]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Add an assertion failure that we don't add the same effect instance twice.
[movit] / effect_chain.cpp
index a8c2e52c564679872ad92d31c48f391a45e699be..6b7a857242e0572c7be6d66afe6026734ec99c6c 100644 (file)
@@ -1,33 +1,34 @@
 #define GL_GLEXT_PROTOTYPES 1
 
-#include <stdio.h>
+#include <GL/glew.h>
+#include <assert.h>
+#include <locale.h>
 #include <math.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <stdlib.h>
 #include <string.h>
-#include <locale.h>
-#include <assert.h>
-#include <GL/glew.h>
-
 #include <algorithm>
 #include <set>
 #include <stack>
 #include <vector>
 
-#include "util.h"
-#include "effect_chain.h"
-#include "gamma_expansion_effect.h"
-#include "gamma_compression_effect.h"
-#include "colorspace_conversion_effect.h"
-#include "alpha_multiplication_effect.h"
 #include "alpha_division_effect.h"
+#include "alpha_multiplication_effect.h"
+#include "colorspace_conversion_effect.h"
 #include "dither_effect.h"
-#include "input.h"
+#include "effect.h"
+#include "effect_chain.h"
+#include "gamma_compression_effect.h"
+#include "gamma_expansion_effect.h"
 #include "init.h"
+#include "input.h"
+#include "util.h"
 
 EffectChain::EffectChain(float aspect_nom, float aspect_denom)
        : aspect_nom(aspect_nom),
          aspect_denom(aspect_denom),
          dither_effect(NULL),
-         fbo(0),
          num_dither_bits(0),
          finalized(false) {}
 
@@ -46,13 +47,11 @@ EffectChain::~EffectChain()
                glDeleteShader(phases[i]->fragment_shader);
                delete phases[i];
        }
-       if (fbo != 0) {
-               glDeleteFramebuffers(1, &fbo);
-       }
 }
 
 Input *EffectChain::add_input(Input *input)
 {
+       assert(!finalized);
        inputs.push_back(input);
        add_node(input);
        return input;
@@ -60,12 +59,17 @@ Input *EffectChain::add_input(Input *input)
 
 void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
 {
+       assert(!finalized);
        output_format = format;
        output_alpha_format = alpha_format;
 }
 
 Node *EffectChain::add_node(Effect *effect)
 {
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               assert(nodes[i]->effect != effect);
+       }
+
        char effect_id[256];
        sprintf(effect_id, "eff%u", (unsigned)nodes.size());
 
@@ -155,6 +159,7 @@ void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *non
 
 Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
 {
+       assert(!finalized);
        assert(inputs.size() == effect->num_inputs());
        Node *node = add_node(effect);
        for (unsigned i = 0; i < inputs.size(); ++i) {
@@ -571,16 +576,30 @@ void EffectChain::output_dot_edge(FILE *fp,
        }
 }
 
-unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height)
+void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
 {
+       unsigned scaled_width, scaled_height;
+
        if (float(width) * aspect_denom >= float(height) * aspect_nom) {
                // Same aspect, or W/H > aspect (image is wider than the frame).
-               // In either case, keep width.
-               return width;
+               // In either case, keep width, and adjust height.
+               scaled_width = width;
+               scaled_height = lrintf(width * aspect_denom / aspect_nom);
        } else {
                // W/H < aspect (image is taller than the frame), so keep height,
-               // and adjust width correspondingly.
-               return lrintf(height * aspect_nom / aspect_denom);
+               // and adjust width.
+               scaled_width = lrintf(height * aspect_nom / aspect_denom);
+               scaled_height = height;
+       }
+
+       // We should be consistently larger or smaller then the existing choice,
+       // since we have the same aspect.
+       assert(!(scaled_width < *output_width && scaled_height > *output_height));
+       assert(!(scaled_height < *output_height && scaled_width > *output_width));
+
+       if (scaled_width >= *output_width && scaled_height >= *output_height) {
+               *output_width = scaled_width;
+               *output_height = scaled_height;
        }
 }
 
