_aq = 0;
-    rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 );
+    rc->qpa_rc = rc->qpa_rc_prev =
+    rc->qpa_aq = rc->qpa_aq_prev = 0;
+    rc->qp = x264_clip3( q + 0.5f, 0, QP_MAX );
     h->fdec->f_qp_avg_rc =
     h->fdec->f_qp_avg_aq =
     rc->qpm = q;
@@ -1175,121 +1514,140 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
         rc->last_non_b_pict_type = h->sh.i_type;
 }
 
-static double predict_row_size( x264_t *h, int y, double qp )
+static float predict_row_size( x264_t *h, int y, float qscale )
 {
     /* average between two predictors:
      * absolute SATD, and scaled bit cost of the colocated row in the previous frame */
     x264_ratecontrol_t *rc = h->rc;
-    double pred_s = predict_size( rc->row_pred[0], qp2qscale( qp ), h->fdec->i_row_satd[y] );
-    double pred_t = 0;
-    if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->f_row_qp[y] )
+    float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] );
+    if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] )
     {
         if( h->sh.i_type == SLICE_TYPE_P
-            && h->fref0[0]->i_type == h->fdec->i_type
-            && h->fref0[0]->i_row_satd[y] > 0
-            && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
+            && h->fref[0][0]->i_type == h->fdec->i_type
+            && h->fref[0][0]->f_row_qscale[y] > 0
+            && h->fref[0][0]->i_row_satd[y] > 0
+            && (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
         {
-            pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y]
-                     * qp2qscale( h->fref0[0]->f_row_qp[y] ) / qp2qscale( qp );
+            float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y]
+                         * h->fref[0][0]->f_row_qscale[y] / qscale;
+            return (pred_s + pred_t) * 0.5f;
         }
-        if( pred_t == 0 )
-            pred_t = pred_s;
-        return (pred_s + pred_t) / 2;
+        return pred_s;
     }
     /* Our QP is lower than the reference! */
     else
     {
-        double pred_intra = predict_size( rc->row_pred[1], qp2qscale( qp ), h->fdec->i_row_satds[0][0][y] );
+        float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] );
         /* Sum: better to overestimate than underestimate by using only one of the two predictors. */
         return pred_intra + pred_s;
     }
 }
 
-static double row_bits_so_far( x264_t *h, int y )
+static int row_bits_so_far( x264_t *h, int y )
 {
-    double bits = 0;
+    int bits = 0;
     for( int i = h->i_threadslice_start; i <= y; i++ )
         bits += h->fdec->i_row_bits[i];
     return bits;
 }
 
-static double predict_row_size_sum( x264_t *h, int y, double qp )
+static float predict_row_size_sum( x264_t *h, int y, float qp )
 {
-    double bits = row_bits_so_far(h, y);
+    float qscale = qp2qscale( qp );
+    float bits = row_bits_so_far( h, y );
     for( int i = y+1; i < h->i_threadslice_end; i++ )
-        bits += predict_row_size( h, i, qp );
+        bits += predict_row_size( h, i, qscale );
     return bits;
 }
 
-
-void x264_ratecontrol_mb( x264_t *h, int bits )
+/* TODO:
+ *  eliminate all use of qp in row ratecontrol: make it entirely qscale-based.
+ *  make this function stop being needlessly O(N^2)
+ *  update more often than once per row? */
+int x264_ratecontrol_mb( x264_t *h, int bits )
 {
     x264_ratecontrol_t *rc = h->rc;
     const int y = h->mb.i_mb_y;
 
-    x264_emms();
-
     h->fdec->i_row_bits[y] += bits;
-    rc->qpa_rc += rc->qpm;
     rc->qpa_aq += h->mb.i_qp;
 
-    if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv )
-        return;
+    if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )
+        return 0;
 
+    x264_emms();
+    rc->qpa_rc += rc->qpm * h->mb.i_mb_width;
+
+    if( !rc->b_vbv )
+        return 0;
+
+    float qscale = qp2qscale( rc->qpm );
     h->fdec->f_row_qp[y] = rc->qpm;
+    h->fdec->f_row_qscale[y] = qscale;
 
-    update_predictor( rc->row_pred[0], qp2qscale( rc->qpm ), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
-    if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->f_row_qp[y] )
-        update_predictor( rc->row_pred[1], qp2qscale( rc->qpm ), h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
+    update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
+    if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] )
+        update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
+
+    /* update ratecontrol per-mbpair in MBAFF */
+    if( SLICE_MBAFF && !(y&1) )
+        return 0;
+
+    /* FIXME: We don't currently support the case where there's a slice
+     * boundary in between. */
+    int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride);
 
