]> git.sesse.net Git - x264/blob - common/pixel.c
1c37b3178b8c1e8b71ecd4a64d1c4075aa49a3e4
[x264] / common / pixel.c
1 /*****************************************************************************
2  * pixel.c: h264 encoder
3  *****************************************************************************
4  * Copyright (C) 2003-2008 x264 project
5  *
6  * Authors: Loren Merritt <lorenm@u.washington.edu>
7  *          Laurent Aimar <fenrir@via.ecp.fr>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 #include "common.h"
25
26 #ifdef HAVE_MMX
27 #   include "x86/pixel.h"
28 #endif
29 #ifdef ARCH_PPC
30 #   include "ppc/pixel.h"
31 #endif
32 #ifdef ARCH_UltraSparc
33 #   include "sparc/pixel.h"
34 #endif
35
36
37 /****************************************************************************
38  * pixel_sad_WxH
39  ****************************************************************************/
40 #define PIXEL_SAD_C( name, lx, ly ) \
41 static int name( uint8_t *pix1, int i_stride_pix1,  \
42                  uint8_t *pix2, int i_stride_pix2 ) \
43 {                                                   \
44     int i_sum = 0;                                  \
45     int x, y;                                       \
46     for( y = 0; y < ly; y++ )                       \
47     {                                               \
48         for( x = 0; x < lx; x++ )                   \
49         {                                           \
50             i_sum += abs( pix1[x] - pix2[x] );      \
51         }                                           \
52         pix1 += i_stride_pix1;                      \
53         pix2 += i_stride_pix2;                      \
54     }                                               \
55     return i_sum;                                   \
56 }
57
58
59 PIXEL_SAD_C( x264_pixel_sad_16x16, 16, 16 )
60 PIXEL_SAD_C( x264_pixel_sad_16x8,  16,  8 )
61 PIXEL_SAD_C( x264_pixel_sad_8x16,   8, 16 )
62 PIXEL_SAD_C( x264_pixel_sad_8x8,    8,  8 )
63 PIXEL_SAD_C( x264_pixel_sad_8x4,    8,  4 )
64 PIXEL_SAD_C( x264_pixel_sad_4x8,    4,  8 )
65 PIXEL_SAD_C( x264_pixel_sad_4x4,    4,  4 )
66
67
68 /****************************************************************************
69  * pixel_ssd_WxH
70  ****************************************************************************/
71 #define PIXEL_SSD_C( name, lx, ly ) \
72 static int name( uint8_t *pix1, int i_stride_pix1,  \
73                  uint8_t *pix2, int i_stride_pix2 ) \
74 {                                                   \
75     int i_sum = 0;                                  \
76     int x, y;                                       \
77     for( y = 0; y < ly; y++ )                       \
78     {                                               \
79         for( x = 0; x < lx; x++ )                   \
80         {                                           \
81             int d = pix1[x] - pix2[x];              \
82             i_sum += d*d;                           \
83         }                                           \
84         pix1 += i_stride_pix1;                      \
85         pix2 += i_stride_pix2;                      \
86     }                                               \
87     return i_sum;                                   \
88 }
89
90 PIXEL_SSD_C( x264_pixel_ssd_16x16, 16, 16 )
91 PIXEL_SSD_C( x264_pixel_ssd_16x8,  16,  8 )
92 PIXEL_SSD_C( x264_pixel_ssd_8x16,   8, 16 )
93 PIXEL_SSD_C( x264_pixel_ssd_8x8,    8,  8 )
94 PIXEL_SSD_C( x264_pixel_ssd_8x4,    8,  4 )
95 PIXEL_SSD_C( x264_pixel_ssd_4x8,    4,  8 )
96 PIXEL_SSD_C( x264_pixel_ssd_4x4,    4,  4 )
97
98 int64_t x264_pixel_ssd_wxh( x264_pixel_function_t *pf, uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2, int i_width, int i_height )
