1 #define GL_GLEXT_PROTOTYPES 1
14 #include "effect_chain.h"
15 #include "gamma_expansion_effect.h"
16 #include "gamma_compression_effect.h"
17 #include "colorspace_conversion_effect.h"
21 EffectChain::EffectChain(float aspect_nom, float aspect_denom)
22 : aspect_nom(aspect_nom),
23 aspect_denom(aspect_denom),
26 Input *EffectChain::add_input(Input *input)
28 inputs.push_back(input);
30 Node *node = add_node(input);
31 node->output_color_space = input->get_color_space();
32 node->output_gamma_curve = input->get_gamma_curve();
36 void EffectChain::add_output(const ImageFormat &format)
38 output_format = format;
41 Node *EffectChain::add_node(Effect *effect)
44 sprintf(effect_id, "eff%u", (unsigned)nodes.size());
46 Node *node = new Node;
47 node->effect = effect;
48 node->disabled = false;
49 node->effect_id = effect_id;
50 node->output_color_space = COLORSPACE_INVALID;
51 node->output_gamma_curve = GAMMA_INVALID;
53 nodes.push_back(node);
54 node_map[effect] = node;
58 void EffectChain::connect_nodes(Node *sender, Node *receiver)
60 sender->outgoing_links.push_back(receiver);
61 receiver->incoming_links.push_back(sender);
64 void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
66 new_receiver->incoming_links = old_receiver->incoming_links;
67 old_receiver->incoming_links.clear();
69 for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
70 Node *sender = new_receiver->incoming_links[i];
71 for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
72 if (sender->outgoing_links[j] == old_receiver) {
73 sender->outgoing_links[j] = new_receiver;
79 void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
81 new_sender->outgoing_links = old_sender->outgoing_links;
82 old_sender->outgoing_links.clear();
84 for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
85 Node *receiver = new_sender->outgoing_links[i];
86 for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
87 if (receiver->incoming_links[j] == old_sender) {
88 receiver->incoming_links[j] = new_sender;
94 void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
96 for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
97 if (sender->outgoing_links[i] == receiver) {
98 sender->outgoing_links[i] = middle;
99 middle->incoming_links.push_back(sender);
102 for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
103 if (receiver->incoming_links[i] == sender) {
104 receiver->incoming_links[i] = middle;
105 middle->outgoing_links.push_back(receiver);
109 assert(middle->incoming_links.size() == middle->effect->num_inputs());
112 void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *nonlinear_inputs)
114 if (node->output_gamma_curve == GAMMA_LINEAR &&
115 node->effect->effect_type_id() != "GammaCompressionEffect") {
118 if (node->effect->num_inputs() == 0) {
119 nonlinear_inputs->push_back(node);
121 assert(node->effect->num_inputs() == node->incoming_links.size());
122 for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
123 find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
128 Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
130 assert(inputs.size() == effect->num_inputs());
131 Node *node = add_node(effect);
132 for (unsigned i = 0; i < inputs.size(); ++i) {
133 assert(node_map.count(inputs[i]) != 0);
134 connect_nodes(node_map[inputs[i]], node);
139 // GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
140 std::string replace_prefix(const std::string &text, const std::string &prefix)
145 while (start < text.size()) {
146 size_t pos = text.find("PREFIX(", start);
147 if (pos == std::string::npos) {
148 output.append(text.substr(start, std::string::npos));
152 output.append(text.substr(start, pos - start));
153 output.append(prefix);
156 pos += strlen("PREFIX(");
158 // Output stuff until we find the matching ), which we then eat.
160 size_t end_arg_pos = pos;
161 while (end_arg_pos < text.size()) {
162 if (text[end_arg_pos] == '(') {
164 } else if (text[end_arg_pos] == ')') {
172 output.append(text.substr(pos, end_arg_pos - pos));
180 Phase *EffectChain::compile_glsl_program(
181 const std::vector<Node *> &inputs,
182 const std::vector<Node *> &effects)
184 assert(!effects.empty());
186 // Deduplicate the inputs.