     /* tweak quality based on difference from predicted size */
+    float prev_row_qp = h->fdec->f_row_qp[y];
+    float qp_absolute_max = h->param.rc.i_qp_max;
+    if( rc->rate_factor_max_increment )
+        qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
+    float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
+    float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
+    float step_size = 0.5f;
+    float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
+    float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
+    float max_frame_error = X264_MAX( 0.05f, 1.0f / h->mb.i_mb_height );
+    float size_of_other_slices = 0;
+    if( h->param.b_sliced_threads )
+    {
+        float size_of_other_slices_planned = 0;
+        for( int i = 0; i < h->param.i_threads; i++ )
+            if( h != h->thread[i] )
+            {
+                size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
+                size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned;
+            }
+        float weight = rc->slice_size_planned / rc->frame_size_planned;
+        size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
+    }
     if( y < h->i_threadslice_end-1 )
     {
-        float prev_row_qp = h->fdec->f_row_qp[y];
-        float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
-        float qp_absolute_max = h->param.rc.i_qp_max;
-        if( rc->rate_factor_max_increment )
-            qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
-        float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
-        float step_size = 0.5;
-
         /* B-frames shouldn't use lower QP than their reference frames. */
         if( h->sh.i_type == SLICE_TYPE_B )
         {
-            qp_min = X264_MAX( qp_min, X264_MAX( h->fref0[0]->f_row_qp[y+1], h->fref1[0]->f_row_qp[y+1] ) );
+            qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );
             rc->qpm = X264_MAX( rc->qpm, qp_min );
         }
 
-        float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
-        float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
-        float size_of_other_slices = 0;
-        if( h->param.b_sliced_threads )
-        {
-            for( int i = 0; i < h->param.i_threads; i++ )
-                if( h != h->thread[i] )
-                    size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
-        }
-        else
-            rc->max_frame_error = X264_MAX( 0.05, 1.0 / (h->sps->i_mb_width) );
-
         /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
         float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
-        int b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
+        float b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
 
-        /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
+        /* Don't increase the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */
         /* area at the top of the frame was measured inaccurately. */
-        if( row_bits_so_far( h, y ) < 0.05 * slice_size_planned )
-            return;
+        if( row_bits_so_far( h, y ) < 0.05f * slice_size_planned )
+            qp_max = qp_absolute_max = prev_row_qp;
 
         if( h->sh.i_type != SLICE_TYPE_I )
-            rc_tol /= 2;
+            rc_tol *= 0.5f;
 
         if( !rc->b_vbv_min_rate )
             qp_min = X264_MAX( qp_min, rc->qp_novbv );
 
         while( rc->qpm < qp_max
                && ((b1 > rc->frame_size_planned + rc_tol) ||
-                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5) ||
+                   (rc->buffer_fill - b1 < buffer_left_planned * 0.5f) ||
                    (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) )
         {
             rc->qpm += step_size;
@@ -1298,8 +1656,8 @@ void x264_ratecontrol_mb( x264_t *h, int bits )
 
         while( rc->qpm > qp_min
                && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
-               && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp)
-               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) )
+               && ((b1 < rc->frame_size_planned * 0.8f && rc->qpm <= prev_row_qp)
+               || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1f) )
         {
             rc->qpm -= step_size;
             b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
@@ -1307,21 +1665,55 @@ void x264_ratecontrol_mb( x264_t *h, int bits )
 
         /* avoid VBV underflow or MinCR violation */
         while( (rc->qpm < qp_absolute_max)
-               && ((rc->buffer_fill - b1 < rc->buffer_rate * rc->max_frame_error) ||
-                   (rc->frame_size_maximum - b1 < rc->frame_size_maximum * rc->max_frame_error)))
+               && ((rc->buffer_fill - b1 < rc->buffer_rate * max_frame_error) ||
+                   (rc->frame_size_maximum - b1 < rc->frame_size_maximum * max_frame_error)))
         {
             rc->qpm += step_size;
             b1 = predict_row_size_sum( h, y, rc->qpm ) + size_of_other_slices;
         }
 
+        h->rc->frame_size_estimated = b1 - size_of_other_slices;
+
+        /* If the current row was large enough to cause a large QP jump, try re-encoding it. */
+        if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row )
+        {
+            /* Bump QP to halfway in between... close enough. */
+            rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max );
+            rc->qpa_rc = rc->qpa_rc_prev;
+            rc->qpa_aq = rc->qpa_aq_prev;
+            h->fdec->i_row_bits[y] = 0;
+            h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
+            return -1;
+        }
+    }
+    else
+    {
         h->rc->frame_size_estimated = predict_row_size_sum( h, y, rc->qpm );
+
+        /* Last-ditch attempt: if the last row of the frame underflowed the VBV,
+         * try again. */
+        if( (h->rc->frame_size_estimated + size_of_other_slices) > (rc->buffer_fill - rc->buffer_rate * max_frame_error) &&
+             rc->qpm < qp_max && can_reencode_row )
+        {
+            rc->qpm = qp_max;
+            rc->qpa_rc = rc->qpa_rc_prev;
+            rc->qpa_aq = rc->qpa_aq_prev;
+            h->fdec->i_row_bits[y] = 0;
+            h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
+            return -1;
+        }
     }
+
+    rc->qpa_rc_prev = rc->qpa_rc;
+    rc->qpa_aq_prev = rc->qpa_aq;
+
+    return 0;
 }
 