99 {
100     int64_t i_ssd = 0;
101     int x, y;
102     int align = !(((long)pix1 | (long)pix2 | i_pix1 | i_pix2) & 15);
103
104 #define SSD(size) i_ssd += pf->ssd[size]( pix1 + y*i_pix1 + x, i_pix1, \
105                                           pix2 + y*i_pix2 + x, i_pix2 );
106     for( y = 0; y < i_height-15; y += 16 )
107     {
108         x = 0;
109         if( align )
110             for( ; x < i_width-15; x += 16 )
111                 SSD(PIXEL_16x16);
112         for( ; x < i_width-7; x += 8 )
113             SSD(PIXEL_8x16);
114     }
115     if( y < i_height-7 )
116         for( x = 0; x < i_width-7; x += 8 )
117             SSD(PIXEL_8x8);
118 #undef SSD
119
120 #define SSD1 { int d = pix1[y*i_pix1+x] - pix2[y*i_pix2+x]; i_ssd += d*d; }
121     if( i_width % 8 != 0 )
122     {
123         for( y = 0; y < (i_height & ~7); y++ )
124             for( x = i_width & ~7; x < i_width; x++ )
125                 SSD1;
126     }
127     if( i_height % 8 != 0 )
128     {
129         for( y = i_height & ~7; y < i_height; y++ )
130             for( x = 0; x < i_width; x++ )
131                 SSD1;
132     }
133 #undef SSD1
134
135     return i_ssd;
136 }
137
138
139 /****************************************************************************
140  * pixel_var_wxh
141  ****************************************************************************/
142 #define PIXEL_VAR_C( name, w, shift ) \
143 static int name( uint8_t *pix, int i_stride ) \
144 {                                             \
145     uint32_t var = 0, sum = 0, sqr = 0;       \
146     int x, y;                                 \
147     for( y = 0; y < w; y++ )                  \
148     {                                         \
149         for( x = 0; x < w; x++ )              \
150         {                                     \
151             sum += pix[x];                    \
152             sqr += pix[x] * pix[x];           \
153         }                                     \
154         pix += i_stride;                      \
155     }                                         \
156     var = sqr - (sum * sum >> shift);         \
157     return var;                               \
158 }
159
160 PIXEL_VAR_C( x264_pixel_var_16x16, 16, 8 )
161 PIXEL_VAR_C( x264_pixel_var_8x8,    8, 6 )
162
163
164 #define HADAMARD4(d0,d1,d2,d3,s0,s1,s2,s3) {\
165     int t0 = s0 + s1;\
166     int t1 = s0 - s1;\
167     int t2 = s2 + s3;\
168     int t3 = s2 - s3;\
169     d0 = t0 + t2;\
170     d2 = t0 - t2;\
171     d1 = t1 + t3;\
172     d3 = t1 - t3;\
173 }
174
175 /****************************************************************************
176  * pixel_satd_WxH: sum of 4x4 Hadamard transformed differences
177  ****************************************************************************/
178 static int pixel_satd_wxh( uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2, int i_width, int i_height )
179 {
180     int16_t tmp[4][4];
181     int x, y;
182     int i_satd = 0;
183
184     for( y = 0; y < i_height; y += 4 )
185     {
186         for( x = 0; x < i_width; x += 4 )
187         {
188             int i;
189             uint8_t *p1 = pix1+x, *p2 = pix2+x;
190
191             for( i=0; i<4; i++, p1+=i_pix1, p2+=i_pix2 )
192             {
193                 int a0 = p1[0] - p2[0];
194                 int a1 = p1[1] - p2[1];
195                 int a2 = p1[2] - p2[2];
196                 int a3 = p1[3] - p2[3];
197                 HADAMARD4( tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], a0,a1,a2,a3 );
198             }
199             for( i=0; i<4; i++ )
200             {
201                 int a0,a1,a2,a3;