187 std::vector<Node *> true_inputs = inputs;
188 std::sort(true_inputs.begin(), true_inputs.end());
189 true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
191 bool input_needs_mipmaps = false;
192 std::string frag_shader = read_file("header.frag");
194 // Create functions for all the texture inputs that we need.
195 for (unsigned i = 0; i < true_inputs.size(); ++i) {
196 Node *input = true_inputs[i];
198 frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
199 frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
200 frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
201 frag_shader += "}\n";
205 for (unsigned i = 0; i < effects.size(); ++i) {
206 Node *node = effects[i];
208 if (node->incoming_links.size() == 1) {
209 frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
211 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
213 sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
219 frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
220 frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
221 frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
222 frag_shader += "#undef PREFIX\n";
223 frag_shader += "#undef FUNCNAME\n";
224 if (node->incoming_links.size() == 1) {
225 frag_shader += "#undef INPUT\n";
227 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
229 sprintf(buf, "#undef INPUT%d\n", j + 1);
235 input_needs_mipmaps |= node->effect->needs_mipmaps();
237 for (unsigned i = 0; i < effects.size(); ++i) {
238 Node *node = effects[i];
239 if (node->effect->num_inputs() == 0) {
240 node->effect->set_int("needs_mipmaps", input_needs_mipmaps);
243 frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
244 frag_shader.append(read_file("footer.frag"));
245 printf("%s\n", frag_shader.c_str());
247 GLuint glsl_program_num = glCreateProgram();
248 GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
249 GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
250 glAttachShader(glsl_program_num, vs_obj);
252 glAttachShader(glsl_program_num, fs_obj);
254 glLinkProgram(glsl_program_num);
257 Phase *phase = new Phase;
258 phase->glsl_program_num = glsl_program_num;
259 phase->input_needs_mipmaps = input_needs_mipmaps;
260 phase->inputs = true_inputs;
261 phase->effects = effects;
266 // Construct GLSL programs, starting at the given effect and following
267 // the chain from there. We end a program every time we come to an effect
268 // marked as "needs texture bounce", one that is used by multiple other
269 // effects, every time an effect wants to change the output size,
270 // and of course at the end.
272 // We follow a quite simple depth-first search from the output, although
273 // without any explicit recursion.
274 void EffectChain::construct_glsl_programs(Node *output)
276 // Which effects have already been completed in this phase?
277 // We need to keep track of it, as an effect with multiple outputs
278 // could otherwise be calculate multiple times.
279 std::set<Node *> completed_effects;
281 // Effects in the current phase, as well as inputs (outputs from other phases
282 // that we depend on). Note that since we start iterating from the end,
283 // the effect list will be in the reverse order.
284 std::vector<Node *> this_phase_inputs;
285 std::vector<Node *> this_phase_effects;
287 // Effects that we have yet to calculate, but that we know should
288 // be in the current phase.
289 std::stack<Node *> effects_todo_this_phase;
291 // Effects that we have yet to calculate, but that come from other phases.
292 // We delay these until we have this phase done in its entirety,
293 // at which point we pick any of them and start a new phase from that.
294 std::stack<Node *> effects_todo_other_phases;
296 effects_todo_this_phase.push(output);
298 for ( ;; ) { // Termination condition within loop.
299 if (!effects_todo_this_phase.empty()) {
300 // OK, we have more to do this phase.
301 Node *node = effects_todo_this_phase.top();
302 effects_todo_this_phase.pop();
304 // This should currently only happen for effects that are phase outputs,
305 // and we throw those out separately below.
306 assert(completed_effects.count(node) == 0);
308 this_phase_effects.push_back(node);
309 completed_effects.insert(node);
311 // Find all the dependencies of this effect, and add them to the stack.
312 std::vector<Node *> deps = node->incoming_links;
313 assert(node->effect->num_inputs() == deps.size());
314 for (unsigned i = 0; i < deps.size(); ++i) {
315 bool start_new_phase = false;
317 // FIXME: If we sample directly from a texture, we won't need this.