 int x264_ratecontrol_qp( x264_t *h )
 {
     x264_emms();
-    return x264_clip3( h->rc->qpm + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+    return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 }
 
 int x264_ratecontrol_mb_qp( x264_t *h )
@@ -1329,9 +1721,15 @@ int x264_ratecontrol_mb_qp( x264_t *h )
     x264_emms();
     float qp = h->rc->qpm;
     if( h->param.rc.i_aq_mode )
-        /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
-        qp += h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
-    return x264_clip3( qp + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
+    {
+         /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
+        float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
+        /* Scale AQ's effect towards zero in emergency mode. */
+        if( qp > QP_MAX_SPEC )
+            qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC);
+        qp += qp_offset;
+    }
+    return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
 }
 
 /* In 2pass, force the same frame types as in the 1st pass */
@@ -1345,16 +1743,16 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
             /* We could try to initialize everything required for ABR and
              * adaptive B-frames, but that would be complicated.
              * So just calculate the average QP used so far. */
-            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24
+            h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET
                                       : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
-            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
-            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
-            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
+            rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, QP_MAX );
+            rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, QP_MAX );
 
-            x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries);
-            x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant);
+            x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries );
+            x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant );
             if( h->param.i_bframe_adaptive )
-                x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n");
+                x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" );
 
             for( int i = 0; i < h->param.i_threads; i++ )
             {
@@ -1381,8 +1779,15 @@ void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
     ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
     if( h->param.analyse.i_weighted_pred <= 0 )
         return;
-    if( rce->i_weight_denom >= 0 )
-        SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0], rce->i_weight_denom, rce->weight[1] );
+
+    if( rce->i_weight_denom[0] >= 0 )
+        SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] );
+
+    if( rce->i_weight_denom[1] >= 0 )
+    {
+        SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] );
+        SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] );
+    }
 }
 
 /* After encoding one frame, save stats and update ratecontrol state */
@@ -1400,7 +1805,8 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
         h->stat.frame.i_mb_count_p += mbs[i];
 
     h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
-    h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count;
+    h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count;
+    h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv;
 
     if( h->param.rc.b_stat_write )
     {
@@ -1414,10 +1820,11 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
                           dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
                         : '-';
         if( fprintf( rc->p_stat_file_out,
-                 "in:%d out:%d type:%c dur:%d cpbdur:%d q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
+                 "in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
                  h->fenc->i_frame, h->i_frame,
                  c_type, h->fenc->i_duration,
-                 h->fenc->i_cpb_duration, rc->qpa_rc,
+                 h->fenc->i_cpb_duration,
+                 rc->qpa_rc, h->fdec->f_qp_avg_aq,
                  h->stat.frame.i_tex_bits,
                  h->stat.frame.i_mv_bits,
                  h->stat.frame.i_misc_bits,
@@ -1429,19 +1836,29 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
 
         /* Only write information for reference reordering once. */
         int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
-        for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref0); i++ )
+        for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ )
         {
             int refcount = use_old_stats         ? rc->rce->refcount[i]
-                         : h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2]
+                         : PARAM_INTERLACED      ? h->stat.frame.i_mb_count_ref[0][i*2]
                                                  + h->stat.frame.i_mb_count_ref[0][i*2+1]
                          :                         h->stat.frame.i_mb_count_ref[0][i];
             if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
                 goto fail;
         }
 
-        if( h->sh.weight[0][0].weightfn )
+        if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn )
         {
-            if( fprintf( rc->p_stat_file_out, "w:%"PRId32",%"PRId32",%"PRId32, h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
+            if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d",
+                         h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
+                goto fail;
+            if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn )
+            {
+                if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ",
+                             h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset,
+                             h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 )
+                    goto fail;
+            }
+            else if( fprintf( rc->p_stat_file_out, " " ) < 0 )
                 goto fail;
         }
 
@@ -1454,10 +1871,10 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
             uint8_t i_type = h->sh.i_type;
             /* Values are stored as big-endian FIX8.8 */
             for( int i = 0; i < h->mb.i_mb_count; i++ )
-                rc->qp_buffer[0][i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 );
+                rc->mbtree.qp_buffer[0][i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 );
             if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
                 goto fail;
-            if( fwrite( rc->qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count )
+            if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count )
                 goto fail;
         }
     }
@@ -1473,9 +1890,7 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
             rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * fabs( h->param.rc.f_pb_factor ));
         }
         rc->cplxr_sum *= rc->cbr_decay;
-        double frame_duration = (double)h->fenc->i_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
-
-        rc->wanted_bits_window += frame_duration * rc->bitrate;
+        rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate;
         rc->wanted_bits_window *= rc->cbr_decay;
     }
 
