4 // Effect is the base class for every effect. It basically represents a single
5 // GLSL function, with an optional set of user-settable parameters.
7 // A note on naming: Since all effects run in the same GLSL namespace,
8 // you can't use any name you want for global variables (e.g. uniforms).
9 // The framework assigns a prefix to you which will be unique for each
10 // effect instance; use the macro PREFIX() around your identifiers to
11 // automatically prepend that prefix.
25 // Can alias on a float[2].
27 Point2D(float x, float y)
33 // Can alias on a float[3].
35 RGBTriplet(float r, float g, float b)
41 // Convenience functions that deal with prepending the prefix.
42 GLint get_uniform_location(GLuint glsl_program_num, const std::string &prefix, const std::string &key);
43 void set_uniform_int(GLuint glsl_program_num, const std::string &prefix, const std::string &key, int value);
44 void set_uniform_float(GLuint glsl_program_num, const std::string &prefix, const std::string &key, float value);
45 void set_uniform_vec2(GLuint glsl_program_num, const std::string &prefix, const std::string &key, const float *values);
46 void set_uniform_vec3(GLuint glsl_program_num, const std::string &prefix, const std::string &key, const float *values);
47 void set_uniform_vec4_array(GLuint glsl_program_num, const std::string &prefix, const std::string &key, const float *values, size_t num_values);
48 void set_uniform_mat3(GLuint glsl_program_num, const std::string &prefix, const std::string &key, const Matrix3x3 matrix);
54 // An identifier for this type of effect, mostly used for debug output
55 // (but some special names, like "ColorspaceConversionEffect", holds special
56 // meaning). Same as the class name is fine.
57 virtual std::string effect_type_id() const = 0;
59 // Whether this effects expects its input (and output) to be in
60 // linear gamma, ie. without an applied gamma curve. Most effects
61 // will want this, although the ones that never actually look at
62 // the pixels, e.g. mirror, won't need to care, and can set this
63 // to false. If so, the input gamma will be undefined.
65 // Also see the note on needs_texture_bounce(), below.
66 virtual bool needs_linear_light() const { return true; }
68 // Whether this effect expects its input to be in the sRGB
69 // color space, ie. use the sRGB/Rec. 709 RGB primaries.
70 // (If not, it would typically come in as some slightly different
71 // set of RGB primaries; you would currently not get YCbCr
72 // or something similar).
74 // Again, most effects will want this, but you can set it to false
75 // if you process each channel independently, equally _and_
76 // in a linear fashion.
77 virtual bool needs_srgb_primaries() const { return true; }
79 // Whether this effect expects its input to come directly from
80 // a texture. If this is true, the framework will not chain the
81 // input from other effects, but will store the results of the
82 // chain to a temporary (RGBA fp16) texture and let this effect
83 // sample directly from that.
85 // There are two good reasons why you might want to set this:
87 // 1. You are sampling more than once from the input,
88 // in which case computing all the previous steps might
89 // be more expensive than going to a memory intermediate.
90 // 2. You rely on previous effects, possibly including gamma
91 // expansion, to happen pre-filtering instead of post-filtering.
92 // (This is only relevant if you actually need the filtering; if
93 // you sample 1:1 between pixels and texels, it makes no difference.)
95 // Note that in some cases, you might get post-filtered gamma expansion
96 // even when setting this option. More specifically, if you are the
97 // first effect in the chain, and the GPU is doing sRGB gamma
98 // expansion, it is undefined (from OpenGL's side) whether expansion
99 // happens pre- or post-filtering. For most uses, however,
100 // either will be fine.
101 virtual bool needs_texture_bounce() const { return false; }
103 // Whether this effect expects mipmaps or not. If you set this to
104 // true, you will be sampling with bilinear filtering; if not,
105 // you could be sampling with simple linear filtering and no mipmaps
106 // (although there is no guarantee; if a different effect in the chain
107 // needs mipmaps, you will also get them).
108 virtual bool needs_mipmaps() const { return false; }
110 // Whether this effect wants to output to a different size than
111 // its input(s) (see inform_input_size(), below). If you set this to
112 // true, the output will be bounced to a texture (similarly to if the
113 // next effect set needs_texture_bounce()).
114 virtual bool changes_output_size() const { return false; }
116 // If changes_output_size() is true, you must implement this to tell
117 // the framework what output size you want.
