]> git.sesse.net Git - nageru/blobdiff - motion_search.frag
Allow symlinked frame files. Useful for testing.
[nageru] / motion_search.frag
index 9865afafd1e92b942e2558232b3eb705997176da..eb4f7c77fe2c6f8cb056a46caeaa89d58f0ee486 100644 (file)
 #version 450 core
 
-in vec2 tc;
-out vec2 out_flow;
+/*
+  The motion search is one of the two major components of DIS. It works more or less
+  like you'd expect; there's a bunch of overlapping patches (8x8 or 12x12 pixels) in
+  a grid, and for each patch, there's a search to try to find the most similar patch
+  in the other frame.
 
-uniform sampler2D tex;
+  Unlike in a typical video codec, the DIS patch search is based on gradient descent;
+  conceptually, you start with an initial guess (the value from the previous level,
+  or the zero flow for the very first level), subtract the reference (“template”)
+  patch from the candidate, look at the gradient to see in what direction there is
+  a lower difference, and then inch a bit toward that direction. (There is seemingly
+  nothing like AdaM, Momentum or similar, but the searched value is only in two
+  dimensions, so perhaps it doesn't matter as much then.)
+
+  DIS does a tweak to this concept. Since the procedure as outlined above requires
+  computing the gradient of the candidate patch, it uses the reference patch as
+  candidate (thus the “inverse” name), and thus uses _its_ gradient to understand
+  in which direction to move. (This is a bit dodgy, but not _that_ dodgy; after
+  all, the two patches are supposed to be quite similar, so their surroundings and
+  thus also gradients should also be quite similar.) It's not entirely clear whether
+  this is still a win on GPU, where calculations are much cheaper, especially
+  the way we parallelize the search, but we've kept it around for now.
+
+  The inverse search is explained and derived in the supplementary material of the
+  paper, section A. Do note that there's a typo; the text under equation 9 claims
+  that the matrix H is n x n (where presumably n is the patch size), while in reality,
+  it's 2x2.
+
+  Our GPU parallellization is fairly dumb right now; we do one patch per fragment
+  (ie., parallellize only over patches, not within each patch), which may not
+  be optimal. In particular, in the initial level, we only have 40 patches,
+  which is on the low side for a GPU, and the memory access patterns may also not
+  be ideal.
+ */
+
+in vec3 flow_tc;
+in vec2 patch_center;
+flat in int ref_layer, search_layer;
+out vec3 out_flow;
+
+uniform sampler2DArray flow_tex, image_tex;
+uniform usampler2DArray grad_tex;  // Also contains the corresponding reference image.
+uniform vec2 inv_image_size, inv_prev_level_size;
+uniform uint patch_size;
+uniform uint num_iterations;
+
+vec3 unpack_gradients(uint v)
+{
+       uint vi = v & 0xffu;
+       uint xi = (v >> 8) & 0xfffu;
+       uint yi = v >> 20;
+       vec3 r = vec3(xi * (1.0f / 4095.0f) - 0.5f, yi * (1.0f / 4095.0f) - 0.5f, vi * (1.0f / 255.0f));
+       return r;
+}
+
+// Note: The third variable is the actual pixel value.
+vec3 get_gradients(vec3 tc)
+{
+       vec3 grad = unpack_gradients(texture(grad_tex, tc).x);
+
+       // Zero gradients outside the image. (We'd do this with a sampler,
+       // but we want the repeat behavior for the actual texels, in the
+       // z channel.)
+       if (any(lessThan(tc.xy, vec2(0.0f))) || any(greaterThan(tc.xy, vec2(1.0f)))) {
+               grad.xy = vec2(0.0f);
+       }
+
+       return grad;
+}
 