@@ -1490,13 +1905,14 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
             if( h->fenc->b_last_minigop_bframe )
             {
                 update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
-                                  h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes );
+                                  h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes );
                 rc->bframe_bits = 0;
             }
         }
     }
 
     *filler = update_vbv( h, bits );
+    rc->filler_bits_sum += *filler * 8;
 
     if( h->sps->vui.b_nal_hrd_parameters_present )
     {
@@ -1510,18 +1926,19 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
         }
         else
         {
-            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)h->fenc->i_cpb_delay *
+            h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) *
                                                    h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
 
-            double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
             if( h->fenc->b_keyframe )
             {
-                 rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
-                 rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
-                 rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
+                rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
+                rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
+                rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
             }
-            else
-                 cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
+
+            double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
+            if( !h->fenc->b_keyframe )
+                cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
 
             if( h->sps->vui.hrd.b_cbr_hrd )
                 h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
@@ -1539,7 +1956,7 @@ int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
 
     return 0;
 fail:
-    x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n");
+    x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" );
     return -1;
 }
 
@@ -1554,7 +1971,14 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor
 {
     x264_ratecontrol_t *rcc= h->rc;
     x264_zone_t *zone = get_zone( h, frame_num );
-    double q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
+    double q;
+    if( h->param.rc.b_mb_tree )
+    {
+        double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+        q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );
+    }
+    else
+        q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
 
     // avoid NaN's in the rc_eq
     if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
@@ -1577,10 +2001,11 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor
     return q;
 }
 
-static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
+static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num)
 {
     x264_ratecontrol_t *rcc = h->rc;
     const int pict_type = rce->pict_type;
+    x264_zone_t *zone = get_zone( h, frame_num );
 
     // force I/B quants as a function of P quants
     const double last_p_q    = rcc->last_qscale_for[SLICE_TYPE_P];
@@ -1641,23 +2066,33 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q)
         rcc->accum_p_qp   = mask * (qscale2qp( q ) + rcc->accum_p_qp);
         rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
     }
+
+    if( zone )
+    {
+        if( zone->b_force_qp )
+            q = qp2qscale( zone->i_qp );
+        else
+            q /= zone->f_bitrate_factor;
+    }
+
     return q;
 }
 
-static double predict_size( predictor_t *p, double q, double var )
+static float predict_size( predictor_t *p, float q, float var )
 {
-     return (p->coeff*var + p->offset) / (q*p->count);
+    return (p->coeff*var + p->offset) / (q*p->count);
 }
 
-static void update_predictor( predictor_t *p, double q, double var, double bits )
+static void update_predictor( predictor_t *p, float q, float var, float bits )
 {
-    const double range = 1.5;
+    float range = 1.5;
     if( var < 10 )
         return;
-    double old_coeff = p->coeff / p->count;
-    double new_coeff = bits*q / var;
-    double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
-    double new_offset = bits*q - new_coeff_clipped * var;
+    float old_coeff = p->coeff / p->count;
+    float old_offset = p->offset / p->count;
+    float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min );
+    float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
+    float new_offset = bits*q - new_coeff_clipped * var;
     if( new_offset >= 0 )
         new_coeff = new_coeff_clipped;
     else
@@ -1674,9 +2109,10 @@ static void update_predictor( predictor_t *p, double q, double var, double bits
 static int update_vbv( x264_t *h, int bits )
 {
     int filler = 0;
-
+    int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
     x264_ratecontrol_t *rcc = h->rc;
     x264_ratecontrol_t *rct = h->thread[0]->rc;
+    int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
 
     if( rcc->last_satd >= h->mb.i_mb_count )
         update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
@@ -1684,48 +2120,76 @@ static int update_vbv( x264_t *h, int bits )
     if( !rcc->b_vbv )
         return filler;
 
-    rct->buffer_fill_final -= bits;
-
-    if( rct->buffer_fill_final < 0 )
-        x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, rct->buffer_fill_final );
-    rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 );
-    rct->buffer_fill_final += rcc->buffer_rate;
+    uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
+    rct->buffer_fill_final -= buffer_diff;
+    rct->buffer_fill_final_min -= buffer_diff;
 
-    if( h->sps->vui.hrd.b_cbr_hrd && rct->buffer_fill_final > rcc->buffer_size )
+    if( rct->buffer_fill_final_min < 0 )
     {
-        filler = ceil( (rct->buffer_fill_final - rcc->buffer_size) / 8 );
-        rct->buffer_fill_final -= X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
+        double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale;
+        if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment )
+            x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow );
+        else
+            x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow );
+        rct->buffer_fill_final =
+        rct->buffer_fill_final_min = 0;
     }
+
+    if( h->param.i_avcintra_class )
+        buffer_diff = buffer_size;
     else
-        rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, rcc->buffer_size );
+        buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
+    rct->buffer_fill_final += buffer_diff;
+    rct->buffer_fill_final_min += buffer_diff;
+
+    if( rct->buffer_fill_final > buffer_size )
+    {
+        if( h->param.rc.b_filler )
+        {
+            int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8;
+            filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale;
+            bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
+            buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
+            rct->buffer_fill_final -= buffer_diff;
+            rct->buffer_fill_final_min -= buffer_diff;
+        }
+        else
+        {
+            rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
+            rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size );
+        }
+    }
 