318 if (node->effect->needs_texture_bounce()) {
319 start_new_phase = true;
322 if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) {
323 // More than one effect uses this as the input,
324 // and it is not a texture itself.
325 // The easiest thing to do (and probably also the safest
326 // performance-wise in most cases) is to bounce it to a texture
327 // and then let the next passes read from that.
328 start_new_phase = true;
331 if (deps[i]->effect->changes_output_size()) {
332 start_new_phase = true;
335 if (start_new_phase) {
336 effects_todo_other_phases.push(deps[i]);
337 this_phase_inputs.push_back(deps[i]);
339 effects_todo_this_phase.push(deps[i]);
345 // No more effects to do this phase. Take all the ones we have,
346 // and create a GLSL program for it.
347 if (!this_phase_effects.empty()) {
348 reverse(this_phase_effects.begin(), this_phase_effects.end());
349 phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
350 this_phase_effects.back()->phase = phases.back();
351 this_phase_inputs.clear();
352 this_phase_effects.clear();
354 assert(this_phase_inputs.empty());
355 assert(this_phase_effects.empty());
357 // If we have no effects left, exit.
358 if (effects_todo_other_phases.empty()) {
362 Node *node = effects_todo_other_phases.top();
363 effects_todo_other_phases.pop();
365 if (completed_effects.count(node) == 0) {
366 // Start a new phase, calculating from this effect.
367 effects_todo_this_phase.push(node);
371 // Finally, since the phases are found from the output but must be executed
372 // from the input(s), reverse them, too.
373 std::reverse(phases.begin(), phases.end());
376 void EffectChain::output_dot(const char *filename)
378 FILE *fp = fopen(filename, "w");
384 fprintf(fp, "digraph G {\n");
385 for (unsigned i = 0; i < nodes.size(); ++i) {
386 fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
387 for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
388 std::vector<std::string> labels;
390 if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) {
391 labels.push_back("needs_bounce");
393 if (nodes[i]->effect->changes_output_size()) {
394 labels.push_back("resize");
397 switch (nodes[i]->output_color_space) {
398 case COLORSPACE_INVALID:
399 labels.push_back("spc[invalid]");
401 case COLORSPACE_REC_601_525:
402 labels.push_back("spc[rec601-525]");
404 case COLORSPACE_REC_601_625:
405 labels.push_back("spc[rec601-625]");
411 switch (nodes[i]->output_gamma_curve) {
413 labels.push_back("gamma[invalid]");
416 labels.push_back("gamma[sRGB]");
418 case GAMMA_REC_601: // and GAMMA_REC_709
419 labels.push_back("gamma[rec601/709]");
425 if (labels.empty()) {
426 fprintf(fp, " n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]);
428 std::string label = labels[0];
429 for (unsigned k = 1; k < labels.size(); ++k) {
430 label += ", " + labels[k];
432 fprintf(fp, " n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str());
441 unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height)
443 if (float(width) * aspect_denom >= float(height) * aspect_nom) {
444 // Same aspect, or W/H > aspect (image is wider than the frame).
445 // In either case, keep width.
448 // W/H < aspect (image is taller than the frame), so keep height,
449 // and adjust width correspondingly.
450 return lrintf(height * aspect_nom / aspect_denom);
454 // Propagate input texture sizes throughout, and inform effects downstream.
455 // (Like a lot of other code, we depend on effects being in topological order.)
456 void EffectChain::inform_input_sizes(Phase *phase)
458 // All effects that have a defined size (inputs and RTT inputs)
459 // get that. Reset all others.
460 for (unsigned i = 0; i < phase->effects.size(); ++i) {
461 Node *node = phase->effects[i];
462 if (node->effect->num_inputs() == 0) {
463 Input *input = static_cast<Input *>(node->effect);
464 node->output_width = input->get_width();
465 node->output_height = input->get_height();
466 assert(node->output_width != 0);
467 assert(node->output_height != 0);
469 node->output_width = node->output_height = 0;
472 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
473 Node *input = phase->inputs[i];
474 input->output_width = input->phase->output_width;
475 input->output_height = input->phase->output_height;
476 assert(input->output_width != 0);
477 assert(input->output_height != 0);
480 // Now propagate from the inputs towards the end, and inform as we go.