 void main()
 {
-//     out_flow = texture(tex, tc).xy;
-       out_flow = tc.xy;
+       vec2 image_size = textureSize(grad_tex, 0).xy;
+
+       // Lock the patch center to an integer, so that we never get
+       // any bilinear artifacts for the gradient. (NOTE: This assumes an
+       // even patch size.) Then calculate the bottom-left texel of the patch.
+       vec2 base = (round(patch_center * image_size) - (0.5f * patch_size - 0.5f))
+               * inv_image_size;
+
+       // First, precompute the pseudo-Hessian for the template patch.
+       // This is the part where we really save by the inverse search
+       // (ie., we can compute it up-front instead of anew for each
+       // patch).
+       //
+       //  H = sum(S^T S)
+       //
+       // where S is the gradient at each point in the patch. Note that
+       // this is an outer product, so we get a (symmetric) 2x2 matrix,
+       // not a scalar.
+       mat2 H = mat2(0.0f);
+       vec2 grad_sum = vec2(0.0f);  // Used for patch normalization.
+       float template_sum = 0.0f;
+       for (uint y = 0; y < patch_size; ++y) {
+               for (uint x = 0; x < patch_size; ++x) {
+                       vec2 tc = base + uvec2(x, y) * inv_image_size;
+                       vec3 grad = get_gradients(vec3(tc, ref_layer));
+                       H[0][0] += grad.x * grad.x;
+                       H[1][1] += grad.y * grad.y;
+                       H[0][1] += grad.x * grad.y;
+
+                       template_sum += grad.z;  // The actual template pixel value.
+                       grad_sum += grad.xy;
+               }
+       }
+       H[1][0] = H[0][1];
+
+       // Make sure we don't get a singular matrix even if e.g. the picture is
+       // all black. (The paper doesn't mention this, but the reference code
+       // does it, and it seems like a reasonable hack to avoid NaNs. With such
+       // a H, we'll go out-of-bounds pretty soon, though.)
+       if (determinant(H) < 1e-6) {
+               H[0][0] += 1e-6;
+               H[1][1] += 1e-6;
+       }
+
+       mat2 H_inv = inverse(H);
+
+       // Fetch the initial guess for the flow, and convert from the previous size to this one.
+       vec2 initial_u = texture(flow_tex, flow_tc).xy * (image_size * inv_prev_level_size);
+       vec2 u = initial_u;
+       float mean_diff, first_mean_diff;
+
+       for (uint i = 0; i < num_iterations; ++i) {
+               vec2 du = vec2(0.0, 0.0);
+               float warped_sum = 0.0f;
+               vec2 u_norm = u * inv_image_size;  // In [0..1] coordinates instead of pixels.
+               for (uint y = 0; y < patch_size; ++y) {
+                       for (uint x = 0; x < patch_size; ++x) {
+                               vec2 tc = base + uvec2(x, y) * inv_image_size;
+                               vec3 grad = get_gradients(vec3(tc, ref_layer));
+                               float t = grad.z;
+                               float warped = texture(image_tex, vec3(tc + u_norm, search_layer)).x;
+                               du += grad.xy * (warped - t);
+                               warped_sum += warped;
+                       }
+               }
+
+               // Subtract the mean for patch normalization. We've done our
+               // sums without subtracting the means (because we didn't know them
+               // beforehand), ie.:
+               //
+               //   sum(S^T * ((x + µ1) - (y + µ2))) = sum(S^T * (x - y)) + (µ1 – µ2) sum(S^T)
+               //
+               // which gives trivially
+               //
+               //   sum(S^T * (x - y)) = [what we calculated] - (µ1 - µ2) sum(S^T)
+               //
+               // so we can just subtract away the mean difference here.
+               mean_diff = (warped_sum - template_sum) * (1.0 / float(patch_size * patch_size));
+               du -= grad_sum * mean_diff;
+
+               if (i == 0) {
+                       first_mean_diff = mean_diff;
+               }
+
+               // Do the actual update.
+               u -= H_inv * du;
+       }
+
+       // Reject if we moved too far. Note that the paper says “too far” is the
+       // patch size, but the DIS code uses half of a patch size. The latter seems
+       // to give much better overall results.
+       //
+       // Also reject if the patch goes out-of-bounds (the paper does not mention this,
+       // but the code does, and it seems to be critical to avoid really bad behavior
+       // at the edges).
+       vec2 patch_center = (base * image_size - 0.5f) + patch_size * 0.5f + u;
+       if (length(u - initial_u) > (patch_size * 0.5f) ||
+           patch_center.x < -(patch_size * 0.5f) ||
+           image_size.x - patch_center.x < -(patch_size * 0.5f) ||
+           patch_center.y < -(patch_size * 0.5f) ||
+           image_size.y - patch_center.y < -(patch_size * 0.5f)) {
+               u = initial_u;
+               mean_diff = first_mean_diff;
+       }
+
+       // NOTE: The mean patch diff will be for the second-to-last patch,
+       // not the true position of du. But hopefully, it will be very close.
+       u *= inv_image_size;
+       out_flow = vec3(u.x, u.y, mean_diff);
 }