]> git.sesse.net Git - nageru/blobdiff - mixer.cpp
Various Makefile tweaks (mostly related to cleaning moc files).
[nageru] / mixer.cpp
index 1a4b2cf141ab1562e9eae438a3bc458ded7af476..780bd52573c3380404cd77a36aa1892bfa8642cf 100644 (file)
--- a/mixer.cpp
+++ b/mixer.cpp
@@ -3,7 +3,6 @@
 #include "mixer.h"
 
 #include <assert.h>
-#include <endian.h>
 #include <epoxy/egl.h>
 #include <movit/effect_chain.h>
 #include <movit/effect_util.h>
 #include <stdint.h>
 #include <stdio.h>
 #include <stdlib.h>
-#include <sys/time.h>
-#include <time.h>
+#include <sys/resource.h>
 #include <algorithm>
 #include <chrono>
-#include <cmath>
 #include <condition_variable>
 #include <cstddef>
+#include <cstdint>
 #include <memory>
 #include <mutex>
+#include <ratio>
 #include <string>
 #include <thread>
 #include <utility>
 #include <vector>
-#include <arpa/inet.h>
-#include <sys/time.h>
-#include <sys/resource.h>
 
+#include "DeckLinkAPI.h"
+#include "LinuxCOM.h"
+#include "alsa_output.h"
 #include "bmusb/bmusb.h"
 #include "bmusb/fake_capture.h"
 #include "context.h"
 #include "defs.h"
 #include "disk_space_estimator.h"
 #include "flags.h"
-#include "video_encoder.h"
+#include "input_mapping.h"
 #include "pbo_frame_allocator.h"
 #include "ref_counted_gl_sync.h"
+#include "resampling_queue.h"
 #include "timebase.h"
+#include "video_encoder.h"
 
+class IDeckLink;
 class QOpenGLContext;
 
 using namespace movit;
@@ -57,34 +59,6 @@ bool uses_mlock = false;
 
 namespace {
 
-void convert_fixed24_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
-{
-       assert(in_channels >= out_channels);
-       for (size_t i = 0; i < num_samples; ++i) {
-               for (size_t j = 0; j < out_channels; ++j) {
-                       uint32_t s1 = *src++;
-                       uint32_t s2 = *src++;
-                       uint32_t s3 = *src++;
-                       uint32_t s = s1 | (s1 << 8) | (s2 << 16) | (s3 << 24);
-                       dst[i * out_channels + j] = int(s) * (1.0f / 2147483648.0f);
-               }
-               src += 3 * (in_channels - out_channels);
-       }
-}
-
-void convert_fixed32_to_fp32(float *dst, size_t out_channels, const uint8_t *src, size_t in_channels, size_t num_samples)
-{
-       assert(in_channels >= out_channels);
-       for (size_t i = 0; i < num_samples; ++i) {
-               for (size_t j = 0; j < out_channels; ++j) {
-                       int32_t s = le32toh(*(int32_t *)src);
-                       dst[i * out_channels + j] = s * (1.0f / 2147483648.0f);
-                       src += 4;
-               }
-               src += 4 * (in_channels - out_channels);
-       }
-}
-
 void insert_new_frame(RefCountedFrame frame, unsigned field_num, bool interlaced, unsigned card_index, InputState *input_state)
 {
        if (interlaced) {
@@ -134,10 +108,7 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
          num_cards(num_cards),
          mixer_surface(create_surface(format)),
          h264_encoder_surface(create_surface(format)),
-         correlation(OUTPUT_FREQUENCY),
-         level_compressor(OUTPUT_FREQUENCY),
-         limiter(OUTPUT_FREQUENCY),
-         compressor(OUTPUT_FREQUENCY)
+         audio_mixer(num_cards)
 {
        CHECK(init_movit(MOVIT_SHADER_DIR, MOVIT_DEBUG_OFF));
        check_error();
@@ -263,22 +234,6 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards)
        cbcr_position_attribute_index = glGetAttribLocation(cbcr_program_num, "position");
        cbcr_texcoord_attribute_index = glGetAttribLocation(cbcr_program_num, "texcoord");
 