481 // The rules are simple:
483 // 1. Don't touch effects that already have given sizes (ie., inputs).
484 // 2. If all of your inputs have the same size, that will be your output size.
485 // 3. Otherwise, your output size is 0x0.
486 for (unsigned i = 0; i < phase->effects.size(); ++i) {
487 Node *node = phase->effects[i];
488 if (node->effect->num_inputs() == 0) {
491 unsigned this_output_width = 0;
492 unsigned this_output_height = 0;
493 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
494 Node *input = node->incoming_links[j];
495 node->effect->inform_input_size(j, input->output_width, input->output_height);
497 this_output_width = input->output_width;
498 this_output_height = input->output_height;
499 } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
501 this_output_width = 0;
502 this_output_height = 0;
505 node->output_width = this_output_width;
506 node->output_height = this_output_height;
510 // Note: You should call inform_input_sizes() before this, as the last effect's
511 // desired output size might change based on the inputs.
512 void EffectChain::find_output_size(Phase *phase)
514 Node *output_node = phase->effects.back();
516 // If the last effect explicitly sets an output size, use that.
517 if (output_node->effect->changes_output_size()) {
518 output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
522 // If not, look at the input phases and textures.
523 // We select the largest one (by fit into the current aspect).
524 unsigned best_width = 0;
525 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
526 Node *input = phase->inputs[i];
527 assert(input->phase->output_width != 0);
528 assert(input->phase->output_height != 0);
529 unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height);
530 if (width > best_width) {
534 for (unsigned i = 0; i < phase->effects.size(); ++i) {
535 Effect *effect = phase->effects[i]->effect;
536 if (effect->num_inputs() != 0) {
540 Input *input = static_cast<Input *>(effect);
541 unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height());
542 if (width > best_width) {
546 assert(best_width != 0);
547 phase->output_width = best_width;
548 phase->output_height = best_width * aspect_denom / aspect_nom;
551 void EffectChain::sort_nodes_topologically()
553 std::set<Node *> visited_nodes;
554 std::vector<Node *> sorted_list;
555 for (unsigned i = 0; i < nodes.size(); ++i) {
556 if (nodes[i]->incoming_links.size() == 0) {
557 topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list);
560 reverse(sorted_list.begin(), sorted_list.end());
564 void EffectChain::topological_sort_visit_node(Node *node, std::set<Node *> *visited_nodes, std::vector<Node *> *sorted_list)
566 if (visited_nodes->count(node) != 0) {
569 visited_nodes->insert(node);
570 for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
571 topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list);
573 sorted_list->push_back(node);
576 // Propagate gamma and color space information as far as we can in the graph.
577 // The rules are simple: Anything where all the inputs agree, get that as
578 // output as well. Anything else keeps having *_INVALID.
579 void EffectChain::propagate_gamma_and_color_space()
581 // We depend on going through the nodes in order.
582 sort_nodes_topologically();
584 for (unsigned i = 0; i < nodes.size(); ++i) {
585 Node *node = nodes[i];
586 if (node->disabled) {
589 assert(node->incoming_links.size() == node->effect->num_inputs());
590 if (node->incoming_links.size() == 0) {
591 assert(node->output_color_space != COLORSPACE_INVALID);
592 assert(node->output_gamma_curve != GAMMA_INVALID);
596 ColorSpace color_space = node->incoming_links[0]->output_color_space;
597 GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
598 for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
599 if (node->incoming_links[j]->output_color_space != color_space) {
600 color_space = COLORSPACE_INVALID;
602 if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
603 gamma_curve = GAMMA_INVALID;
607 // The conversion effects already have their outputs set correctly,
608 // so leave them alone.
