]> git.sesse.net Git - nageru/blobdiff - mixer.cpp
Support true variable input frame rate instead of hard-coding to 60.
[nageru] / mixer.cpp
index bc349bef275304a57533281667cc5a892b80feee..936a070129352c4b10a80747e740be1e1ebb2dd0 100644 (file)
--- a/mixer.cpp
+++ b/mixer.cpp
@@ -1,5 +1,3 @@
-#define WIDTH 1280
-#define HEIGHT 720
 #define EXTRAHEIGHT 30
 
 #undef Success
@@ -66,7 +64,7 @@ void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src
 }  // namespace
 
 Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
-       : httpd("test.ts", WIDTH, HEIGHT),
+       : httpd(LOCAL_DUMP_FILE_NAME, WIDTH, HEIGHT),
          num_cards(num_cards),
          mixer_surface(create_surface(format)),
          h264_encoder_surface(create_surface(format)),
@@ -157,6 +155,8 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
        // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
        // and there's a limit to how important the peak meter is.
        peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16);
+
+       alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
 }
 
 Mixer::~Mixer()
@@ -172,6 +172,8 @@ Mixer::~Mixer()
                }
                cards[card_index].usb->stop_dequeue_thread();
        }
+
+       h264_encoder.reset(nullptr);
 }
 
 namespace {
@@ -210,6 +212,57 @@ void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<
        }
 }
 
+// Returns length of a frame with the given format, in TIMEBASE units.
+int64_t find_frame_length(uint16_t video_format)
+{
+       if (video_format == 0x0800) {
+               // No video signal. These green pseudo-frames seem to come at about 30.13 Hz.
+               // It's a strange thing, but what can you do.
+               return TIMEBASE * 100 / 3013;
+       }
+       if ((video_format & 0xe800) != 0xe800) {
+               printf("Video format 0x%04x does not appear to be a video format. Assuming 60 Hz.\n",
+                       video_format);
+               return TIMEBASE / 60;
+       }
+
+       // 0x8 seems to be a flag about availability of deep color on the input,
+       // except when it's not (e.g. it's the only difference between NTSC 23.98
+       // and PAL). Rather confusing. But we clear it here nevertheless, because
+       // usually it doesn't mean anything.
+       //
+       // We don't really handle interlaced formats at all yet.
+       uint16_t normalized_video_format = video_format & ~0xe808;
+       if (normalized_video_format == 0x0143) {         // 720p50.
+               return TIMEBASE / 50;
+       } else if (normalized_video_format == 0x0103) {  // 720p60.
+               return TIMEBASE / 60;
+       } else if (normalized_video_format == 0x0121) {  // 720p59.94.
+               return TIMEBASE * 1001 / 60000;
+       } else if (normalized_video_format == 0x01c3 ||  // 1080p30.
+                  normalized_video_format == 0x0003) {  // 1080i60.
+               return TIMEBASE / 30;
+       } else if (normalized_video_format == 0x01e1 ||  // 1080p29.97.
+                  normalized_video_format == 0x0021 ||  // 1080i59.94.
+                  video_format == 0xe901 ||             // NTSC (480i59.94, I suppose).
+                  video_format == 0xe9c1 ||             // Ditto.
+                  video_format == 0xe801) {             // Ditto.
+               return TIMEBASE * 1001 / 30000;
+       } else if (normalized_video_format == 0x0063 ||  // 1080p25.
+                  normalized_video_format == 0x0043 ||  // 1080i50.
+                  video_format == 0xe909) {             // PAL (576i50, I suppose).
+               return TIMEBASE / 25;
+       } else if (normalized_video_format == 0x008e) {  // 1080p24.
+               return TIMEBASE / 24;
+       } else if (normalized_video_format == 0x00a1) {  // 1080p23.98.
+               return TIMEBASE * 1001 / 24000;
+               return TIMEBASE / 25;
+       } else {
+               printf("Unknown video format 0x%04x. Assuming 60 Hz.\n", video_format);
+               return TIMEBASE / 60;
+       }
+}
+
 }  // namespace
 
 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
@@ -218,6 +271,8 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
 {
        CaptureCard *card = &cards[card_index];
 
+       int64_t frame_length = find_frame_length(video_format);
+
        if (audio_frame.len - audio_offset > 30000) {
                printf("Card %d: Dropping frame with implausible audio length (len=%d, offset=%d) [timecode=0x%04x video_len=%d video_offset=%d video_format=%x)\n",
                        card_index, int(audio_frame.len), int(audio_offset),
@@ -231,13 +286,12 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
                return;
        }
 
-       int unwrapped_timecode = timecode;
+       int64_t local_pts = card->next_local_pts;
        int dropped_frames = 0;
        if (card->last_timecode != -1) {
-               unwrapped_timecode = unwrap_timecode(unwrapped_timecode, card->last_timecode);
-               dropped_frames = unwrapped_timecode - card->last_timecode - 1;
+               dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
        }
-       card->last_timecode = unwrapped_timecode;
+       card->last_timecode = timecode;
 