202                 HADAMARD4( a0,a1,a2,a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i] );
203                 i_satd += abs(a0) + abs(a1) + abs(a2) + abs(a3);
204             }
205
206         }
207         pix1 += 4 * i_pix1;
208         pix2 += 4 * i_pix2;
209     }
210
211     return i_satd / 2;
212 }
213 #define PIXEL_SATD_C( name, width, height ) \
214 static int name( uint8_t *pix1, int i_stride_pix1, \
215                  uint8_t *pix2, int i_stride_pix2 ) \
216 { \
217     return pixel_satd_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, width, height ); \
218 }
219 PIXEL_SATD_C( x264_pixel_satd_16x16, 16, 16 )
220 PIXEL_SATD_C( x264_pixel_satd_16x8,  16, 8 )
221 PIXEL_SATD_C( x264_pixel_satd_8x16,  8, 16 )
222 PIXEL_SATD_C( x264_pixel_satd_8x8,   8, 8 )
223 PIXEL_SATD_C( x264_pixel_satd_8x4,   8, 4 )
224 PIXEL_SATD_C( x264_pixel_satd_4x8,   4, 8 )
225 PIXEL_SATD_C( x264_pixel_satd_4x4,   4, 4 )
226
227
228 /****************************************************************************
229  * pixel_sa8d_WxH: sum of 8x8 Hadamard transformed differences
230  ****************************************************************************/
231 #define SA8D_1D {\
232     int b0,b1,b2,b3,b4,b5,b6,b7;\
233     HADAMARD4( b0,b1,b2,b3, SRC(0), SRC(1), SRC(2), SRC(3) );\
234     HADAMARD4( b4,b5,b6,b7, SRC(4), SRC(5), SRC(6), SRC(7) );\
235     DST(0, b0 + b4);\
236     DST(4, b0 - b4);\
237     DST(1, b1 + b5);\
238     DST(5, b1 - b5);\
239     DST(2, b2 + b6);\
240     DST(6, b2 - b6);\
241     DST(3, b3 + b7);\
242     DST(7, b3 - b7);\
243 }
244
245 static inline int pixel_sa8d_wxh( uint8_t *pix1, int i_pix1, uint8_t *pix2, int i_pix2,
246                                   int i_width, int i_height )
247 {
248     int16_t diff[8][8];
249     int i_satd = 0;
250     int x, y;
251
252     for( y = 0; y < i_height; y += 8 )
253     {
254         for( x = 0; x < i_width; x += 8 )
255         {
256             int i;
257             uint8_t *p1 = pix1+x, *p2 = pix2+x;
258
259 #define SRC(x)     a##x
260 #define DST(x,rhs) diff[i][x] = (rhs)
261             for( i=0; i<8; i++, p1+=i_pix1, p2+=i_pix2 )
262             {
263                 int a0 = p1[0] - p2[0];
264                 int a1 = p1[1] - p2[1];
265                 int a2 = p1[2] - p2[2];
266                 int a3 = p1[3] - p2[3];
267                 int a4 = p1[4] - p2[4];
268                 int a5 = p1[5] - p2[5];
269                 int a6 = p1[6] - p2[6];
270                 int a7 = p1[7] - p2[7];
271                 SA8D_1D
272             }
273 #undef SRC
274 #undef DST
275
276 #define SRC(x)     diff[x][i]
277 #define DST(x,rhs) i_satd += abs(rhs)
278             for( i=0; i<8; i++ )
279                 SA8D_1D
280 #undef SRC
281 #undef DST
282         }
283         pix1 += 8 * i_pix1;
284         pix2 += 8 * i_pix2;
285     }
286
287     return i_satd;
288 }
289
290 #define PIXEL_SA8D_C( width, height ) \
291 static int x264_pixel_sa8d_##width##x##height( uint8_t *pix1, int i_stride_pix1, \
292                                                uint8_t *pix2, int i_stride_pix2 ) \
293 { \
294     return ( pixel_sa8d_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, width, height ) + 2 ) >> 2; \
295 }
296 PIXEL_SA8D_C( 16, 16 )
297 PIXEL_SA8D_C( 16, 8 )
298 PIXEL_SA8D_C( 8, 16 )
299 PIXEL_SA8D_C( 8, 8 )
300
301
302 static uint64_t pixel_hadamard_ac( uint8_t *pix, int stride )
303 {
304     int16_t tmp[8][8];
305     int sum4=0, sum8=0;
306     int i;
307     for( i=0; i<8; i++, pix+=stride )
308     {
309         HADAMARD4( tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i],
310                    pix[0], pix[1], pix[2], pix[3] );
311         HADAMARD4( tmp[4][i], tmp[5][i], tmp[6][i], tmp[7][i],