@@ -604,8 +623,8 @@ void EffectChain::inform_input_sizes(Phase *phase)
        }
        for (unsigned i = 0; i < phase->inputs.size(); ++i) {
                Node *input = phase->inputs[i];
-               input->output_width = input->phase->output_width;
-               input->output_height = input->phase->output_height;
+               input->output_width = input->phase->virtual_output_width;
+               input->output_height = input->phase->virtual_output_height;
                assert(input->output_width != 0);
                assert(input->output_height != 0);
        }
@@ -648,20 +667,25 @@ void EffectChain::find_output_size(Phase *phase)
 
        // If the last effect explicitly sets an output size, use that.
        if (output_node->effect->changes_output_size()) {
-               output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
+               output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
+                                                    &phase->virtual_output_width, &phase->virtual_output_height);
                return;
        }
 
-       // If not, look at the input phases and textures.
-       // We select the largest one (by fit into the current aspect).
-       unsigned best_width = 0;
+       // If all effects have the same size, use that.
+       unsigned output_width = 0, output_height = 0;
+       bool all_inputs_same_size = true;
+
        for (unsigned i = 0; i < phase->inputs.size(); ++i) {
                Node *input = phase->inputs[i];
                assert(input->phase->output_width != 0);
                assert(input->phase->output_height != 0);
-               unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height);
-               if (width > best_width) {
-                       best_width = width;
+               if (output_width == 0 && output_height == 0) {
+                       output_width = input->phase->virtual_output_width;
+                       output_height = input->phase->virtual_output_height;
+               } else if (output_width != input->phase->virtual_output_width ||
+                          output_height != input->phase->virtual_output_height) {
+                       all_inputs_same_size = false;
                }
        }
        for (unsigned i = 0; i < phase->effects.size(); ++i) {
@@ -671,14 +695,45 @@ void EffectChain::find_output_size(Phase *phase)
                }
 
                Input *input = static_cast<Input *>(effect);
-               unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height());
-               if (width > best_width) {
-                       best_width = width;
+               if (output_width == 0 && output_height == 0) {
+                       output_width = input->get_width();
+                       output_height = input->get_height();
+               } else if (output_width != input->get_width() ||
+                          output_height != input->get_height()) {
+                       all_inputs_same_size = false;
                }
        }
-       assert(best_width != 0);
-       phase->output_width = best_width;
-       phase->output_height = best_width * aspect_denom / aspect_nom;
+
+       if (all_inputs_same_size) {
+               assert(output_width != 0);
+               assert(output_height != 0);
+               phase->virtual_output_width = phase->output_width = output_width;
+               phase->virtual_output_height = phase->output_height = output_height;
+               return;
+       }
+
+       // If not, fit all the inputs into the current aspect, and select the largest one. 
+       output_width = 0;
+       output_height = 0;
+       for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+               Node *input = phase->inputs[i];
+               assert(input->phase->output_width != 0);
+               assert(input->phase->output_height != 0);
+               size_rectangle_to_fit(input->phase->output_width, input->phase->output_height, &output_width, &output_height);
+       }
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Effect *effect = phase->effects[i]->effect;
+               if (effect->num_inputs() != 0) {
+                       continue;
+               }
+
+               Input *input = static_cast<Input *>(effect);
+               size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
+       }
+       assert(output_width != 0);
+       assert(output_height != 0);
+       phase->virtual_output_width = phase->output_width = output_width;
+       phase->virtual_output_height = phase->output_height = output_height;
 }
 
 void EffectChain::sort_all_nodes_topologically()
@@ -726,12 +781,13 @@ void EffectChain::find_color_spaces_for_inputs()
                        case Effect::OUTPUT_BLANK_ALPHA:
                                node->output_alpha_type = ALPHA_BLANK;
                                break;
-                       case Effect::INPUT_AND_OUTPUT_ALPHA_PREMULTIPLIED:
+                       case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
                                node->output_alpha_type = ALPHA_PREMULTIPLIED;
                                break;
-                       case Effect::OUTPUT_ALPHA_POSTMULTIPLIED:
+                       case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
                                node->output_alpha_type = ALPHA_POSTMULTIPLIED;
                                break;
+                       case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
                        case Effect::DONT_CARE_ALPHA_TYPE:
                        default:
                                assert(false);
@@ -835,7 +891,7 @@ void EffectChain::propagate_alpha()
                }
 
                // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
-               // or OUTPUT_ALPHA_POSTMULTIPLIED), and they have already been
+               // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
                // taken care of above. Rationale: Even if you could imagine
                // e.g. an effect that took in an image and set alpha=1.0
                // unconditionally, it wouldn't make any sense to have it as
@@ -843,7 +899,8 @@ void EffectChain::propagate_alpha()
                // got its input pre- or postmultiplied, so it wouldn't know
                // whether to divide away the old alpha or not.
                Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
-               assert(alpha_handling == Effect::INPUT_AND_OUTPUT_ALPHA_PREMULTIPLIED ||
+               assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
+                      alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
                       alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
 
                // If the node has multiple inputs, check that they are all valid and
@@ -883,16 +940,16 @@ void EffectChain::propagate_alpha()
                        continue;
                }
 
-               if (alpha_handling == Effect::INPUT_AND_OUTPUT_ALPHA_PREMULTIPLIED) {
+               if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
+                   alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
                        // If the effect has asked for premultiplied alpha, check that it has got it.
                        if (any_postmultiplied) {
                                node->output_alpha_type = ALPHA_INVALID;
+                       } else if (!any_premultiplied &&
+                                  alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
+                               // Blank input alpha, and the effect preserves blank alpha.
+                               node->output_alpha_type = ALPHA_BLANK;
                        } else {
-                               // In some rare cases, it might be advantageous to say
-                               // that blank input alpha yields blank output alpha.
-                               // However, this would cause a more complex Effect interface
-                               // an effect would need to guarantee that it doesn't mess with
-                               // blank alpha), so this is the simplest.
                                node->output_alpha_type = ALPHA_PREMULTIPLIED;
                        }
                } else {
@@ -1091,14 +1148,14 @@ void EffectChain::fix_output_alpha()
                return;
        }
        if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
-           output_alpha_format == OUTPUT_ALPHA_POSTMULTIPLIED) {
+           output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
                Node *conversion = add_node(new AlphaDivisionEffect());
                connect_nodes(output, conversion);
                propagate_alpha();
                propagate_gamma_and_color_space();
        }
        if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
-           output_alpha_format == OUTPUT_ALPHA_PREMULTIPLIED) {
+           output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
                Node *conversion = add_node(new AlphaMultiplicationEffect());
                connect_nodes(output, conversion);
                propagate_alpha();
@@ -1376,8 +1433,6 @@ void EffectChain::finalize()
        // since otherwise this turns into an (albeit simple)
        // register allocation problem.
        if (phases.size() > 1) {
-               glGenFramebuffers(1, &fbo);
-
                for (unsigned i = 0; i < phases.size() - 1; ++i) {
                        inform_input_sizes(phases[i]);
                        find_output_size(phases[i]);
@@ -1416,6 +1471,7 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
 
        // Save original viewport.
        GLuint x = 0, y = 0;
+       GLuint fbo = 0;
 
        if (width == 0 && height == 0) {
                GLint viewport[4];
@@ -1442,6 +1498,8 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
        glLoadIdentity();
 
        if (phases.size() > 1) {
+               glGenFramebuffers(1, &fbo);
+               check_error();
                glBindFramebuffer(GL_FRAMEBUFFER, fbo);
                check_error();
        }
@@ -1505,6 +1563,8 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
                        // Last phase goes to the output the user specified.
                        glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
                        check_error();
+                       GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
+                       assert(status == GL_FRAMEBUFFER_COMPLETE);
                        glViewport(x, y, width, height);
                        if (dither_effect != NULL) {
                                CHECK(dither_effect->set_int("output_width", width));
@@ -1519,6 +1579,8 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
                                output_node->output_texture,
                                0);
                        check_error();
+                       GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
+                       assert(status == GL_FRAMEBUFFER_COMPLETE);
                        glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
                }
 
@@ -1553,4 +1615,12 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
                        node->effect->clear_gl_state();
                }
        }
+
+       glBindFramebuffer(GL_FRAMEBUFFER, 0);
+       check_error();
+
+       if (fbo != 0) {
+               glDeleteFramebuffers(1, &fbo);
+               check_error();
+       }
 }