]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Fix some invalid code in DeinterlaceTest; GCC 7 would optimize it into simply an...
[movit] / resample_effect.cpp
index 9b6d5f3d4d964168d0a4a0f191e8552b1f54217d..453a83832f7cb5d905a11b49951ac63a6f14cc12 100644 (file)
@@ -1,7 +1,7 @@
 // Three-lobed Lanczos, the most common choice.
 // Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE
 // needs to be recomputed.
-#define LANCZOS_RADIUS 3.0
+#define LANCZOS_RADIUS 3.0f
 
 #include <epoxy/gl.h>
 #include <assert.h>
@@ -90,7 +90,7 @@ float lanczos_weight_cached(float x)
                return 0.0f;
        }
        float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS);
-       int table_pos_int = int(table_pos);  // Truncate towards zero.
+       unsigned table_pos_int = int(table_pos);  // Truncate towards zero.
        float table_pos_frac = table_pos - table_pos_int;
        assert(table_pos < LANCZOS_TABLE_SIZE + 2);
        return lanczos_table[table_pos_int] +
@@ -109,7 +109,7 @@ unsigned gcd(unsigned a, unsigned b)
 }
 
 template<class DestFloat>
-unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved)
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved, float pos1_pos2_diff, float inv_pos1_pos2_diff)
 {
        // Cut off near-zero values at both sides.
        unsigned num_samples_saved = 0;
@@ -157,7 +157,7 @@ unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_s
 
                DestFloat pos, total_weight;
                float sum_sq_error;
-               combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
+               combine_two_samples(w1, w2, pos1, pos1_pos2_diff, inv_pos1_pos2_diff, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
 
                // If the interpolation error is larger than that of about sqrt(2) of
                // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough,
@@ -206,29 +206,34 @@ void normalize_sum(Tap<T>* vals, unsigned num)
 //
 // The greedy strategy for combining samples is optimal.
 template<class DestFloat>
-unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, unique_ptr<Tap<DestFloat>[]> *bilinear_weights)
+unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, Tap<DestFloat> **bilinear_weights)
 {
        float num_subtexels = src_size / movit_texel_subpixel_precision;
        float inv_num_subtexels = movit_texel_subpixel_precision / src_size;
+       float pos1_pos2_diff = 1.0f / src_size;
+       float inv_pos1_pos2_diff = src_size;
 
        unsigned max_samples_saved = UINT_MAX;
        for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) {
-               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved);
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved, pos1_pos2_diff, inv_pos1_pos2_diff);
                max_samples_saved = min(max_samples_saved, num_samples_saved);
        }
 
        // Now that we know the right width, actually combine the samples.
        unsigned src_bilinear_samples = src_samples - max_samples_saved;
-       bilinear_weights->reset(new Tap<DestFloat>[dst_samples * src_bilinear_samples]);
+       if (*bilinear_weights != NULL) delete[] *bilinear_weights;
+       *bilinear_weights = new Tap<DestFloat>[dst_samples * src_bilinear_samples];
        for (unsigned y = 0; y < dst_samples; ++y) {
-               Tap<DestFloat> *bilinear_weights_ptr = bilinear_weights->get() + y * src_bilinear_samples;
+               Tap<DestFloat> *bilinear_weights_ptr = *bilinear_weights + y * src_bilinear_samples;
                unsigned num_samples_saved = combine_samples(
                        weights + y * src_samples,
                        bilinear_weights_ptr,
                        num_subtexels,
                        inv_num_subtexels,
                        src_samples,
-                       max_samples_saved);
+                       max_samples_saved,
+                       pos1_pos2_diff,
+                       inv_pos1_pos2_diff);
                assert(num_samples_saved == max_samples_saved);
                normalize_sum(bilinear_weights_ptr, src_bilinear_samples);
        }
@@ -249,10 +254,10 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
        // Find the effective range of the bilinear-optimized kernel.
        // Due to rounding of the positions, this is not necessarily the same
        // as the intended range (ie., the range of the original weights).
-       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5));
-       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2;
-       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5));
-       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5) + 1);
+       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f));
+       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5f));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1);
 
        float* effective_weights = new float[upper_pos - lower_pos];
        for (int i = 0; i < upper_pos - lower_pos; ++i) {
@@ -271,7 +276,7 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
                assert(x0 < upper_pos - lower_pos);
                assert(x1 < upper_pos - lower_pos);
 
-               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0 - f);
+               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f);
                effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f;
        }
 
@@ -296,7 +301,8 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
 }  // namespace
 