312                    pix[4], pix[5], pix[6], pix[7] );
313     }
314     for( i=0; i<8; i++ )
315     {
316         int a0,a1,a2,a3,a4,a5,a6,a7;
317         HADAMARD4( a0,a1,a2,a3, tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3] );
318         sum4 += abs(a0) + abs(a1) + abs(a2) + abs(a3);
319         HADAMARD4( a4,a5,a6,a7, tmp[i][4], tmp[i][5], tmp[i][6], tmp[i][7] );
320         sum4 += abs(a4) + abs(a5) + abs(a6) + abs(a7);
321         tmp[i][0] = a0 + a4;
322         tmp[i][4] = a0 - a4;
323         tmp[i][1] = a1 + a5;
324         tmp[i][5] = a1 - a5;
325         tmp[i][2] = a2 + a6;
326         tmp[i][6] = a2 - a6;
327         tmp[i][3] = a3 + a7;
328         tmp[i][7] = a3 - a7;
329     }
330     for( i=0; i<8; i++ )
331     {
332         sum8 += abs( tmp[0][i] + tmp[4][i] )
333               + abs( tmp[0][i] - tmp[4][i] )
334               + abs( tmp[1][i] + tmp[5][i] )
335               + abs( tmp[1][i] - tmp[5][i] )
336               + abs( tmp[2][i] + tmp[6][i] )
337               + abs( tmp[2][i] - tmp[6][i] )
338               + abs( tmp[3][i] + tmp[7][i] )
339               + abs( tmp[3][i] - tmp[7][i] );
340     }
341     sum4 -= tmp[0][0]+tmp[4][0];
342     sum8 -= tmp[0][0]+tmp[4][0];
343     return ((uint64_t)sum8<<32) + sum4;
344 }
345
346 #define HADAMARD_AC(w,h) \
347 static uint64_t x264_pixel_hadamard_ac_##w##x##h( uint8_t *pix, int stride )\
348 {\
349     uint64_t sum = pixel_hadamard_ac( pix, stride );\
350     if( w==16 )\
351         sum += pixel_hadamard_ac( pix+8, stride );\
352     if( h==16 )\
353         sum += pixel_hadamard_ac( pix+8*stride, stride );\
354     if( w==16 && h==16 )\
355         sum += pixel_hadamard_ac( pix+8*stride+8, stride );\
356     return ((sum>>34)<<32) + ((uint32_t)sum>>1);\
357 }
358 HADAMARD_AC( 16, 16 )
359 HADAMARD_AC( 16, 8 )
360 HADAMARD_AC( 8, 16 )
361 HADAMARD_AC( 8, 8 )
362
363
364 /****************************************************************************
365  * pixel_sad_x4
366  ****************************************************************************/
367 #define SAD_X( size ) \
368 static void x264_pixel_sad_x3_##size( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, int i_stride, int scores[3] )\
369 {\
370     scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
371     scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
372     scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
373 }\
374 static void x264_pixel_sad_x4_##size( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, uint8_t *pix3, int i_stride, int scores[4] )\
375 {\
376     scores[0] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix0, i_stride );\
377     scores[1] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix1, i_stride );\
378     scores[2] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix2, i_stride );\
379     scores[3] = x264_pixel_sad_##size( fenc, FENC_STRIDE, pix3, i_stride );\
380 }
381
382 SAD_X( 16x16 )
383 SAD_X( 16x8 )
384 SAD_X( 8x16 )
385 SAD_X( 8x8 )
386 SAD_X( 8x4 )
387 SAD_X( 4x8 )
388 SAD_X( 4x4 )
389
390 #ifdef ARCH_UltraSparc
391 SAD_X( 16x16_vis )
392 SAD_X( 16x8_vis )
393 SAD_X( 8x16_vis )
394 SAD_X( 8x8_vis )
395 #endif
396
397 /****************************************************************************
398  * pixel_satd_x4
399  * no faster than single satd, but needed for satd to be a drop-in replacement for sad
400  ****************************************************************************/
401
402 #define SATD_X( size, cpu ) \
403 static void x264_pixel_satd_x3_##size##cpu( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, int i_stride, int scores[3] )\
404 {\
405     scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