609 if (node->effect->effect_type_id() != "ColorSpaceConversionEffect") {
610 node->output_color_space = color_space;
612 if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
613 node->effect->effect_type_id() != "GammaExpansionEffect") {
614 node->output_gamma_curve = gamma_curve;
619 bool EffectChain::node_needs_colorspace_fix(Node *node)
621 if (node->disabled) {
624 if (node->effect->num_inputs() == 0) {
628 // propagate_gamma_and_color_space() has already set our output
629 // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
630 if (node->output_color_space == COLORSPACE_INVALID) {
633 return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
636 // Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
637 // the graph. Our strategy is not always optimal, but quite simple:
638 // Find an effect that's as early as possible where the inputs are of
639 // unacceptable colorspaces (that is, either different, or, if the effect only
640 // wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
641 // propagate the information anew, and repeat until there are no more such
643 void EffectChain::fix_internal_color_spaces()
645 unsigned colorspace_propagation_pass = 0;
649 for (unsigned i = 0; i < nodes.size(); ++i) {
650 Node *node = nodes[i];
651 if (!node_needs_colorspace_fix(node)) {
655 // Go through each input that is not sRGB, and insert
656 // a colorspace conversion before it.
657 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
658 Node *input = node->incoming_links[j];
659 assert(input->output_color_space != COLORSPACE_INVALID);
660 if (input->output_color_space == COLORSPACE_sRGB) {
663 Node *conversion = add_node(new ColorSpaceConversionEffect());
664 conversion->effect->set_int("source_space", input->output_color_space);
665 conversion->effect->set_int("destination_space", COLORSPACE_sRGB);
666 conversion->output_color_space = COLORSPACE_sRGB;
667 insert_node_between(input, conversion, node);
670 // Re-sort topologically, and propagate the new information.
671 propagate_gamma_and_color_space();
678 sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
679 output_dot(filename);
680 assert(colorspace_propagation_pass < 100);
683 for (unsigned i = 0; i < nodes.size(); ++i) {
684 Node *node = nodes[i];
685 if (node->disabled) {
688 assert(node->output_color_space != COLORSPACE_INVALID);
692 // Make so that the output is in the desired color space.
693 void EffectChain::fix_output_color_space()
695 Node *output = find_output_node();
696 if (output->output_color_space != output_format.color_space) {
697 Node *conversion = add_node(new ColorSpaceConversionEffect());
698 conversion->effect->set_int("source_space", output->output_color_space);
699 conversion->effect->set_int("destination_space", output_format.color_space);
700 conversion->output_color_space = output_format.color_space;
701 connect_nodes(output, conversion);
705 bool EffectChain::node_needs_gamma_fix(Node *node)
707 if (node->disabled) {
710 if (node->effect->num_inputs() == 0) {
714 // propagate_gamma_and_color_space() has already set our output
715 // to GAMMA_INVALID if the inputs differ, so we can rely on that,
716 // except for GammaCompressionEffect.
717 if (node->output_gamma_curve == GAMMA_INVALID) {
720 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
721 assert(node->incoming_links.size() == 1);
722 return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
724 return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
727 // Very similar to fix_internal_color_spaces(), but for gamma.
728 // There is one difference, though; before we start adding conversion nodes,
729 // we see if we can get anything out of asking the sources to deliver
730 // linear gamma directly. fix_internal_gamma_by_asking_inputs()
731 // does that part, while fix_internal_gamma_by_inserting_nodes()
732 // inserts nodes as needed afterwards.
733 void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
735 unsigned gamma_propagation_pass = 0;
739 for (unsigned i = 0; i < nodes.size(); ++i) {
740 Node *node = nodes[i];
741 if (!node_needs_gamma_fix(node)) {
745 // See if all inputs can give us linear gamma. If not, leave it.
746 std::vector<Node *> nonlinear_inputs;
747 find_all_nonlinear_inputs(node, &nonlinear_inputs);
748 assert(!nonlinear_inputs.empty());
751 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
752 Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
753 all_ok &= input->can_output_linear_gamma();
760 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
761 nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1);
762 nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
765 // Re-sort topologically, and propagate the new information.