     return filler;
 }
 
-int x264_hrd_fullness( x264_t *h )
+void x264_hrd_fullness( x264_t *h )
 {
     x264_ratecontrol_t *rct = h->thread[0]->rc;
-    double cpb_bits = rct->buffer_fill_final;
-    double bps = h->sps->vui.hrd.i_bit_rate_unscaled;
-    double cpb_size = h->sps->vui.hrd.i_cpb_size_unscaled;
-    double cpb_fullness = 90000.0*cpb_bits/bps;
+    uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
+    uint64_t cpb_state = rct->buffer_fill_final;
+    uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
+    uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom;
 
-    if( cpb_bits < 0 || cpb_bits > cpb_size )
+    if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size )
     {
-         x264_log( h, X264_LOG_WARNING, "CPB %s: %.0lf bits in a %.0lf-bit buffer\n",
-                   cpb_bits < 0 ? "underflow" : "overflow", cpb_bits, cpb_size );
+         x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n",
+                   rct->buffer_fill_final < 0 ? "underflow" : "overflow",
+                   (double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale );
     }
 
-    h->initial_cpb_removal_delay_offset = 90000.0*(cpb_size - cpb_bits)/bps;
+    h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom;
+    h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay;
 
-    return x264_clip3f( cpb_fullness + 0.5, 0, 90000.0*cpb_size/bps ); // just lie if we are in a weird state
+    int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor;
+    rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill );
 }
 
 // provisionally update VBV according to the planned size of all frames currently in progress
 static void update_vbv_plan( x264_t *h, int overhead )
 {
     x264_ratecontrol_t *rcc = h->rc;
-    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final;
+    rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale;
     if( h->i_thread_frames > 1 )
     {
         int j = h->rc - h->thread[0]->rc;
@@ -1735,7 +2199,7 @@ static void update_vbv_plan( x264_t *h, int overhead )
             double bits = t->rc->frame_size_planned;
             if( !t->b_thread_active )
                 continue;
-            bits  = X264_MAX(bits, t->rc->frame_size_estimated);
+            bits = X264_MAX(bits, t->rc->frame_size_estimated);
             rcc->buffer_fill -= bits;
             rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
             rcc->buffer_fill += t->rc->buffer_rate;
@@ -1761,6 +2225,8 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
 
     if( rcc->b_vbv && rcc->last_satd > 0 )
     {
+        double fenc_cpb_duration = (double)h->fenc->i_cpb_duration *
+                                   h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
         /* Lookahead VBV: raise the quantizer as necessary such that no frames in
          * the lookahead overflow and such that the buffer is in a reasonable state
          * by the end of the lookahead. */
@@ -1776,6 +2242,7 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
                 double buffer_fill_cur = rcc->buffer_fill - cur_bits;
                 double target_fill;
                 double total_duration = 0;
+                double last_duration = fenc_cpb_duration;
                 frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
                 frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
                 frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
@@ -1783,8 +2250,8 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
                 /* Loop over the planned future frames. */
                 for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
                 {
-                    total_duration += h->fenc->f_planned_cpb_duration[j];
-                    buffer_fill_cur += rcc->vbv_max_rate * h->fenc->f_planned_cpb_duration[j];
+                    total_duration += last_duration;
+                    buffer_fill_cur += rcc->vbv_max_rate * last_duration;
                     int i_type = h->fenc->i_planned_type[j];
                     int i_satd = h->fenc->i_planned_satd[j];
                     if( i_type == X264_TYPE_AUTO )
@@ -1792,6 +2259,7 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
                     i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
                     cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
                     buffer_fill_cur -= cur_bits;
+                    last_duration = h->fenc->f_planned_cpb_duration[j];
                 }
                 /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
                 target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
@@ -1825,53 +2293,58 @@ static double clip_qscale( x264_t *h, int pict_type, double q )
             /* Now a hard threshold to make sure the frame fits in VBV.
              * This one is mostly for I-frames. */
             double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
-            double qf = 1.0;
             /* For small VBVs, allow the frame to use up the entire VBV. */
             double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
             /* For single-frame VBVs, request that the frame use up the entire VBV. */
             double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
 
             if( bits > rcc->buffer_fill/max_fill_factor )
-                qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
-            q /= qf;
-            bits *= qf;
+            {
+                double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
+                q /= qf;
+                bits *= qf;
+            }
             if( bits < rcc->buffer_rate/min_fill_factor )
-                q *= bits*min_fill_factor/rcc->buffer_rate;
+            {
+                double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 );
+                q *= qf;
+            }
             q = X264_MAX( q0, q );
         }
 