406     scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
407     scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
408 }\
409 static void x264_pixel_satd_x4_##size##cpu( uint8_t *fenc, uint8_t *pix0, uint8_t *pix1, uint8_t *pix2, uint8_t *pix3, int i_stride, int scores[4] )\
410 {\
411     scores[0] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix0, i_stride );\
412     scores[1] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix1, i_stride );\
413     scores[2] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix2, i_stride );\
414     scores[3] = x264_pixel_satd_##size##cpu( fenc, FENC_STRIDE, pix3, i_stride );\
415 }
416 #define SATD_X_DECL6( cpu )\
417 SATD_X( 16x16, cpu )\
418 SATD_X( 16x8, cpu )\
419 SATD_X( 8x16, cpu )\
420 SATD_X( 8x8, cpu )\
421 SATD_X( 8x4, cpu )\
422 SATD_X( 4x8, cpu )
423 #define SATD_X_DECL7( cpu )\
424 SATD_X_DECL6( cpu )\
425 SATD_X( 4x4, cpu )
426
427 SATD_X_DECL7()
428 #ifdef HAVE_MMX
429 SATD_X_DECL7( _mmxext )
430 SATD_X_DECL6( _sse2 )
431 SATD_X_DECL7( _ssse3 )
432 SATD_X_DECL6( _ssse3_phadd )
433 #endif
434
435 /****************************************************************************
436  * structural similarity metric
437  ****************************************************************************/
438 static void ssim_4x4x2_core( const uint8_t *pix1, int stride1,
439                              const uint8_t *pix2, int stride2,
440                              int sums[2][4])
441 {
442     int x, y, z;
443     for(z=0; z<2; z++)
444     {
445         uint32_t s1=0, s2=0, ss=0, s12=0;
446         for(y=0; y<4; y++)
447             for(x=0; x<4; x++)
448             {
449                 int a = pix1[x+y*stride1];
450                 int b = pix2[x+y*stride2];
451                 s1  += a;
452                 s2  += b;
453                 ss  += a*a;
454                 ss  += b*b;
455                 s12 += a*b;
456             }
457         sums[z][0] = s1;
458         sums[z][1] = s2;
459         sums[z][2] = ss;
460         sums[z][3] = s12;
461         pix1 += 4;
462         pix2 += 4;
463     }
464 }
465
466 static float ssim_end1( int s1, int s2, int ss, int s12 )
467 {
468     static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5);
469     static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5);
470     int vars = ss*64 - s1*s1 - s2*s2;
471     int covar = s12*64 - s1*s2;
472     return (float)(2*s1*s2 + ssim_c1) * (float)(2*covar + ssim_c2)\
473            / ((float)(s1*s1 + s2*s2 + ssim_c1) * (float)(vars + ssim_c2));
474 }
475
476 static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
477 {
478     int i;
479     float ssim = 0.0;
480     for( i = 0; i < width; i++ )
481         ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
482                            sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
483                            sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
484                            sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
485     return ssim;
486 }
487
488 float x264_pixel_ssim_wxh( x264_pixel_function_t *pf,
489                            uint8_t *pix1, int stride1,
490                            uint8_t *pix2, int stride2,
491                            int width, int height )
492 {
493     int x, y, z;
494     float ssim = 0.0;
495     int (*sum0)[4] = x264_malloc(4 * (width/4+3) * sizeof(int));
496     int (*sum1)[4] = x264_malloc(4 * (width/4+3) * sizeof(int));
497     width >>= 2;
498     height >>= 2;
499     z = 0;
500     for( y = 1; y < height; y++ )
501     {
502         for( ; z <= y; z++ )
503         {
504             XCHG( void*, sum0, sum1 );