-       r128.init(2, OUTPUT_FREQUENCY);
-       r128.integr_start();
-
-       locut.init(FILTER_HPF, 2);
-
-       set_locut_enabled(global_flags.locut_enabled);
-       set_gain_staging_db(global_flags.initial_gain_staging_db);
-       set_gain_staging_auto(global_flags.gain_staging_auto);
-       set_compressor_enabled(global_flags.compressor_enabled);
-       set_limiter_enabled(global_flags.limiter_enabled);
-       set_final_makeup_gain_auto(global_flags.final_makeup_gain_auto);
-
-       // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise,
-       // and there's a limit to how important the peak meter is.
-       peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0);
-
        if (global_flags.enable_alsa_output) {
                alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2));
        }
@@ -321,15 +276,15 @@ void Mixer::configure_card(unsigned card_index, CaptureInterface *capture, bool
        if (card->surface == nullptr) {
                card->surface = create_surface_with_same_format(mixer_surface);
        }
-       {
-               unique_lock<mutex> lock(cards[card_index].audio_mutex);
-               card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
-       }
        while (!card->new_frames.empty()) card->new_frames.pop();
        card->fractional_samples = 0;
        card->last_timecode = -1;
-       card->next_local_pts = 0;
        card->capture->configure_card();
+
+       DeviceSpec device{InputSourceType::CAPTURE_CARD, card_index};
+       audio_mixer.reset_resampler(device);
+       audio_mixer.set_display_name(device, card->capture->get_description());
+       audio_mixer.trigger_state_changed_callback();
 }
 
 
@@ -345,36 +300,13 @@ int unwrap_timecode(uint16_t current_wrapped, int last)
        }
 }
 
-float find_peak(const float *samples, size_t num_samples)
-{
-       float m = fabs(samples[0]);
-       for (size_t i = 1; i < num_samples; ++i) {
-               m = max(m, fabs(samples[i]));
-       }
-       return m;
-}
-
-void deinterleave_samples(const vector<float> &in, vector<float> *out_l, vector<float> *out_r)
-{
-       size_t num_samples = in.size() / 2;
-       out_l->resize(num_samples);
-       out_r->resize(num_samples);
-
-       const float *inptr = in.data();
-       float *lptr = &(*out_l)[0];
-       float *rptr = &(*out_r)[0];
-       for (size_t i = 0; i < num_samples; ++i) {
-               *lptr++ = *inptr++;
-               *rptr++ = *inptr++;
-       }
-}
-
 }  // namespace
 
 void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
                      FrameAllocator::Frame video_frame, size_t video_offset, VideoFormat video_format,
                     FrameAllocator::Frame audio_frame, size_t audio_offset, AudioFormat audio_format)
 {
+       DeviceSpec device{InputSourceType::CAPTURE_CARD, card_index};
        CaptureCard *card = &cards[card_index];
 
        if (is_mode_scanning[card_index]) {
@@ -412,71 +344,40 @@ void Mixer::bm_frame(unsigned card_index, uint16_t timecode,
                return;
        }
 
-       int64_t local_pts = card->next_local_pts;
        int dropped_frames = 0;
        if (card->last_timecode != -1) {
                dropped_frames = unwrap_timecode(timecode, card->last_timecode) - card->last_timecode - 1;
        }
 
-       // Convert the audio to stereo fp32 and add it.
-       vector<float> audio;
-       audio.resize(num_samples * 2);
-       switch (audio_format.bits_per_sample) {
-       case 0:
-               assert(num_samples == 0);
-               break;
-       case 24:
-               convert_fixed24_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
-               break;
-       case 32:
-               convert_fixed32_to_fp32(&audio[0], 2, audio_frame.data + audio_offset, audio_format.num_channels, num_samples);
-               break;
-       default:
-               fprintf(stderr, "Cannot handle audio with %u bits per sample\n", audio_format.bits_per_sample);
-               assert(false);
-       }
+       // Number of samples per frame if we need to insert silence.
+       // (Could be nonintegral, but resampling will save us then.)
+       const int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
 