-        /* Apply MinCR restrictions */
-        double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
-        if( bits > rcc->frame_size_maximum )
-            q *= bits / rcc->frame_size_maximum;
-        bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
-
         /* Check B-frame complexity, and use up any bits that would
          * overflow before the next P-frame. */
         if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
         {
             int nb = rcc->bframes;
+            double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
             double pbbits = bits;
             double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
             double space;
             double bframe_cpb_duration = 0;
             double minigop_cpb_duration;
             for( int i = 0; i < nb; i++ )
-                bframe_cpb_duration += h->fenc->f_planned_cpb_duration[1+i];
+                bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i];
 
             if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
                 nb = 0;
             pbbits += nb * bbits;
 
-            minigop_cpb_duration = bframe_cpb_duration + h->fenc->f_planned_cpb_duration[0];
+            minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration;
             space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
             if( pbbits < space )
             {
                 q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
             }
-            q = X264_MAX( q0-5, q );
+            q = X264_MAX( q0/2, q );
         }
 
+        /* Apply MinCR and buffer fill restrictions */
+        double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
+        double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
+        if( bits > frame_size_maximum )
+            q *= bits / frame_size_maximum;
+
         if( !rcc->b_vbv_min_rate )
             q = X264_MAX( q0, q );
     }
@@ -1896,11 +2369,12 @@ static float rate_estimate_qscale( x264_t *h )
 {
     float q;
     x264_ratecontrol_t *rcc = h->rc;
-    ratecontrol_entry_t rce;
+    ratecontrol_entry_t rce = {0};
     int pict_type = h->sh.i_type;
     int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
                           + h->stat.i_frame_size[SLICE_TYPE_P]
-                          + h->stat.i_frame_size[SLICE_TYPE_B]);
+                          + h->stat.i_frame_size[SLICE_TYPE_B])
+                       - rcc->filler_bits_sum;
 
     if( rcc->b_2pass )
     {
@@ -1917,16 +2391,16 @@ static float rate_estimate_qscale( x264_t *h )
         /* B-frames don't have independent ratecontrol, but rather get the
          * average QP of the two adjacent P-frames + an offset */
 
-        int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type);
-        int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type);
-        int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc);
-        int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc);
-        float q0 = h->fref0[0]->f_qp_avg_rc;
-        float q1 = h->fref1[0]->f_qp_avg_rc;
+        int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);
+        int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);
+        int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);
+        int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);
+        float q0 = h->fref_nearest[0]->f_qp_avg_rc;
+        float q1 = h->fref_nearest[1]->f_qp_avg_rc;
 
-        if( h->fref0[0]->i_type == X264_TYPE_BREF )
+        if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )
             q0 -= rcc->pb_offset/2;
-        if( h->fref1[0]->i_type == X264_TYPE_BREF )
+        if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )
             q1 -= rcc->pb_offset/2;
 
         if( i0 && i1 )
@@ -1944,9 +2418,12 @@ static float rate_estimate_qscale( x264_t *h )
             q += rcc->pb_offset;
 
         if( rcc->b_2pass && rcc->b_vbv )
-            rcc->frame_size_planned = qscale2bits( &rce, q );
+            rcc->frame_size_planned = qscale2bits( &rce, qp2qscale( q ) );
         else
-            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
+            rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, qp2qscale( q ), h->fref[1][h->i_ref[1]-1]->i_satd );
+        /* Limit planned size by MinCR */
+        if( rcc->b_vbv )
+            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );
         h->rc->frame_size_estimated = rcc->frame_size_planned;
 
         /* For row SATDs */
@@ -1965,9 +2442,6 @@ static float rate_estimate_qscale( x264_t *h )
             double lmax = rcc->lmax[pict_type];
             int64_t diff;
             int64_t predicted_bits = total_bits;
-            /* Adjust ABR buffer based on distance to the end of the video. */
-            if( rcc->num_entries > h->i_frame )
-                abr_buffer *= 0.5 * sqrt( rcc->num_entries - h->i_frame );
 
             if( rcc->b_vbv )
             {
@@ -1980,7 +2454,7 @@ static float rate_estimate_qscale( x264_t *h )
                         double bits = t->rc->frame_size_planned;
                         if( !t->b_thread_active )
                             continue;
-                        bits  = X264_MAX(bits, t->rc->frame_size_estimated);
+                        bits = X264_MAX(bits, t->rc->frame_size_estimated);
                         predicted_bits += (int64_t)bits;
                     }
                 }
@@ -1993,6 +2467,15 @@ static float rate_estimate_qscale( x264_t *h )
                     predicted_bits += (int64_t)(h->i_thread_frames - 1) * rcc->bitrate / rcc->fps;
             }
 