505             for( x = 0; x < width; x+=2 )
506                 pf->ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
507         }
508         for( x = 0; x < width-1; x += 4 )
509             ssim += pf->ssim_end4( sum0+x, sum1+x, X264_MIN(4,width-x-1) );
510     }
511     x264_free(sum0);
512     x264_free(sum1);
513     return ssim;
514 }
515
516
517 /****************************************************************************
518  * successive elimination
519  ****************************************************************************/
520 static int x264_pixel_ads4( int enc_dc[4], uint16_t *sums, int delta,
521                             uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
522 {
523     int nmv=0, i;
524     for( i=0; i<width; i++, sums++ )
525     {
526         int ads = abs( enc_dc[0] - sums[0] )
527                 + abs( enc_dc[1] - sums[8] )
528                 + abs( enc_dc[2] - sums[delta] )
529                 + abs( enc_dc[3] - sums[delta+8] )
530                 + cost_mvx[i];
531         if( ads < thresh )
532             mvs[nmv++] = i;
533     }
534     return nmv;
535 }
536
537 static int x264_pixel_ads2( int enc_dc[2], uint16_t *sums, int delta,
538                             uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
539 {
540     int nmv=0, i;
541     for( i=0; i<width; i++, sums++ )
542     {
543         int ads = abs( enc_dc[0] - sums[0] )
544                 + abs( enc_dc[1] - sums[delta] )
545                 + cost_mvx[i];
546         if( ads < thresh )
547             mvs[nmv++] = i;
548     }
549     return nmv;
550 }
551
552 static int x264_pixel_ads1( int enc_dc[1], uint16_t *sums, int delta,
553                             uint16_t *cost_mvx, int16_t *mvs, int width, int thresh )
554 {
555     int nmv=0, i;
556     for( i=0; i<width; i++, sums++ )
557     {
558         int ads = abs( enc_dc[0] - sums[0] )
559                 + cost_mvx[i];
560         if( ads < thresh )
561             mvs[nmv++] = i;
562     }
563     return nmv;
564 }
565
566
567 /****************************************************************************
568  * x264_pixel_init:
569  ****************************************************************************/
570 void x264_pixel_init( int cpu, x264_pixel_function_t *pixf )
571 {
572     memset( pixf, 0, sizeof(*pixf) );
573
574 #define INIT2_NAME( name1, name2, cpu ) \
575     pixf->name1[PIXEL_16x16] = x264_pixel_##name2##_16x16##cpu;\
576     pixf->name1[PIXEL_16x8]  = x264_pixel_##name2##_16x8##cpu;
577 #define INIT4_NAME( name1, name2, cpu ) \
578     INIT2_NAME( name1, name2, cpu ) \
579     pixf->name1[PIXEL_8x16]  = x264_pixel_##name2##_8x16##cpu;\
580     pixf->name1[PIXEL_8x8]   = x264_pixel_##name2##_8x8##cpu;
581 #define INIT5_NAME( name1, name2, cpu ) \
582     INIT4_NAME( name1, name2, cpu ) \
583     pixf->name1[PIXEL_8x4]   = x264_pixel_##name2##_8x4##cpu;
584 #define INIT6_NAME( name1, name2, cpu ) \
585     INIT5_NAME( name1, name2, cpu ) \
586     pixf->name1[PIXEL_4x8]   = x264_pixel_##name2##_4x8##cpu;
587 #define INIT7_NAME( name1, name2, cpu ) \
588     INIT6_NAME( name1, name2, cpu ) \
589     pixf->name1[PIXEL_4x4]   = x264_pixel_##name2##_4x4##cpu;
590 #define INIT2( name, cpu ) INIT2_NAME( name, name, cpu )
591 #define INIT4( name, cpu ) INIT4_NAME( name, name, cpu )
592 #define INIT5( name, cpu ) INIT5_NAME( name, name, cpu )
593 #define INIT6( name, cpu ) INIT6_NAME( name, name, cpu )
594 #define INIT7( name, cpu ) INIT7_NAME( name, name, cpu )
595
596 #define INIT_ADS( cpu ) \
597     pixf->ads[PIXEL_16x16] = x264_pixel_ads4##cpu;\
598     pixf->ads[PIXEL_16x8] = x264_pixel_ads2##cpu;\
599     pixf->ads[PIXEL_8x8] = x264_pixel_ads1##cpu;
600
