]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Remove the unused fields from ResampleEffect; if we make any changes here, it will...
[movit] / resample_effect.cpp
index 9b6d5f3d4d964168d0a4a0f191e8552b1f54217d..4598d34e7bb61b44d91acea41648345a059f6757 100644 (file)
@@ -1,7 +1,7 @@
 // Three-lobed Lanczos, the most common choice.
 // Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE
 // needs to be recomputed.
-#define LANCZOS_RADIUS 3.0
+#define LANCZOS_RADIUS 3.0f
 
 #include <epoxy/gl.h>
 #include <assert.h>
@@ -90,7 +90,7 @@ float lanczos_weight_cached(float x)
                return 0.0f;
        }
        float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS);
-       int table_pos_int = int(table_pos);  // Truncate towards zero.
+       unsigned table_pos_int = int(table_pos);  // Truncate towards zero.
        float table_pos_frac = table_pos - table_pos_int;
        assert(table_pos < LANCZOS_TABLE_SIZE + 2);
        return lanczos_table[table_pos_int] +
@@ -109,7 +109,7 @@ unsigned gcd(unsigned a, unsigned b)
 }
 
 template<class DestFloat>
-unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved)
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved, float pos1_pos2_diff, float inv_pos1_pos2_diff)
 {
        // Cut off near-zero values at both sides.
        unsigned num_samples_saved = 0;
@@ -129,7 +129,7 @@ unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_s
 
        for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) {
                // Copy the sample directly; it will be overwritten later if we can combine.
-               if (dst != NULL) {
+               if (dst != nullptr) {
                        dst[j].weight = convert_float<float, DestFloat>(src[i].weight);
                        dst[j].pos = convert_float<float, DestFloat>(src[i].pos);
                }
@@ -157,7 +157,7 @@ unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_s
 
                DestFloat pos, total_weight;
                float sum_sq_error;
-               combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
+               combine_two_samples(w1, w2, pos1, pos1_pos2_diff, inv_pos1_pos2_diff, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
 
                // If the interpolation error is larger than that of about sqrt(2) of
                // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough,
@@ -169,7 +169,7 @@ unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_s
                }
 
                // OK, we can combine this and the next sample.
-               if (dst != NULL) {
+               if (dst != nullptr) {
                        dst[j].weight = total_weight;
                        dst[j].pos = pos;
                }
@@ -210,10 +210,12 @@ unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsi
 {
        float num_subtexels = src_size / movit_texel_subpixel_precision;
        float inv_num_subtexels = movit_texel_subpixel_precision / src_size;
+       float pos1_pos2_diff = 1.0f / src_size;
+       float inv_pos1_pos2_diff = src_size;
 
        unsigned max_samples_saved = UINT_MAX;
        for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) {
-               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved);
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, nullptr, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved, pos1_pos2_diff, inv_pos1_pos2_diff);
                max_samples_saved = min(max_samples_saved, num_samples_saved);
        }
 
@@ -228,7 +230,9 @@ unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsi
                        num_subtexels,
                        inv_num_subtexels,
                        src_samples,
-                       max_samples_saved);
+                       max_samples_saved,
+                       pos1_pos2_diff,
+                       inv_pos1_pos2_diff);
                assert(num_samples_saved == max_samples_saved);
                normalize_sum(bilinear_weights_ptr, src_bilinear_samples);
        }
@@ -249,10 +253,10 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
        // Find the effective range of the bilinear-optimized kernel.
        // Due to rounding of the positions, this is not necessarily the same
        // as the intended range (ie., the range of the original weights).
-       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5));
-       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2;
-       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5));
-       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5) + 1);
+       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f));
+       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5f));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1);
 
        float* effective_weights = new float[upper_pos - lower_pos];
        for (int i = 0; i < upper_pos - lower_pos; ++i) {
@@ -271,7 +275,7 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
                assert(x0 < upper_pos - lower_pos);
                assert(x1 < upper_pos - lower_pos);
 
-               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0 - f);
+               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f);
                effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f;
        }
 
@@ -296,7 +300,8 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
 }  // namespace
 
 ResampleEffect::ResampleEffect()
-       : input_width(1280),
+       : owns_effects(true),
+         input_width(1280),
          input_height(720),
          offset_x(0.0f), offset_y(0.0f),
          zoom_x(1.0f), zoom_y(1.0f),
@@ -308,12 +313,20 @@ ResampleEffect::ResampleEffect()
        // The first blur pass will forward resolution information to us.
        hpass = new SingleResamplePassEffect(this);
        CHECK(hpass->set_int("direction", SingleResamplePassEffect::HORIZONTAL));
-       vpass = new SingleResamplePassEffect(NULL);
+       vpass = new SingleResamplePassEffect(nullptr);
        CHECK(vpass->set_int("direction", SingleResamplePassEffect::VERTICAL));
 
        update_size();
 }
 
+ResampleEffect::~ResampleEffect()
+{
+       if (owns_effects) {
+               delete hpass;
+               delete vpass;
+       }
+}
+
 void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
 {
        Node *hpass_node = graph->add_node(hpass);
@@ -322,6 +335,7 @@ void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
        graph->replace_receiver(self, hpass_node);
        graph->replace_sender(self, vpass_node);
        self->disabled = true;
+       owns_effects = false;
 } 
 
 // We get this information forwarded from the first blur pass,
@@ -638,11 +652,12 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
                int base_src_y = lrintf(center_src_y);
 
                // Now sample <int_radius> pixels on each side around that point.
+               float inv_src_size = 1.0 / float(src_size);
                for (int i = 0; i < src_samples; ++i) {
                        int src_y = base_src_y + i - int_radius;
                        float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset));
                        weights[y * src_samples + i].weight = weight * radius_scaling_factor;
-                       weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size);
+                       weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size;
                }
        }
 
@@ -653,7 +668,7 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f
        const float max_error = 2.0f / (255.0f * 255.0f);
        unique_ptr<Tap<fp16_int_t>[]> bilinear_weights_fp16;
        int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16);
-       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = NULL;
+       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = nullptr;
        double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
                double sum_sq_error_fp16 = compute_sum_sq_error(