        // Convert the audio to stereo fp32 and add it.
        size_t num_samples = (audio_frame.len >= audio_offset) ? (audio_frame.len - audio_offset) / 8 / 3 : 0;
@@ -249,22 +303,27 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
        {
                unique_lock<mutex> lock(card->audio_mutex);
 
-               int unwrapped_timecode = timecode;
-               if (dropped_frames > FPS * 2) {
+               if (dropped_frames > MAX_FPS * 2) {
                        fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around), resetting resampler\n",
                                card_index);
                        card->resampling_queue.reset(new ResamplingQueue(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
                } else if (dropped_frames > 0) {
-                       // Insert silence as needed.
+                       // Insert silence as needed. (The number of samples could be nonintegral,
+                       // but resampling will save us then.)
                        fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
                                card_index, dropped_frames, timecode);
                        vector<float> silence;
-                       silence.resize((OUTPUT_FREQUENCY / FPS) * 2);
+                       silence.resize((OUTPUT_FREQUENCY * frame_length / TIMEBASE) * 2);
                        for (int i = 0; i < dropped_frames; ++i) {
-                               card->resampling_queue->add_input_samples((unwrapped_timecode - dropped_frames + i) / double(FPS), silence.data(), (OUTPUT_FREQUENCY / FPS));
+                               card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence.size() / 2);
+                               // Note that if the format changed in the meantime, we have
+                               // no way of detecting that; we just have to assume the frame length
+                               // is always the same.
+                               local_pts += frame_length;
                        }
                }
-               card->resampling_queue->add_input_samples(unwrapped_timecode / double(FPS), audio.data(), num_samples);
+               card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
+               card->next_local_pts = local_pts + frame_length;
        }
 
        // Done with the audio, so release it.
@@ -294,6 +353,7 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
                        unique_lock<mutex> lock(bmusb_mutex);
                        card->new_data_ready = true;
                        card->new_frame = RefCountedFrame(FrameAllocator::Frame());
+                       card->new_frame_length = frame_length;
                        card->new_data_ready_fence = nullptr;
                        card->dropped_frames = dropped_frames;
                        card->new_data_ready_changed.notify_all();
@@ -330,6 +390,7 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
                unique_lock<mutex> lock(bmusb_mutex);
                card->new_data_ready = true;
                card->new_frame = RefCountedFrame(video_frame);
+               card->new_frame_length = frame_length;
                card->new_data_ready_fence = fence;
                card->dropped_frames = dropped_frames;
                card->new_data_ready_changed.notify_all();
@@ -353,6 +414,7 @@ void Mixer::thread_func()
 
        while (!should_quit) {
                CaptureCard card_copy[MAX_CARDS];
+               int num_samples[MAX_CARDS];
 
                {
                        unique_lock<mutex> lock(bmusb_mutex);
@@ -366,20 +428,32 @@ void Mixer::thread_func()
                                card_copy[card_index].usb = card->usb;
                                card_copy[card_index].new_data_ready = card->new_data_ready;
                                card_copy[card_index].new_frame = card->new_frame;
+                               card_copy[card_index].new_frame_length = card->new_frame_length;
                                card_copy[card_index].new_data_ready_fence = card->new_data_ready_fence;
                                card_copy[card_index].dropped_frames = card->dropped_frames;
                                card->new_data_ready = false;
                                card->new_data_ready_changed.notify_all();
+
+                               int num_samples_times_timebase = OUTPUT_FREQUENCY * card->new_frame_length + card->fractional_samples;
+                               num_samples[card_index] = num_samples_times_timebase / TIMEBASE;
+                               card->fractional_samples = num_samples_times_timebase % TIMEBASE;
                        }
                }
 
                // Resample the audio as needed, including from previously dropped frames.
                for (unsigned frame_num = 0; frame_num < card_copy[0].dropped_frames + 1; ++frame_num) {
-                       process_audio_one_frame();
+                       {
+                               // Signal to the audio thread to process this frame.
+                               unique_lock<mutex> lock(audio_mutex);
+                               audio_task_queue.push(AudioTask{pts_int, num_samples[0]});
+                               audio_task_queue_changed.notify_one();
+                       }
                        if (frame_num != card_copy[0].dropped_frames) {
-                               // For dropped frames, increase the pts.
+                               // For dropped frames, increase the pts. Note that if the format changed
+                               // in the meantime, we have no way of detecting that; we just have to
+                               // assume the frame length is always the same.
                                ++dropped_frames;
-                               pts_int += TIMEBASE / FPS;
+                               pts_int += card_copy[0].new_frame_length;
                        }
                }
 
@@ -408,7 +482,7 @@ void Mixer::thread_func()
                // just increase the pts (skipping over this frame) and don't try to compute anything new.
                if (card_copy[0].new_frame->len == 0) {
                        ++dropped_frames;
-                       pts_int += TIMEBASE / FPS;
+                       pts_int += card_copy[0].new_frame_length;
                        continue;
                }
 