766 propagate_gamma_and_color_space();
773 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
774 output_dot(filename);
775 assert(gamma_propagation_pass < 100);
779 void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
781 unsigned gamma_propagation_pass = 0;
785 for (unsigned i = 0; i < nodes.size(); ++i) {
786 Node *node = nodes[i];
787 if (!node_needs_gamma_fix(node)) {
791 // Go through each input that is not linear gamma, and insert
792 // a gamma conversion before it.
793 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
794 Node *input = node->incoming_links[j];
795 assert(input->output_gamma_curve != GAMMA_INVALID);
796 if (input->output_gamma_curve == GAMMA_LINEAR) {
799 Node *conversion = add_node(new GammaExpansionEffect());
800 conversion->effect->set_int("source_curve", input->output_gamma_curve);
801 conversion->output_gamma_curve = GAMMA_LINEAR;
802 insert_node_between(input, conversion, node);
805 // Re-sort topologically, and propagate the new information.
806 propagate_gamma_and_color_space();
813 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
814 output_dot(filename);
815 assert(gamma_propagation_pass < 100);
818 for (unsigned i = 0; i < nodes.size(); ++i) {
819 Node *node = nodes[i];
820 if (node->disabled) {
823 assert(node->output_gamma_curve != GAMMA_INVALID);
827 // Make so that the output is in the desired gamma.
828 // Note that this assumes linear input gamma, so it might create the need
829 // for another pass of fix_internal_gamma().
830 void EffectChain::fix_output_gamma()
832 Node *output = find_output_node();
833 if (output->output_gamma_curve != output_format.gamma_curve) {
834 Node *conversion = add_node(new GammaCompressionEffect());
835 conversion->effect->set_int("destination_curve", output_format.gamma_curve);
836 conversion->output_gamma_curve = output_format.gamma_curve;
837 connect_nodes(output, conversion);
841 // Find the output node. This is, simply, one that has no outgoing links.
842 // If there are multiple ones, the graph is malformed (we do not support
843 // multiple outputs right now).
844 Node *EffectChain::find_output_node()
846 std::vector<Node *> output_nodes;
847 for (unsigned i = 0; i < nodes.size(); ++i) {
848 Node *node = nodes[i];
849 if (node->disabled) {
852 if (node->outgoing_links.empty()) {
853 output_nodes.push_back(node);
856 assert(output_nodes.size() == 1);
857 return output_nodes[0];
860 void EffectChain::finalize()
862 // Output the graph as it is before we do any conversions on it.
863 output_dot("step0-start.dot");
865 // Give each effect in turn a chance to rewrite its own part of the graph.
866 // Note that if more effects are added as part of this, they will be
867 // picked up as part of the same for loop, since they are added at the end.
868 for (unsigned i = 0; i < nodes.size(); ++i) {
869 nodes[i]->effect->rewrite_graph(this, nodes[i]);
871 output_dot("step1-rewritten.dot");
873 propagate_gamma_and_color_space();
874 output_dot("step2-propagated.dot");
876 fix_internal_color_spaces();
877 fix_output_color_space();
878 output_dot("step4-output-colorspacefix.dot");
880 // Note that we need to fix gamma after colorspace conversion,
881 // because colorspace conversions might create needs for gamma conversions.
882 // Also, we need to run an extra pass of fix_internal_gamma() after
883 // fixing the output gamma, as we only have conversions to/from linear.
884 fix_internal_gamma_by_asking_inputs(5);
885 fix_internal_gamma_by_inserting_nodes(6);
887 output_dot("step8-output-gammafix.dot");
888 fix_internal_gamma_by_asking_inputs(9);
889 fix_internal_gamma_by_inserting_nodes(10);
891 output_dot("step11-final.dot");
893 // Construct all needed GLSL programs, starting at the output.
894 construct_glsl_programs(find_output_node());
896 // If we have more than one phase, we need intermediate render-to-texture.