601     INIT7( sad, );
602     INIT7_NAME( sad_aligned, sad, );
603     INIT7( sad_x3, );
604     INIT7( sad_x4, );
605     INIT7( ssd, );
606     INIT7( satd, );
607     INIT7( satd_x3, );
608     INIT7( satd_x4, );
609     INIT4( sa8d, );
610     INIT4( hadamard_ac, );
611     INIT_ADS( );
612
613     pixf->var[PIXEL_16x16] = x264_pixel_var_16x16;
614     pixf->var[PIXEL_8x8]   = x264_pixel_var_8x8;
615
616     pixf->ssim_4x4x2_core = ssim_4x4x2_core;
617     pixf->ssim_end4 = ssim_end4;
618
619 #ifdef HAVE_MMX
620     if( cpu&X264_CPU_MMX )
621     {
622         INIT7( ssd, _mmx );
623     }
624
625     if( cpu&X264_CPU_MMXEXT )
626     {
627         INIT7( sad, _mmxext );
628         INIT7_NAME( sad_aligned, sad, _mmxext );
629         INIT7( sad_x3, _mmxext );
630         INIT7( sad_x4, _mmxext );
631         INIT7( satd, _mmxext );
632         INIT7( satd_x3, _mmxext );
633         INIT7( satd_x4, _mmxext );
634         INIT4( hadamard_ac, _mmxext );
635         INIT_ADS( _mmxext );
636         pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_mmxext;
637         pixf->var[PIXEL_8x8]   = x264_pixel_var_8x8_mmxext;
638 #ifdef ARCH_X86
639         pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_mmxext;
640         pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8_mmxext;
641         pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_mmxext;
642         pixf->ssim_4x4x2_core  = x264_pixel_ssim_4x4x2_core_mmxext;
643
644         if( cpu&X264_CPU_CACHELINE_32 )
645         {
646             INIT5( sad, _cache32_mmxext );
647             INIT4( sad_x3, _cache32_mmxext );
648             INIT4( sad_x4, _cache32_mmxext );
649         }
650         else if( cpu&X264_CPU_CACHELINE_64 )
651         {
652             INIT5( sad, _cache64_mmxext );
653             INIT4( sad_x3, _cache64_mmxext );
654             INIT4( sad_x4, _cache64_mmxext );
655         }
656 #else
657         if( cpu&X264_CPU_CACHELINE_64 )
658         {
659             pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_cache64_mmxext;
660             pixf->sad[PIXEL_8x8]  = x264_pixel_sad_8x8_cache64_mmxext;
661             pixf->sad[PIXEL_8x4]  = x264_pixel_sad_8x4_cache64_mmxext;
662             pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_cache64_mmxext;
663             pixf->sad_x3[PIXEL_8x8]  = x264_pixel_sad_x3_8x8_cache64_mmxext;
664             pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_cache64_mmxext;
665             pixf->sad_x4[PIXEL_8x8]  = x264_pixel_sad_x4_8x8_cache64_mmxext;
666         }
667 #endif
668         pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_mmxext;
669         pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_mmxext;
670         pixf->intra_satd_x3_8x8c  = x264_intra_satd_x3_8x8c_mmxext;
671         pixf->intra_satd_x3_4x4   = x264_intra_satd_x3_4x4_mmxext;
672     }
673
674     if( (cpu&X264_CPU_SSE2) && !(cpu&X264_CPU_SSE2_IS_SLOW) )
675     {
676         INIT2( sad, _sse2 );
677         INIT2( sad_x3, _sse2 );
678         INIT2( sad_x4, _sse2 );
679         if( !(cpu&X264_CPU_STACK_MOD4) )
680         {
681             INIT4( hadamard_ac, _sse2 );
682         }
683         INIT_ADS( _sse2 );
684         pixf->var[PIXEL_8x8] = x264_pixel_var_8x8_sse2;
685         pixf->intra_sad_x3_16x16 = x264_intra_sad_x3_16x16_sse2;
686 #ifdef ARCH_X86
687         if( cpu&X264_CPU_CACHELINE_64 )
688         {
689             INIT2( sad, _cache64_sse2 );
690             INIT2( sad_x3, _cache64_sse2 );
691             INIT2( sad_x4, _cache64_sse2 );
692         }
693 #endif
694         if( cpu&X264_CPU_SSE_MISALIGN )
695         {
696             INIT2( sad_x3, _sse2_misalign );
697             INIT2( sad_x4, _sse2_misalign );