-       // Add the audio.
-       {
-               unique_lock<mutex> lock(card->audio_mutex);
-
-               // Number of samples per frame if we need to insert silence.
-               // (Could be nonintegral, but resampling will save us then.)
-               int silence_samples = OUTPUT_FREQUENCY * video_format.frame_rate_den / video_format.frame_rate_nom;
-
-               if (dropped_frames > MAX_FPS * 2) {
-                       fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
-                               card_index, card->last_timecode, timecode);
-                       card->resampling_queue.reset(new ResamplingQueue(card_index, OUTPUT_FREQUENCY, OUTPUT_FREQUENCY, 2));
-                       dropped_frames = 0;
-               } else if (dropped_frames > 0) {
-                       // Insert silence as needed.
-                       fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
-                               card_index, dropped_frames, timecode);
-                       vector<float> silence(silence_samples * 2, 0.0f);
-                       for (int i = 0; i < dropped_frames; ++i) {
-                               card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), silence.data(), silence_samples);
-                               // Note that if the format changed in the meantime, we have
-                               // no way of detecting that; we just have to assume the frame length
-                               // is always the same.
-                               local_pts += frame_length;
-                       }
-               }
-               if (num_samples == 0) {
-                       audio.resize(silence_samples * 2);
-                       num_samples = silence_samples;
-               }
-               card->resampling_queue->add_input_samples(local_pts / double(TIMEBASE), audio.data(), num_samples);
-               card->next_local_pts = local_pts + frame_length;
+       if (dropped_frames > MAX_FPS * 2) {
+               fprintf(stderr, "Card %d lost more than two seconds (or time code jumping around; from 0x%04x to 0x%04x), resetting resampler\n",
+                       card_index, card->last_timecode, timecode);
+               audio_mixer.reset_resampler(device);
+               dropped_frames = 0;
+       } else if (dropped_frames > 0) {
+               // Insert silence as needed.
+               fprintf(stderr, "Card %d dropped %d frame(s) (before timecode 0x%04x), inserting silence.\n",
+                       card_index, dropped_frames, timecode);
+
+               bool success;
+               do {
+                       success = audio_mixer.add_silence(device, silence_samples, dropped_frames, frame_length);
+               } while (!success);
        }
 
-       card->last_timecode = timecode;
+       audio_mixer.add_audio(device, audio_frame.data + audio_offset, num_samples, audio_format, frame_length);
 
        // Done with the audio, so release it.
        if (audio_frame.owner) {
                audio_frame.owner->release_frame(audio_frame);
        }
 
+       card->last_timecode = timecode;
+
        size_t expected_length = video_format.width * (video_format.height + video_format.extra_lines_top + video_format.extra_lines_bottom) * 2;
        if (video_frame.len - video_offset == 0 ||
            video_frame.len - video_offset != expected_length) {
@@ -643,9 +544,9 @@ void Mixer::thread_func()
        int stats_dropped_frames = 0;
 
        while (!should_quit) {
-               CaptureCard::NewFrame new_frames[MAX_CARDS];
-               bool has_new_frame[MAX_CARDS] = { false };
-               int num_samples[MAX_CARDS] = { 0 };
+               CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS];
+               bool has_new_frame[MAX_VIDEO_CARDS] = { false };
+               int num_samples[MAX_VIDEO_CARDS] = { 0 };
 
                unsigned master_card_index = theme->map_signal(master_clock_channel);
                assert(master_card_index < num_cards);
@@ -653,7 +554,6 @@ void Mixer::thread_func()
                get_one_frame_from_each_card(master_card_index, new_frames, has_new_frame, num_samples);
                schedule_audio_resampling_tasks(new_frames[master_card_index].dropped_frames, num_samples[master_card_index], new_frames[master_card_index].length);
                stats_dropped_frames += new_frames[master_card_index].dropped_frames;
-               send_audio_level_callback();
 
                handle_hotplugged_cards();
 
@@ -755,7 +655,7 @@ void Mixer::thread_func()
        resource_pool->clean_context();
 }
 
-void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_CARDS], bool has_new_frame[MAX_CARDS], int num_samples[MAX_CARDS])
+void Mixer::get_one_frame_from_each_card(unsigned master_card_index, CaptureCard::NewFrame new_frames[MAX_VIDEO_CARDS], bool has_new_frame[MAX_VIDEO_CARDS], int num_samples[MAX_VIDEO_CARDS])
 {
 start:
        // The first card is the master timer, so wait for it to have a new frame.
@@ -943,24 +843,6 @@ void Mixer::render_one_frame(int64_t duration)
        }
 }
 
-void Mixer::send_audio_level_callback()
-{
-       if (audio_level_callback == nullptr) {
-               return;
-       }
-
-       unique_lock<mutex> lock(compressor_mutex);
-       double loudness_s = r128.loudness_S();
-       double loudness_i = r128.integrated();
-       double loudness_range_low = r128.range_min();
-       double loudness_range_high = r128.range_max();
-
-       audio_level_callback(loudness_s, 20.0 * log10(peak),
-               loudness_i, loudness_range_low, loudness_range_high,
-               gain_staging_db, 20.0 * log10(final_makeup_gain),
-               correlation.get_correlation());
-}
-
 void Mixer::audio_thread_func()
 {
        while (!should_quit) {
@@ -976,175 +858,19 @@ void Mixer::audio_thread_func()
                        audio_task_queue.pop();
                }
 