@@ -473,7 +547,7 @@ void Mixer::thread_func()
                const int64_t av_delay = TIMEBASE / 10;  // Corresponds to the fixed delay in resampling_queue.h. TODO: Make less hard-coded.
                h264_encoder->end_frame(fence, pts_int + av_delay, input_frames);
                ++frame;
-               pts_int += TIMEBASE / FPS;
+               pts_int += card_copy[0].new_frame_length;
 
                // The live frame just shows the RGBA texture we just rendered.
                // It owns rgba_tex now.
@@ -529,15 +603,31 @@ void Mixer::thread_func()
        resource_pool->clean_context();
 }
 
-void Mixer::process_audio_one_frame()
+void Mixer::audio_thread_func()
+{
+       while (!should_quit) {
+               AudioTask task;
+
+               {
+                       unique_lock<mutex> lock(audio_mutex);
+                       audio_task_queue_changed.wait(lock, [this]{ return !audio_task_queue.empty(); });
+                       task = audio_task_queue.front();
+                       audio_task_queue.pop();
+               }
+
+               process_audio_one_frame(task.pts_int, task.num_samples);
+       }
+}
+
+void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples)
 {
        vector<float> samples_card;
        vector<float> samples_out;
        for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
-               samples_card.resize((OUTPUT_FREQUENCY / FPS) * 2);
+               samples_card.resize(num_samples * 2);
                {
                        unique_lock<mutex> lock(cards[card_index].audio_mutex);
-                       if (!cards[card_index].resampling_queue->get_output_samples(pts(), &samples_card[0], OUTPUT_FREQUENCY / FPS)) {
+                       if (!cards[card_index].resampling_queue->get_output_samples(double(frame_pts_int) / TIMEBASE, &samples_card[0], num_samples)) {
                                printf("Card %d reported previous underrun.\n", card_index);
                        }
                }
@@ -547,9 +637,10 @@ void Mixer::process_audio_one_frame()
                }
        }
 
-       // Cut away everything under 150 Hz; we don't need it for voice,
-       // and it will reduce headroom and confuse the compressor.
-       // (In particular, any hums at 50 or 60 Hz should be dampened.)
+       // Cut away everything under 120 Hz (or whatever the cutoff is);
+       // we don't need it for voice, and it will reduce headroom
+       // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
+       // should be dampened.)
        locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
 
        // Apply a level compressor to get the general level right.
@@ -578,22 +669,9 @@ void Mixer::process_audio_one_frame()
 
 //     float limiter_att, compressor_att;
 
-       // Then a limiter at +0 dB (so, -14 dBFS) to take out the worst peaks only.
-       // Note that since ratio is not infinite, we could go slightly higher than this.
-       // Probably more tuning is warranted here.
-       {
-               float threshold = pow(10.0f, (ref_level_dbfs + 0.0f) / 20.0f);  // +0 dB.
-               float ratio = 30.0f;
-               float attack_time = 0.0f;  // Instant.
-               float release_time = 0.005f;
-               float makeup_gain = 1.0f;  // 0 dB.
-               limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
-//             limiter_att = limiter.get_attenuation();
-       }
-
-       // Finally, the real compressor.
-       {
-               float threshold = pow(10.0f, (ref_level_dbfs - 12.0f) / 20.0f);  // -12 dB.
+       // The real compressor.
+       if (compressor_enabled) {
+               float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
                float ratio = 20.0f;
                float attack_time = 0.005f;
                float release_time = 0.040f;
@@ -602,6 +680,18 @@ void Mixer::process_audio_one_frame()
 //             compressor_att = compressor.get_attenuation();
        }
 
+       // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
+       // Note that since ratio is not infinite, we could go slightly higher than this.
+       if (limiter_enabled) {
+               float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
+               float ratio = 30.0f;
+               float attack_time = 0.0f;  // Instant.
+               float release_time = 0.020f;
+               float makeup_gain = 1.0f;  // 0 dB.
+               limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
+//             limiter_att = limiter.get_attenuation();
+       }
+
 //     printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
 
        // Upsample 4x to find interpolated peak.
@@ -624,8 +714,13 @@ void Mixer::process_audio_one_frame()
        float *ptrs[] = { left.data(), right.data() };
        r128.process(left.size(), ptrs);
 
-       // Actually add the samples to the output.
-       h264_encoder->add_audio(pts_int, move(samples_out));
+       // Send the samples to the sound card.
+       if (alsa) {
+               alsa->write(samples_out);
+       }
+
+       // And finally add them to the output.
+       h264_encoder->add_audio(frame_pts_int, move(samples_out));
 }
 
 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
@@ -695,12 +790,14 @@ void Mixer::release_display_frame(DisplayFrame *frame)
 void Mixer::start()
 {
        mixer_thread = thread(&Mixer::thread_func, this);
+       audio_thread = thread(&Mixer::audio_thread_func, this);
 }
 
 void Mixer::quit()
 {
        should_quit = true;
        mixer_thread.join();
+       audio_thread.join();
 }
 
 void Mixer::transition_clicked(int transition_num)