 ResampleEffect::ResampleEffect()
-       : input_width(1280),
+       : owns_effects(true),
+         input_width(1280),
          input_height(720),
          offset_x(0.0f), offset_y(0.0f),
          zoom_x(1.0f), zoom_y(1.0f),
@@ -314,6 +320,14 @@ ResampleEffect::ResampleEffect()
        update_size();
 }
 
+ResampleEffect::~ResampleEffect()
+{
+       if (owns_effects) {
+               delete hpass;
+               delete vpass;
+       }
+}
+
 void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
 {
        Node *hpass_node = graph->add_node(hpass);
@@ -322,6 +336,7 @@ void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
        graph->replace_receiver(self, hpass_node);
        graph->replace_sender(self, vpass_node);
        self->disabled = true;
+       owns_effects = false;
 } 
 
 // We get this information forwarded from the first blur pass,
@@ -522,15 +537,15 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
 
        GLenum type, internal_format;
        void *pixels;
-       assert((weights.bilinear_weights_fp16 == nullptr) != (weights.bilinear_weights_fp32 == nullptr));
-       if (weights.bilinear_weights_fp32 != nullptr) {
+       assert((weights.bilinear_weights_fp16 == NULL) != (weights.bilinear_weights_fp32 == NULL));
+       if (weights.bilinear_weights_fp32 != NULL) {
                type = GL_FLOAT;
                internal_format = GL_RG32F;
-               pixels = weights.bilinear_weights_fp32.get();
+               pixels = weights.bilinear_weights_fp32;
        } else {
                type = GL_HALF_FLOAT;
                internal_format = GL_RG16F;
-               pixels = weights.bilinear_weights_fp16.get();
+               pixels = weights.bilinear_weights_fp16;
        }
 
        if (int(weights.src_bilinear_samples) == last_texture_width &&
@@ -546,6 +561,9 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                last_texture_internal_format = internal_format;
        }
        check_error();
+
+       delete[] weights.bilinear_weights_fp16;
+       delete[] weights.bilinear_weights_fp32;
 }
 
 ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
@@ -628,7 +646,7 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
        float radius_scaling_factor = min(scaling_factor, 1.0f);
        int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor);
        int src_samples = int_radius * 2 + 1;
-       unique_ptr<Tap<float>[]> weights(new Tap<float>[dst_samples * src_samples]);
+       Tap<float> *weights = new Tap<float>[dst_samples * src_samples];
        float subpixel_offset = offset - lrintf(offset);  // The part not covered by whole_pixel_offset.
        assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f);
        for (unsigned y = 0; y < dst_samples; ++y) {
@@ -638,11 +656,12 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
                int base_src_y = lrintf(center_src_y);
 
                // Now sample <int_radius> pixels on each side around that point.
+               float inv_src_size = 1.0 / float(src_size);
                for (int i = 0; i < src_samples; ++i) {
                        int src_y = base_src_y + i - int_radius;
                        float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset));
                        weights[y * src_samples + i].weight = weight * radius_scaling_factor;
-                       weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size);
+                       weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size;
                }
        }
 
@@ -651,14 +670,14 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
        // Our tolerance level for total error is a bit higher than the one for invididual
        // samples, since one would assume overall errors in the shape don't matter as much.
        const float max_error = 2.0f / (255.0f * 255.0f);
-       unique_ptr<Tap<fp16_int_t>[]> bilinear_weights_fp16;
-       int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16);
-       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = NULL;
+       Tap<fp16_int_t> *bilinear_weights_fp16 = NULL;
+       int src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp16);
+       Tap<float> *bilinear_weights_fp32 = NULL;
        double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
                double sum_sq_error_fp16 = compute_sum_sq_error(
-                       weights.get() + y * src_samples, src_samples,
-                       bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples,
+                       weights + y * src_samples, src_samples,
+                       bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples,
                        src_size);
                max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
                if (max_sum_sq_error_fp16 > max_error) {
@@ -667,16 +686,19 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
        }
 
        if (max_sum_sq_error_fp16 > max_error) {
-               bilinear_weights_fp16.reset();
-               src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp32);
+               delete[] bilinear_weights_fp16;
+               bilinear_weights_fp16 = NULL;
+               src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp32);
        }
 
+       delete[] weights;
+
        ScalingWeights ret;
        ret.src_bilinear_samples = src_bilinear_samples;
        ret.dst_samples = dst_samples;
        ret.num_loops = num_loops;
-       ret.bilinear_weights_fp16 = move(bilinear_weights_fp16);
-       ret.bilinear_weights_fp32 = move(bilinear_weights_fp32);
+       ret.bilinear_weights_fp16 = bilinear_weights_fp16;
+       ret.bilinear_weights_fp32 = bilinear_weights_fp32;
        return ret;
 }