+            /* Adjust ABR buffer based on distance to the end of the video. */
+            if( rcc->num_entries > h->i_frame )
+            {
+                double final_bits = rcc->entry[rcc->num_entries-1].expected_bits;
+                double video_pos = rce.expected_bits / final_bits;
+                double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
+                abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
+            }
+
             diff = predicted_bits - (int64_t)rce.expected_bits;
             q = rce.new_qscale;
             q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
@@ -2005,6 +2488,7 @@ static float rate_estimate_qscale( x264_t *h )
                 double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
                 q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
             }
+            rcc->qp_novbv = qscale2qp( q );
             if( rcc->b_vbv )
             {
                 /* Do not overflow vbv */
@@ -2045,7 +2529,7 @@ static float rate_estimate_qscale( x264_t *h )
             rcc->last_satd = x264_rc_analyse_slice( h );
             rcc->short_term_cplxsum *= 0.5;
             rcc->short_term_cplxcount *= 0.5;
-            rcc->short_term_cplxsum += rcc->last_satd;
+            rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);
             rcc->short_term_cplxcount ++;
 
             rce.tex_bits = rcc->last_satd;
@@ -2056,6 +2540,7 @@ static float rate_estimate_qscale( x264_t *h )
             rce.s_count = 0;
             rce.qscale = 1;
             rce.pict_type = pict_type;
+            rce.i_duration = h->fenc->i_duration;
 
             if( h->param.rc.i_rc_method == X264_RC_CRF )
             {
@@ -2093,16 +2578,19 @@ static float rate_estimate_qscale( x264_t *h )
             }
             else if( h->i_frame > 0 )
             {
-                /* Asymmetric clipping, because symmetric would prevent
-                 * overflow control in areas of rapidly oscillating complexity */
-                double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
-                double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
-                if( overflow > 1.1 && h->i_frame > 3 )
-                    lmax *= rcc->lstep;
-                else if( overflow < 0.9 )
-                    lmin /= rcc->lstep;
-
-                q = x264_clip3f(q, lmin, lmax);
+                if( h->param.rc.i_rc_method != X264_RC_CRF )
+                {
+                    /* Asymmetric clipping, because symmetric would prevent
+                     * overflow control in areas of rapidly oscillating complexity */
+                    double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
+                    double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
+                    if( overflow > 1.1 && h->i_frame > 3 )
+                        lmax *= rcc->lstep;
+                    else if( overflow < 0.9 )
+                        lmin /= rcc->lstep;
+
+                    q = x264_clip3f(q, lmin, lmax);
+                }
             }
             else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
             {
@@ -2128,12 +2616,15 @@ static float rate_estimate_qscale( x264_t *h )
         /* Always use up the whole VBV in this case. */
         if( rcc->single_frame_vbv )
             rcc->frame_size_planned = rcc->buffer_rate;
+        /* Limit planned size by MinCR */
+        if( rcc->b_vbv )
+            rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum );
         h->rc->frame_size_estimated = rcc->frame_size_planned;
         return q;
     }
 }
 
-void x264_threads_normalize_predictors( x264_t *h )
+static void x264_threads_normalize_predictors( x264_t *h )
 {
     double totalsize = 0;
     for( int i = 0; i < h->param.i_threads; i++ )
@@ -2147,27 +2638,31 @@ void x264_threads_distribute_ratecontrol( x264_t *h )
 {
     int row;
     x264_ratecontrol_t *rc = h->rc;
+    x264_emms();
+    float qscale = qp2qscale( rc->qpm );
 
     /* Initialize row predictors */
     if( h->i_frame == 0 )
         for( int i = 0; i < h->param.i_threads; i++ )
         {
-            x264_ratecontrol_t *t = h->thread[i]->rc;
-            memcpy( t->row_preds, rc->row_preds, sizeof(rc->row_preds) );
+            x264_t *t = h->thread[i];
+            if( t != h )
+                memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) );
         }
 
