]> git.sesse.net Git - movit/blob - effect_chain.cpp
Add a function to let non-input effects override texture bounce.
[movit] / effect_chain.cpp
1 #define GL_GLEXT_PROTOTYPES 1
2
3 #include <epoxy/gl.h>
4 #include <assert.h>
5 #include <math.h>
6 #include <stddef.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <algorithm>
11 #include <set>
12 #include <stack>
13 #include <utility>
14 #include <vector>
15 #include <Eigen/Core>
16
17 #include "alpha_division_effect.h"
18 #include "alpha_multiplication_effect.h"
19 #include "colorspace_conversion_effect.h"
20 #include "dither_effect.h"
21 #include "effect.h"
22 #include "effect_chain.h"
23 #include "effect_util.h"
24 #include "gamma_compression_effect.h"
25 #include "gamma_expansion_effect.h"
26 #include "init.h"
27 #include "input.h"
28 #include "resource_pool.h"
29 #include "util.h"
30 #include "ycbcr_conversion_effect.h"
31
32 using namespace Eigen;
33 using namespace std;
34
35 namespace movit {
36
37 EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
38         : aspect_nom(aspect_nom),
39           aspect_denom(aspect_denom),
40           output_color_rgba(false),
41           output_color_ycbcr(false),
42           dither_effect(NULL),
43           num_dither_bits(0),
44           output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
45           finalized(false),
46           resource_pool(resource_pool),
47           do_phase_timing(false) {
48         if (resource_pool == NULL) {
49                 this->resource_pool = new ResourcePool();
50                 owns_resource_pool = true;
51         } else {
52                 owns_resource_pool = false;
53         }
54 }
55
56 EffectChain::~EffectChain()
57 {
58         for (unsigned i = 0; i < nodes.size(); ++i) {
59                 delete nodes[i]->effect;
60                 delete nodes[i];
61         }
62         for (unsigned i = 0; i < phases.size(); ++i) {
63                 resource_pool->release_glsl_program(phases[i]->glsl_program_num);
64                 delete phases[i];
65         }
66         if (owns_resource_pool) {
67                 delete resource_pool;
68         }
69 }
70
71 Input *EffectChain::add_input(Input *input)
72 {
73         assert(!finalized);
74         inputs.push_back(input);
75         add_node(input);
76         return input;
77 }
78
79 void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
80 {
81         assert(!finalized);
82         assert(!output_color_rgba);
83         output_format = format;
84         output_alpha_format = alpha_format;
85         output_color_rgba = true;
86 }
87
88 void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
89                                    const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting)
90 {
91         assert(!finalized);
92         assert(!output_color_ycbcr);
93         output_format = format;
94         output_alpha_format = alpha_format;
95         output_color_ycbcr = true;
96         output_ycbcr_format = ycbcr_format;
97         output_ycbcr_splitting = output_splitting;
98
99         assert(ycbcr_format.chroma_subsampling_x == 1);
100         assert(ycbcr_format.chroma_subsampling_y == 1);
101 }
102
103 Node *EffectChain::add_node(Effect *effect)
104 {
105         for (unsigned i = 0; i < nodes.size(); ++i) {
106                 assert(nodes[i]->effect != effect);
107         }
108
109         Node *node = new Node;
110         node->effect = effect;
111         node->disabled = false;
112         node->output_color_space = COLORSPACE_INVALID;
113         node->output_gamma_curve = GAMMA_INVALID;
114         node->output_alpha_type = ALPHA_INVALID;
115         node->needs_mipmaps = false;
116         node->one_to_one_sampling = false;
117
118         nodes.push_back(node);
119         node_map[effect] = node;
120         effect->inform_added(this);
121         return node;
122 }
123
124 void EffectChain::connect_nodes(Node *sender, Node *receiver)
125 {
126         sender->outgoing_links.push_back(receiver);
127         receiver->incoming_links.push_back(sender);
128 }
129
130 void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
131 {
132         new_receiver->incoming_links = old_receiver->incoming_links;
133         old_receiver->incoming_links.clear();
134         
135         for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
136                 Node *sender = new_receiver->incoming_links[i];
137                 for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
138                         if (sender->outgoing_links[j] == old_receiver) {
139                                 sender->outgoing_links[j] = new_receiver;
140                         }
141                 }
142         }       
143 }
144
145 void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
146 {
147         new_sender->outgoing_links = old_sender->outgoing_links;
148         old_sender->outgoing_links.clear();
149         
150         for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
151                 Node *receiver = new_sender->outgoing_links[i];
152                 for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
153                         if (receiver->incoming_links[j] == old_sender) {
154                                 receiver->incoming_links[j] = new_sender;
155                         }
156                 }
157         }       
158 }
159
160 void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
161 {
162         for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
163                 if (sender->outgoing_links[i] == receiver) {
164                         sender->outgoing_links[i] = middle;
165                         middle->incoming_links.push_back(sender);
166                 }
167         }
168         for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
169                 if (receiver->incoming_links[i] == sender) {
170                         receiver->incoming_links[i] = middle;
171                         middle->outgoing_links.push_back(receiver);
172                 }
173         }
174
175         assert(middle->incoming_links.size() == middle->effect->num_inputs());
176 }
177
178 GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