-               process_audio_one_frame(task.pts_int, task.num_samples, task.adjust_rate);
-       }
-}
-
-void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples, bool adjust_rate)
-{
-       vector<float> samples_card;
-       vector<float> samples_out;
-
-       // TODO: Allow mixing audio from several sources.
-       unsigned selected_audio_card = theme->map_signal(audio_source_channel);
-       assert(selected_audio_card < num_cards);
-
-       for (unsigned card_index = 0; card_index < num_cards; ++card_index) {
-               samples_card.resize(num_samples * 2);
-               {
-                       unique_lock<mutex> lock(cards[card_index].audio_mutex);
-                       ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy =
-                               adjust_rate ? ResamplingQueue::ADJUST_RATE : ResamplingQueue::DO_NOT_ADJUST_RATE;
-                       cards[card_index].resampling_queue->get_output_samples(
-                               double(frame_pts_int) / TIMEBASE,
-                               &samples_card[0],
-                               num_samples,
-                               rate_adjustment_policy);
-               }
-               if (card_index == selected_audio_card) {
-                       samples_out = move(samples_card);
-               }
-       }
-
-       // Cut away everything under 120 Hz (or whatever the cutoff is);
-       // we don't need it for voice, and it will reduce headroom
-       // and confuse the compressor. (In particular, any hums at 50 or 60 Hz
-       // should be dampened.)
-       if (locut_enabled) {
-               locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f);
-       }
+               ResamplingQueue::RateAdjustmentPolicy rate_adjustment_policy =
+                       task.adjust_rate ? ResamplingQueue::ADJUST_RATE : ResamplingQueue::DO_NOT_ADJUST_RATE;
+               vector<float> samples_out = audio_mixer.get_output(
+                       double(task.pts_int) / TIMEBASE,
+                       task.num_samples,
+                       rate_adjustment_policy);
 
