]> git.sesse.net Git - nageru/blobdiff - mixer.cpp
Move WIDTH/HEIGHT #defines into defs.h.
[nageru] / mixer.cpp
index 6bf81192fdfd99421398dedc189e23be75344a5d..42a02521258e93f34c71518c4de0917135c2fad4 100644 (file)
--- a/mixer.cpp
+++ b/mixer.cpp
@@ -1,5 +1,3 @@
-#define WIDTH 1280
-#define HEIGHT 720
 #define EXTRAHEIGHT 30
 
 #undef Success
@@ -66,7 +64,7 @@ void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src
 }  // namespace
 
 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
-       : httpd("test.ts", WIDTH, HEIGHT),
+       : httpd(LOCAL_DUMP_FILE_NAME, WIDTH, HEIGHT),
          num_cards(num_cards),
          mixer_surface(create_surface(format)),
          h264_encoder_surface(create_surface(format)),
@@ -153,6 +151,12 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
        r128.integr_start();
 
        locut.init(FILTER_HPF, 2);
+
+       // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
+       // and there's a limit to how important the peak meter is.
+       peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16);
+
+       alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
 }
 
 Mixer::~Mixer()
@@ -168,6 +172,8 @@ Mixer::~Mixer()
                }
                cards[card_index].usb->stop_dequeue_thread();
        }
+
+       h264_encoder.reset(nullptr);
 }
 
 namespace {
@@ -182,10 +188,10 @@ int unwrap_timecode(uint16_t current_wrapped, int last)
        }
 }
 
-float find_peak(const vector<float> &samples)
+float find_peak(const float *samples, size_t num_samples)
 {
        float m = fabs(samples[0]);
-       for (size_t i = 1; i < samples.size(); ++i) {
+       for (size_t i = 1; i < num_samples; ++i) {
                m = std::max(m, fabs(samples[i]));
        }
        return m;
@@ -371,7 +377,12 @@ void Mixer::thread_func()
 
                // Resample the audio as needed, including from previously dropped frames.
                for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
-                       process_audio_one_frame();
+                       {
+                               // Signal to the audio thread to process this frame.
+                               unique_lock<mutex> lock(audio_mutex);
+                               audio_pts_queue.push(pts_int);
+                               audio_pts_queue_changed.notify_one();
+                       }
                        if (frame_num != card_copy[0].dropped_frames) {
                                // For dropped frames, increase the pts.
                                ++dropped_frames;
@@ -525,7 +536,23 @@ void Mixer::thread_func()
        resource_pool->clean_context();
 }
 
-void Mixer::process_audio_one_frame()
+void Mixer::audio_thread_func()
+{
+       while (!should_quit) {
+               int64_t frame_pts_int;
+
+               {
+                       unique_lock<mutex> lock(audio_mutex);
+                       audio_pts_queue_changed.wait(lock, [this]{ return !audio_pts_queue.empty(); });
+                       frame_pts_int = audio_pts_queue.front();
+                       audio_pts_queue.pop();
+               }
+
+               process_audio_one_frame(frame_pts_int);
+       }
+}
+
+void Mixer::process_audio_one_frame(int64_t frame_pts_int)
 {
        vector<float> samples_card;
        vector<float> samples_out;
@@ -533,7 +560,7 @@ void Mixer::process_audio_one_frame()
                samples_card.resize((OUTPUT_FREQUENCY / FPS) * 2);
                {
                        unique_lock<mutex> lock(cards[card_index].audio_mutex);
-                       if (!cards[card_index].resampling_queue->get_output_samples(pts(), &samples_card[0], OUTPUT_FREQUENCY / FPS)) {
+                       if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], OUTPUT_FREQUENCY / FPS)) {
                                printf("Card %d reported previous underrun.\n", card_index);
                        }
                }
@@ -543,9 +570,10 @@ void Mixer::process_audio_one_frame()
                }
        }
 
