6 #include "blur_effect.h"
7 #include "effect_chain.h"
8 #include "effect_util.h"
11 // Must match blur_effect.frag.
14 BlurEffect::BlurEffect()
19 // The first blur pass will forward resolution information to us.
20 hpass = new SingleBlurPassEffect(this);
21 CHECK(hpass->set_int("direction", SingleBlurPassEffect::HORIZONTAL));
22 vpass = new SingleBlurPassEffect(NULL);
23 CHECK(vpass->set_int("direction", SingleBlurPassEffect::VERTICAL));
28 void BlurEffect::rewrite_graph(EffectChain *graph, Node *self)
30 Node *hpass_node = graph->add_node(hpass);
31 Node *vpass_node = graph->add_node(vpass);
32 graph->connect_nodes(hpass_node, vpass_node);
33 graph->replace_receiver(self, hpass_node);
34 graph->replace_sender(self, vpass_node);
35 self->disabled = true;
38 // We get this information forwarded from the first blur pass,
39 // since we are not part of the chain ourselves.
40 void BlurEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
42 assert(input_num == 0);
46 input_height = height;
50 void BlurEffect::update_radius()
52 // We only have 16 taps to work with on each side, and we want that to
53 // reach out to about 2.5*sigma. Bump up the mipmap levels (giving us
54 // box blurs) until we have what we need.
55 unsigned mipmap_width = input_width, mipmap_height = input_height;
56 float adjusted_radius = radius;
57 while ((mipmap_width > 1 || mipmap_height > 1) && adjusted_radius * 1.5f > NUM_TAPS / 2) {
58 // Find the next mipmap size (round down, minimum 1 pixel).
59 mipmap_width = std::max(mipmap_width / 2, 1u);
60 mipmap_height = std::max(mipmap_height / 2, 1u);
62 // Approximate when mipmap sizes are odd, but good enough.
63 adjusted_radius = radius * float(mipmap_width) / float(input_width);
66 bool ok = hpass->set_float("radius", adjusted_radius);
67 ok |= hpass->set_int("width", mipmap_width);
68 ok |= hpass->set_int("height", mipmap_height);
69 ok |= hpass->set_int("virtual_width", mipmap_width);
70 ok |= hpass->set_int("virtual_height", mipmap_height);
72 ok |= vpass->set_float("radius", adjusted_radius);
73 ok |= vpass->set_int("width", mipmap_width);
74 ok |= vpass->set_int("height", mipmap_height);
75 ok |= vpass->set_int("virtual_width", input_width);
76 ok |= vpass->set_int("virtual_height", input_height);
81 bool BlurEffect::set_float(const std::string &key, float value) {
82 if (key == "radius") {
90 SingleBlurPassEffect::SingleBlurPassEffect(BlurEffect *parent)
93 direction(HORIZONTAL),
97 register_float("radius", &radius);
98 register_int("direction", (int *)&direction);
99 register_int("width", &width);
100 register_int("height", &height);
101 register_int("virtual_width", &virtual_width);
102 register_int("virtual_height", &virtual_height);
105 std::string SingleBlurPassEffect::output_fragment_shader()
107 return read_file("blur_effect.frag");
110 void SingleBlurPassEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
112 Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
114 // Compute the weights; they will be symmetrical, so we only compute
116 float weight[NUM_TAPS + 1];
119 for (unsigned i = 1; i < NUM_TAPS + 1; ++i) {
124 for (unsigned i = 0; i < NUM_TAPS + 1; ++i) {
125 // Gaussian blur is a common, but maybe not the prettiest choice;
126 // it can feel a bit too blurry in the fine detail and too little
127 // long-tail. This is a simple logistic distribution, which has
128 // a narrower peak but longer tails.
130 // We interpret the radius as sigma, similar to Gaussian blur.
131 // Wikipedia says that sigma² = pi² s² / 3, which yields:
132 const float s = (sqrt(3.0) / M_PI) * radius;
133 float z = i / (2.0 * s);
135 weight[i] = 1.0f / (cosh(z) * cosh(z));
140 sum += 2.0f * weight[i];
143 for (unsigned i = 0; i < NUM_TAPS + 1; ++i) {
148 // Since the GPU gives us bilinear sampling for free, we can get two
149 // samples for the price of one (for every but the center sample,
150 // in which case this trick doesn't buy us anything). Simply sample
151 // between the two pixel centers, and we can do with fewer weights.
152 // (This is right even in the vertical pass where we don't actually
153 // sample between the pixels, because we have linear interpolation
156 // We pack the parameters into a float4: The relative sample coordinates
157 // in (x,y), and the weight in z. w is unused.
158 float samples[4 * (NUM_TAPS / 2 + 1)];
161 samples[4 * 0 + 0] = 0.0f;
162 samples[4 * 0 + 1] = 0.0f;
163 samples[4 * 0 + 2] = weight[0];
164 samples[4 * 0 + 3] = 0.0f;
166 // All other samples.
167 for (unsigned i = 1; i < NUM_TAPS / 2 + 1; ++i) {
168 unsigned base_pos = i * 2 - 1;
169 float w1 = weight[base_pos];
170 float w2 = weight[base_pos + 1];
172 float offset, total_weight;
173 combine_two_samples(w1, w2, &offset, &total_weight, NULL);
175 float x = 0.0f, y = 0.0f;
177 if (direction == HORIZONTAL) {
178 x = (base_pos + offset) / (float)width;
179 } else if (direction == VERTICAL) {
180 y = (base_pos + offset) / (float)height;
185 samples[4 * i + 0] = x;
186 samples[4 * i + 1] = y;
187 samples[4 * i + 2] = total_weight;
188 samples[4 * i + 3] = 0.0f;
191 set_uniform_vec4_array(glsl_program_num, prefix, "samples", samples, NUM_TAPS / 2 + 1);
194 void SingleBlurPassEffect::clear_gl_state()