-       // Apply a level compressor to get the general level right.
-       // Basically, if it's over about -40 dBFS, we squeeze it down to that level
-       // (or more precisely, near it, since we don't use infinite ratio),
-       // then apply a makeup gain to get it to -14 dBFS. -14 dBFS is, of course,
-       // entirely arbitrary, but from practical tests with speech, it seems to
-       // put ut around -23 LUFS, so it's a reasonable starting point for later use.
-       {
-               unique_lock<mutex> lock(compressor_mutex);
-               if (level_compressor_enabled) {
-                       float threshold = 0.01f;   // -40 dBFS.
-                       float ratio = 20.0f;
-                       float attack_time = 0.5f;
-                       float release_time = 20.0f;
-                       float makeup_gain = pow(10.0f, (ref_level_dbfs - (-40.0f)) / 20.0f);  // +26 dB.
-                       level_compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
-                       gain_staging_db = 20.0 * log10(level_compressor.get_attenuation() * makeup_gain);
-               } else {
-                       // Just apply the gain we already had.
-                       float g = pow(10.0f, gain_staging_db / 20.0f);
-                       for (size_t i = 0; i < samples_out.size(); ++i) {
-                               samples_out[i] *= g;
-                       }
+               // Send the samples to the sound card, then add them to the output.
+               if (alsa) {
+                       alsa->write(samples_out);
                }
+               video_encoder->add_audio(task.pts_int, move(samples_out));
        }
-
-#if 0
-       printf("level=%f (%+5.2f dBFS) attenuation=%f (%+5.2f dB) end_result=%+5.2f dB\n",
-               level_compressor.get_level(), 20.0 * log10(level_compressor.get_level()),
-               level_compressor.get_attenuation(), 20.0 * log10(level_compressor.get_attenuation()),
-               20.0 * log10(level_compressor.get_level() * level_compressor.get_attenuation() * makeup_gain));
-#endif
-
-//     float limiter_att, compressor_att;
-
-       // The real compressor.
-       if (compressor_enabled) {
-               float threshold = pow(10.0f, compressor_threshold_dbfs / 20.0f);
-               float ratio = 20.0f;
-               float attack_time = 0.005f;
-               float release_time = 0.040f;
-               float makeup_gain = 2.0f;  // +6 dB.
-               compressor.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
-//             compressor_att = compressor.get_attenuation();
-       }
-
-       // Finally a limiter at -4 dB (so, -10 dBFS) to take out the worst peaks only.
-       // Note that since ratio is not infinite, we could go slightly higher than this.
-       if (limiter_enabled) {
-               float threshold = pow(10.0f, limiter_threshold_dbfs / 20.0f);
-               float ratio = 30.0f;
-               float attack_time = 0.0f;  // Instant.
-               float release_time = 0.020f;
-               float makeup_gain = 1.0f;  // 0 dB.
-               limiter.process(samples_out.data(), samples_out.size() / 2, threshold, ratio, attack_time, release_time, makeup_gain);
-//             limiter_att = limiter.get_attenuation();
-       }
-
-//     printf("limiter=%+5.1f  compressor=%+5.1f\n", 20.0*log10(limiter_att), 20.0*log10(compressor_att));
-
-       // At this point, we are most likely close to +0 LU, but all of our
-       // measurements have been on raw sample values, not R128 values.
-       // So we have a final makeup gain to get us to +0 LU; the gain
-       // adjustments required should be relatively small, and also, the
-       // offset shouldn't change much (only if the type of audio changes
-       // significantly). Thus, we shoot for updating this value basically
-       // “whenever we process buffers”, since the R128 calculation isn't exactly
-       // something we get out per-sample.
-       //
-       // Note that there's a feedback loop here, so we choose a very slow filter
-       // (half-time of 100 seconds).
-       double target_loudness_factor, alpha;
-       {
-               unique_lock<mutex> lock(compressor_mutex);
-               double loudness_lu = r128.loudness_M() - ref_level_lufs;
-               double current_makeup_lu = 20.0f * log10(final_makeup_gain);
-               target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f);
-
-               // If we're outside +/- 5 LU uncorrected, we don't count it as
-               // a normal signal (probably silence) and don't change the
-               // correction factor; just apply what we already have.
-               if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) {
-                       alpha = 0.0;
-               } else {
-                       // Formula adapted from
-                       // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter.
-                       const double half_time_s = 100.0;
-                       const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY);
-                       alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0);
-               }
-
-               double m = final_makeup_gain;
-               for (size_t i = 0; i < samples_out.size(); i += 2) {
-                       samples_out[i + 0] *= m;
-                       samples_out[i + 1] *= m;
-                       m += (target_loudness_factor - m) * alpha;
-               }
-               final_makeup_gain = m;
-       }
-
-       // Upsample 4x to find interpolated peak.
-       peak_resampler.inp_data = samples_out.data();
-       peak_resampler.inp_count = samples_out.size() / 2;
-
-       vector<float> interpolated_samples_out;
-       interpolated_samples_out.resize(samples_out.size());
-       while (peak_resampler.inp_count > 0) {  // About four iterations.
-               peak_resampler.out_data = &interpolated_samples_out[0];
-               peak_resampler.out_count = interpolated_samples_out.size() / 2;
-               peak_resampler.process();
-               size_t out_stereo_samples = interpolated_samples_out.size() / 2 - peak_resampler.out_count;
-               peak = max<float>(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2));
-               peak_resampler.out_data = nullptr;
-       }
-
-       // Find R128 levels and L/R correlation.
-       vector<float> left, right;
-       deinterleave_samples(samples_out, &left, &right);
-       float *ptrs[] = { left.data(), right.data() };
-       {
-               unique_lock<mutex> lock(compressor_mutex);
-               r128.process(left.size(), ptrs);
-               correlation.process_samples(samples_out);
-       }
-
-       // Send the samples to the sound card.
-       if (alsa) {
-               alsa->write(samples_out);
-       }
-
-       // And finally add them to the output.
-       video_encoder->add_audio(frame_pts_int, move(samples_out));
 }
 
 void Mixer::subsample_chroma(GLuint src_tex, GLuint dst_tex)
@@ -1240,15 +966,6 @@ void Mixer::channel_clicked(int preview_num)
        theme->channel_clicked(preview_num);
 }
 
-void Mixer::reset_meters()
-{
-       peak_resampler.reset();
-       peak = 0.0f;
-       r128.reset();
-       r128.integr_start();
-       correlation.reset();
-}
-
 void Mixer::start_mode_scanning(unsigned card_index)
 {
        assert(card_index < num_cards);