     for( int i = 0; i < h->param.i_threads; i++ )
     {
         x264_t *t = h->thread[i];
-        memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
-        t->rc->row_pred = &t->rc->row_preds[h->sh.i_type];
+        if( t != h )
+            memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
+        t->rc->row_pred = t->rc->row_preds[h->sh.i_type];
         /* Calculate the planned slice size. */
         if( rc->b_vbv && rc->frame_size_planned )
         {
             int size = 0;
             for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
                 size += h->fdec->i_row_satd[row];
-            t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], rc->qpm, size );
+            t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size );
         }
         else
             t->rc->slice_size_planned = 0;
@@ -2182,8 +2677,8 @@ void x264_threads_distribute_ratecontrol( x264_t *h )
             for( int i = 0; i < h->param.i_threads; i++ )
             {
                 x264_t *t = h->thread[i];
-                t->rc->max_frame_error = X264_MAX( 0.05, 1.0 / (t->i_threadslice_end - t->i_threadslice_start) );
-                t->rc->slice_size_planned += 2 * t->rc->max_frame_error * rc->frame_size_planned;
+                float max_frame_error = X264_MAX( 0.05, 1.0 / (t->i_threadslice_end - t->i_threadslice_start) );
+                t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
             }
             x264_threads_normalize_predictors( h );
         }
@@ -2208,8 +2703,8 @@ void x264_threads_merge_ratecontrol( x264_t *h )
             for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
                 size += h->fdec->i_row_satd[row];
             int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
-            int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->sps->i_mb_width;
-            update_predictor( &rc->pred[h->sh.i_type+5*i], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
+            int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
+            update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
         }
         if( !i )
             continue;
@@ -2236,15 +2731,16 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
         COPY(short_term_cplxcount);
         COPY(bframes);
         COPY(prev_zone);
-        COPY(qpbuf_pos);
+        COPY(mbtree.qpbuf_pos);
         /* these vars can be updated by x264_ratecontrol_init_reconfigurable */
-        COPY(buffer_rate);
+        COPY(bitrate);
         COPY(buffer_size);
+        COPY(buffer_rate);
+        COPY(vbv_max_rate);
         COPY(single_frame_vbv);
         COPY(cbr_decay);
-        COPY(b_vbv_min_rate);
         COPY(rate_factor_constant);
-        COPY(bitrate);
+        COPY(rate_factor_max_increment);
 #undef COPY
     }
     if( cur != next )
@@ -2255,6 +2751,7 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
          * to the context that's about to end (next) */
         COPY(cplxr_sum);
         COPY(expected_bits_sum);
+        COPY(filler_bits_sum);
         COPY(wanted_bits_window);
         COPY(bframe_bits);
         COPY(initial_cpb_removal_delay);
@@ -2273,7 +2770,7 @@ static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over
      * we're adding or removing bits), and starting on the earliest frame that
      * can influence the buffer fill of that end frame. */
     x264_ratecontrol_t *rcc = h->rc;
-    const double buffer_min = (over ? .1 : .1) * rcc->buffer_size;
+    const double buffer_min = .1 * rcc->buffer_size;
     const double buffer_max = .9 * rcc->buffer_size;
     double fill = fills[*t0-1];
     double parity = over ? 1. : -1.;
@@ -2398,10 +2895,11 @@ static int init_pass2( x264_t *h )
 {
     x264_ratecontrol_t *rcc = h->rc;
     uint64_t all_const_bits = 0;
+    double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
     double duration = 0;
     for( int i = 0; i < rcc->num_entries; i++ )
         duration += rcc->entry[i].i_duration;
-    duration *= (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
+    duration *= timescale;
     uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
     double rate_factor, step_mult;
     double qblur = h->param.rc.f_qblur;
@@ -2409,6 +2907,7 @@ static int init_pass2( x264_t *h )
     const int filter_size = (int)(qblur*4) | 1;
     double expected_bits;
     double *qscale, *blurred_qscale;
+    double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
 
     /* find total/average complexity & const_bits */
     for( int i = 0; i < rcc->num_entries; i++ )
@@ -2439,21 +2938,23 @@ static int init_pass2( x264_t *h )
         for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i+j];
+            double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
             if( weight < .0001 )
                 break;
             gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
-            cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits);
+            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
         }
         /* weighted average of cplx of past frames */
         weight = 1.0;
         for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
         {
             ratecontrol_entry_t *rcj = &rcc->entry[i-j];
+            double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
             gaussian_weight = weight * exp( -j*j/200.0 );
             weight_sum += gaussian_weight;
-            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits);
+            cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
             weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
             if( weight < .0001 )
                 break;
@@ -2493,17 +2994,21 @@ static int init_pass2( x264_t *h )
         rcc->last_accum_p_norm = 1;
         rcc->accum_p_norm = 0;
 
+        rcc->last_qscale_for[0] =
+        rcc->last_qscale_for[1] =
+        rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
+
         /* find qscale */
         for( int i = 0; i < rcc->num_entries; i++ )
         {
-            qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, i );
+            qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 );
             rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
         }
 
         /* fixed I/B qscale relative to P */
         for( int i = rcc->num_entries-1; i >= 0; i-- )
         {
-            qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i] );
+            qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i );
             assert(qscale[i] >= 0);
         }
 
@@ -2518,14 +3023,14 @@ static int init_pass2( x264_t *h )
 
                 for( int j = 0; j < filter_size; j++ )
                 {
-                    int index = i+j-filter_size/2;
-                    double d = index-i;
+                    int idx = i+j-filter_size/2;
+                    double d = idx-i;
                     double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
-                    if( index < 0 || index >= rcc->num_entries )
+                    if( idx < 0 || idx >= rcc->num_entries )
                         continue;
-                    if( rce->pict_type != rcc->entry[index].pict_type )
+                    if( rce->pict_type != rcc->entry[idx].pict_type )
                         continue;
-                    q += qscale[index] * coeff;
+                    q += qscale[idx] * coeff;
                     sum += coeff;
                 }
                 blurred_qscale[i] = q/sum;
@@ -2576,7 +3081,7 @@ static int init_pass2( x264_t *h )
         }
         else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
         {
-            if( h->param.rc.i_qp_max < 51 )
+            if( h->param.rc.i_qp_max < QP_MAX )
                 x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
             else
                 x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");