897 // Construct an FBO, and then as many textures as we need.
898 // We choose the simplest option of having one texture per output,
899 // since otherwise this turns into an (albeit simple)
900 // register allocation problem.
901 if (phases.size() > 1) {
902 glGenFramebuffers(1, &fbo);
904 for (unsigned i = 0; i < phases.size() - 1; ++i) {
905 inform_input_sizes(phases[i]);
906 find_output_size(phases[i]);
908 Node *output_node = phases[i]->effects.back();
909 glGenTextures(1, &output_node->output_texture);
911 glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
913 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
915 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
917 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
920 output_node->output_texture_width = phases[i]->output_width;
921 output_node->output_texture_height = phases[i]->output_height;
923 inform_input_sizes(phases.back());
926 for (unsigned i = 0; i < inputs.size(); ++i) {
927 inputs[i]->finalize();
930 assert(phases[0]->inputs.empty());
935 void EffectChain::render_to_screen()
939 // Save original viewport.
941 glGetIntegerv(GL_VIEWPORT, viewport);
946 glDisable(GL_DEPTH_TEST);
948 glDepthMask(GL_FALSE);
951 glMatrixMode(GL_PROJECTION);
953 glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
955 glMatrixMode(GL_MODELVIEW);
958 if (phases.size() > 1) {
959 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
963 std::set<Node *> generated_mipmaps;
965 for (unsigned phase = 0; phase < phases.size(); ++phase) {
966 // See if the requested output size has changed. If so, we need to recreate
967 // the texture (and before we start setting up inputs).
968 inform_input_sizes(phases[phase]);
969 if (phase != phases.size() - 1) {
970 find_output_size(phases[phase]);
972 Node *output_node = phases[phase]->effects.back();
974 if (output_node->output_texture_width != phases[phase]->output_width ||
975 output_node->output_texture_height != phases[phase]->output_height) {
976 glActiveTexture(GL_TEXTURE0);
978 glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
980 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
982 glBindTexture(GL_TEXTURE_2D, 0);
985 output_node->output_texture_width = phases[phase]->output_width;
986 output_node->output_texture_height = phases[phase]->output_height;
990 glUseProgram(phases[phase]->glsl_program_num);
993 // Set up RTT inputs for this phase.
994 for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
995 glActiveTexture(GL_TEXTURE0 + sampler);
996 Node *input = phases[phase]->inputs[sampler];
997 glBindTexture(GL_TEXTURE_2D, input->output_texture);
999 if (phases[phase]->input_needs_mipmaps) {
1000 if (generated_mipmaps.count(input) == 0) {
1001 glGenerateMipmap(GL_TEXTURE_2D);
1003 generated_mipmaps.insert(input);
1005 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
1008 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1012 std::string texture_name = std::string("tex_") + input->effect_id;
1013 glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
1017 // And now the output.
1018 if (phase == phases.size() - 1) {
1019 // Last phase goes directly to the screen.
1020 glBindFramebuffer(GL_FRAMEBUFFER, 0);
1022 glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
1024 Node *output_node = phases[phase]->effects.back();
1025 glFramebufferTexture2D(
1027 GL_COLOR_ATTACHMENT0,
1029 output_node->output_texture,
1032 glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
1035 // Give the required parameters to all the effects.
1036 unsigned sampler_num = phases[phase]->inputs.size();
1037 for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
1038 Node *node = phases[phase]->effects[i];
1039 node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
1046 glTexCoord2f(0.0f, 0.0f);
1047 glVertex2f(0.0f, 0.0f);
1049 glTexCoord2f(1.0f, 0.0f);
1050 glVertex2f(1.0f, 0.0f);
1052 glTexCoord2f(1.0f, 1.0f);
1053 glVertex2f(1.0f, 1.0f);
1055 glTexCoord2f(0.0f, 1.0f);
1056 glVertex2f(0.0f, 1.0f);
1061 for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
1062 Node *node = phases[phase]->effects[i];
1063 node->effect->clear_gl_state();