698         }
699     }
700     if( cpu&X264_CPU_SSE2 )
701     {
702         INIT5( ssd, _sse2 );
703         if( cpu&X264_CPU_SSE2_IS_FAST )
704         {
705             INIT6( satd, _sse2 );
706             INIT6( satd_x3, _sse2 );
707             INIT6( satd_x4, _sse2 );
708         }
709         else
710         {
711             INIT5( satd, _sse2 );
712             INIT5( satd_x3, _sse2 );
713             INIT5( satd_x4, _sse2 );
714         }
715         INIT2_NAME( sad_aligned, sad, _sse2_aligned );
716         pixf->var[PIXEL_16x16] = x264_pixel_var_16x16_sse2;
717         pixf->ssim_4x4x2_core  = x264_pixel_ssim_4x4x2_core_sse2;
718         pixf->ssim_end4        = x264_pixel_ssim_end4_sse2;
719         pixf->sa8d[PIXEL_16x16] = x264_pixel_sa8d_16x16_sse2;
720         pixf->sa8d[PIXEL_8x8]   = x264_pixel_sa8d_8x8_sse2;
721 #ifdef ARCH_X86_64
722         pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_sse2;
723 #endif
724     }
725
726     if( cpu&X264_CPU_SSE2_IS_FAST && !(cpu&X264_CPU_CACHELINE_64) )
727     {
728         pixf->sad_aligned[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
729         pixf->sad[PIXEL_8x16] = x264_pixel_sad_8x16_sse2;
730         pixf->sad_x3[PIXEL_8x16] = x264_pixel_sad_x3_8x16_sse2;
731         pixf->sad_x3[PIXEL_8x8] = x264_pixel_sad_x3_8x8_sse2;
732         pixf->sad_x3[PIXEL_8x4] = x264_pixel_sad_x3_8x4_sse2;
733         pixf->sad_x4[PIXEL_8x16] = x264_pixel_sad_x4_8x16_sse2;
734         pixf->sad_x4[PIXEL_8x8] = x264_pixel_sad_x4_8x8_sse2;
735         pixf->sad_x4[PIXEL_8x4] = x264_pixel_sad_x4_8x4_sse2;
736     }
737
738     if( (cpu&X264_CPU_SSE3) && (cpu&X264_CPU_CACHELINE_64) )
739     {
740         INIT2( sad, _sse3 );
741         INIT2( sad_x3, _sse3 );
742         INIT2( sad_x4, _sse3 );
743     }
744
745     if( cpu&X264_CPU_SSSE3 )
746     {
747         INIT7( satd, _ssse3 );
748         INIT7( satd_x3, _ssse3 );
749         INIT7( satd_x4, _ssse3 );
750         if( !(cpu&X264_CPU_STACK_MOD4) )
751         {
752             INIT4( hadamard_ac, _ssse3 );
753         }
754         INIT_ADS( _ssse3 );
755         pixf->sa8d[PIXEL_16x16]= x264_pixel_sa8d_16x16_ssse3;
756         pixf->sa8d[PIXEL_8x8]  = x264_pixel_sa8d_8x8_ssse3;
757         pixf->intra_satd_x3_16x16 = x264_intra_satd_x3_16x16_ssse3;
758         pixf->intra_sad_x3_16x16  = x264_intra_sad_x3_16x16_ssse3;
759         pixf->intra_satd_x3_8x8c  = x264_intra_satd_x3_8x8c_ssse3;
760         pixf->intra_satd_x3_4x4   = x264_intra_satd_x3_4x4_ssse3;
761 #ifdef ARCH_X86_64
762         pixf->intra_sa8d_x3_8x8 = x264_intra_sa8d_x3_8x8_ssse3;
763 #endif
764         if( cpu&X264_CPU_CACHELINE_64 )
765         {
766             INIT2( sad, _cache64_ssse3 );
767             INIT2( sad_x3, _cache64_ssse3 );
768             INIT2( sad_x4, _cache64_ssse3 );
769         }
770         if( cpu&X264_CPU_PHADD_IS_FAST )
771         {
772             INIT6( satd, _ssse3_phadd );
773             INIT6( satd_x3, _ssse3_phadd );
774             INIT6( satd_x4, _ssse3_phadd );
775         }
776     }
777
778     if( cpu&X264_CPU_SSE4 )
779     {
780         pixf->ssd[PIXEL_4x8] = x264_pixel_ssd_4x8_sse4;
781         pixf->ssd[PIXEL_4x4] = x264_pixel_ssd_4x4_sse4;
782     }
783 #endif //HAVE_MMX
784
785 #ifdef ARCH_PPC
786     if( cpu&X264_CPU_ALTIVEC )
787     {
788         x264_pixel_altivec_init( pixf );
789     }
790 #endif
791 #ifdef ARCH_UltraSparc
792     INIT4( sad, _vis );
793     INIT4( sad_x3, _vis );
794     INIT4( sad_x4, _vis );
795 #endif
796
797     pixf->ads[PIXEL_8x16] =
798     pixf->ads[PIXEL_8x4] =
799     pixf->ads[PIXEL_4x8] = pixf->ads[PIXEL_16x8];
800     pixf->ads[PIXEL_4x4] = pixf->ads[PIXEL_8x8];
801 }
802