-       // Cut away everything under 150 Hz; we don't need it for voice,
-       // and it will reduce headroom and confuse the compressor.
-       // (In particular, any hums at 50 or 60 Hz should be dampened.)
+       // Cut away everything under 120 Hz (or whatever the cutoff is);
+       // we don't need it for voice, and it will reduce headroom
+       // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
+       // should be dampened.)
        locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
 
        // Apply a level compressor to get the general level right.
@@ -574,22 +602,9 @@ void Mixer::process_audio_one_frame()
 
 //     float limiter_att, compressor_att;
 
-       // Then a limiter at +0 dB (so, -14 dBFS) to take out the worst peaks only.
-       // Note that since ratio is not infinite, we could go slightly higher than this.
-       // Probably more tuning is warranted here.
-       {
-               float threshold = pow(10.0f, (ref_level_dbfs + 0.0f) / 20.0f);  // +0 dB.
-               float ratio = 30.0f;
-               float attack_time = 0.0f;  // Instant.
-               float release_time = 0.005f;
-               float makeup_gain = 1.0f;  // 0 dB.
-               limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
-//             limiter_att = limiter.get_attenuation();
-       }
-
-       // Finally, the real compressor.
-       {
-               float threshold = pow(10.0f, (ref_level_dbfs - 12.0f) / 20.0f);  // -12 dB.
+       // The real compressor.
+       if (compressor_enabled) {
+               float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
                float ratio = 20.0f;
                float attack_time = 0.005f;
                float release_time = 0.040f;
@@ -598,17 +613,47 @@ void Mixer::process_audio_one_frame()
 //             compressor_att = compressor.get_attenuation();
        }
 
+       // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
+       // Note that since ratio is not infinite, we could go slightly higher than this.
+       if (limiter_enabled) {
+               float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
+               float ratio = 30.0f;
+               float attack_time = 0.0f;  // Instant.
+               float release_time = 0.020f;
+               float makeup_gain = 1.0f;  // 0 dB.
+               limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
+//             limiter_att = limiter.get_attenuation();
+       }
+
 //     printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
 
-       // Find peak and R128 levels.
-       peak = max<float>(peak, find_peak(samples_out));
+       // Upsample 4x to find interpolated peak.
+       peak_resampler.inp_data = samples_out.data();
+       peak_resampler.inp_count = samples_out.size() / 2;
+
+       vector<float> interpolated_samples_out;
+       interpolated_samples_out.resize(samples_out.size());
+       while (peak_resampler.inp_count > 0) {  // About four iterations.
+               peak_resampler.out_data = &interpolated_samples_out[0];
+               peak_resampler.out_count = interpolated_samples_out.size() / 2;
+               peak_resampler.process();
+               size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
+               peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
+       }
+
+       // Find R128 levels.
        vector<float> left, right;
        deinterleave_samples(samples_out, &left, &right);
        float *ptrs[] = { left.data(), right.data() };
        r128.process(left.size(), ptrs);
 
-       // Actually add the samples to the output.
-       h264_encoder->add_audio(pts_int, move(samples_out));
+       // Send the samples to the sound card.
+       if (alsa) {
+               alsa->write(samples_out);
+       }
+
+       // And finally add them to the output.
+       h264_encoder->add_audio(frame_pts_int, move(samples_out));
 }
 
 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
@@ -678,12 +723,14 @@ void Mixer::release_display_frame(DisplayFrame *frame)
 void Mixer::start()
 {
        mixer_thread = thread(&Mixer::thread_func, this);
+       audio_thread = thread(&Mixer::audio_thread_func, this);
 }
 
 void Mixer::quit()
 {
        should_quit = true;
        mixer_thread.join();
+       audio_thread.join();
 }
 
 void Mixer::transition_clicked(int transition_num)
@@ -698,6 +745,7 @@ void Mixer::channel_clicked(int preview_num)
 
 void Mixer::reset_meters()
 {
+       peak_resampler.reset();
        peak = 0.0f;
        r128.reset();
        r128.integr_start();