119 // Note that it is explicitly allowed to change width and height
120 // from frame to frame; EffectChain will reallocate textures as needed.
121 virtual void get_output_size(unsigned *width, unsigned *height) const {
125 // Tells the effect the resolution of each of its input.
126 // This will be called every frame, and always before get_output_size(),
127 // so you can change your output size based on the input if so desired.
129 // Note that in some cases, an input might not have a single well-defined
130 // resolution (for instance if you fade between two inputs with
131 // different resolutions). In this case, you will get width=0 and height=0
132 // for that input. If you cannot handle that, you will need to set
133 // needs_texture_bounce() to true, which will force a render to a single
134 // given resolution before you get the input.
135 virtual void inform_input_size(unsigned input_num, unsigned width, unsigned height) {}
137 // How many inputs this effect will take (a fixed number).
138 // If you have only one input, it will be called INPUT() in GLSL;
139 // if you have several, they will be INPUT1(), INPUT2(), and so on.
140 virtual unsigned num_inputs() const { return 1; }
142 // Let the effect rewrite the effect chain as it sees fit.
143 // Most effects won't need to do this, but this is very useful
144 // if you have an effect that consists of multiple sub-effects
145 // (for instance, two passes). The effect is given to its own
146 // pointer, and it can add new ones (by using add_node()
147 // and connect_node()) as it sees fit. This is called at
148 // EffectChain::finalize() time, when the entire graph is known,
149 // in the order that the effects were originally added.
151 // Note that if the effect wants to take itself entirely out
152 // of the chain, it must set “disabled” to true and then disconnect
153 // itself from all other effects.
154 virtual void rewrite_graph(EffectChain *graph, Node *self) {}
156 // Outputs one GLSL uniform declaration for each registered parameter
157 // (see below), with the right prefix prepended to each uniform name.
158 // If you do not want this behavior, you can override this function.
159 virtual std::string output_convenience_uniforms() const;
161 // Returns the GLSL fragment shader string for this effect.
162 virtual std::string output_fragment_shader() = 0;
164 // Set all OpenGL state that this effect needs before rendering.
165 // The default implementation sets one uniform per registered parameter,
166 // but no other state.
168 // <sampler_num> is the first free texture sampler. If you want to use
169 // textures, you can bind a texture to GL_TEXTURE0 + <sampler_num>,
170 // and then increment the number (so that the next effect in the chain
171 // will use a different sampler).
172 virtual void set_gl_state(GLuint glsl_program_num, const std::string& prefix, unsigned *sampler_num);
174 // If you set any special OpenGL state in set_gl_state(), you can clear it
175 // after rendering here. The default implementation does nothing.
176 virtual void clear_gl_state();
178 // Set a parameter; intended to be called from user code.
179 // Neither of these take ownership of the pointer.
180 virtual bool set_int(const std::string&, int value);
181 virtual bool set_float(const std::string &key, float value);
182 virtual bool set_vec2(const std::string &key, const float *values);
183 virtual bool set_vec3(const std::string &key, const float *values);
186 // Register a parameter. Whenever set_*() is called with the same key,
187 // it will update the value in the given pointer (typically a pointer
188 // to some private member variable in your effect).
190 // Neither of these take ownership of the pointer.
192 // int is special since GLSL pre-1.30 doesn't have integer uniforms.
193 // Thus, ints that you register will _not_ be converted to GLSL uniforms.
194 void register_int(const std::string &key, int *value);
196 // These correspond directly to float/vec2/vec3 in GLSL.
197 void register_float(const std::string &key, float *value);
198 void register_vec2(const std::string &key, float *values);
199 void register_vec3(const std::string &key, float *values);
201 // This will register a 1D texture, which will be bound to a sampler
202 // when your GLSL code runs (so it corresponds 1:1 to a sampler2D uniform
205 // Note that if you change the contents of <values>, you will need to
206 // call invalidate_1d_texture() to have the picture re-uploaded on the
207 // next frame. This is in contrast to all the other parameters, which are
208 // set anew every frame.
209 void register_1d_texture(const std::string &key, float *values, size_t size);
210 void invalidate_1d_texture(const std::string &key);
220 std::map<std::string, int *> params_int;
221 std::map<std::string, float *> params_float;
222 std::map<std::string, float *> params_vec2;
223 std::map<std::string, float *> params_vec3;
224 std::map<std::string, Texture1D> params_tex_1d;
227 #endif // !defined(_EFFECT_H)