179 {
180         assert(node->effect->needs_texture_bounce());
181         assert(input_num < node->incoming_links.size());
182         assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
183         assert(node->incoming_links[input_num]->bound_sampler_num < 8);
184         return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
185 }
186
187 GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
188 {
189         assert(input_num < node->incoming_links.size());
190         return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
191                 node->incoming_links[input_num]->bound_sampler_num < 8;
192 }
193
194 void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
195 {
196         if (node->output_gamma_curve == GAMMA_LINEAR &&
197             node->effect->effect_type_id() != "GammaCompressionEffect") {
198                 return;
199         }
200         if (node->effect->num_inputs() == 0) {
201                 nonlinear_inputs->push_back(node);
202         } else {
203                 assert(node->effect->num_inputs() == node->incoming_links.size());
204                 for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
205                         find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
206                 }
207         }
208 }
209
210 Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
211 {
212         assert(!finalized);
213         assert(inputs.size() == effect->num_inputs());
214         Node *node = add_node(effect);
215         for (unsigned i = 0; i < inputs.size(); ++i) {
216                 assert(node_map.count(inputs[i]) != 0);
217                 connect_nodes(node_map[inputs[i]], node);
218         }
219         return effect;
220 }
221
222 // ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
223 string replace_prefix(const string &text, const string &prefix)
224 {
225         string output;
226         size_t start = 0;
227
228         while (start < text.size()) {
229                 size_t pos = text.find("PREFIX(", start);
230                 if (pos == string::npos) {
231                         output.append(text.substr(start, string::npos));
232                         break;
233                 }
234
235                 output.append(text.substr(start, pos - start));
236                 output.append(prefix);
237                 output.append("_");
238
239                 pos += strlen("PREFIX(");
240         
241                 // Output stuff until we find the matching ), which we then eat.
242                 int depth = 1;
243                 size_t end_arg_pos = pos;
244                 while (end_arg_pos < text.size()) {
245                         if (text[end_arg_pos] == '(') {
246                                 ++depth;
247                         } else if (text[end_arg_pos] == ')') {
248                                 --depth;
249                                 if (depth == 0) {
250                                         break;
251                                 }
252                         }
253                         ++end_arg_pos;
254                 }
255                 output.append(text.substr(pos, end_arg_pos - pos));
256                 ++end_arg_pos;
257                 assert(depth == 0);
258                 start = end_arg_pos;
259         }
260         return output;
261 }
262
263 namespace {
264
265 template<class T>
266 void extract_uniform_declarations(const vector<Uniform<T> > &effect_uniforms,
267                                   const string &type_specifier,
268                                   const string &effect_id,
269                                   vector<Uniform<T> > *phase_uniforms,
270                                   string *glsl_string)
271 {
272         for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
273                 phase_uniforms->push_back(effect_uniforms[i]);
274                 phase_uniforms->back().prefix = effect_id;
275
276                 *glsl_string += string("uniform ") + type_specifier + " " + effect_id
277                         + "_" + effect_uniforms[i].name + ";\n";
278         }
279 }
280
281 template<class T>
282 void extract_uniform_array_declarations(const vector<Uniform<T> > &effect_uniforms,
283                                         const string &type_specifier,
284                                         const string &effect_id,
285                                         vector<Uniform<T> > *phase_uniforms,
286                                         string *glsl_string)
287 {
288         for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
289                 phase_uniforms->push_back(effect_uniforms[i]);
290                 phase_uniforms->back().prefix = effect_id;
291
292                 char buf[256];
293                 snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
294                         type_specifier.c_str(), effect_id.c_str(),
295                         effect_uniforms[i].name.c_str(),
296                         int(effect_uniforms[i].num_values));
297                 *glsl_string += buf;
298         }
299 }
300
301 template<class T>
302 void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T> > *phase_uniforms)
303 {
304         for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
305                 Uniform<T> &uniform = (*phase_uniforms)[i];
306                 uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
307         }
308 }
309
310 }  // namespace
311
312 void EffectChain::compile_glsl_program(Phase *phase)
313 {
314         string frag_shader_header = read_version_dependent_file("header", "frag");
315         string frag_shader = "";
316
317         // Create functions and uniforms for all the texture inputs that we need.
318         for (unsigned i = 0; i < phase->inputs.size(); ++i) {
319                 Node *input = phase->inputs[i]->output_node;
320                 char effect_id[256];
321                 sprintf(effect_id, "in%u", i);
322                 phase->effect_ids.insert(make_pair(input, effect_id));
323         
324                 frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
325                 frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
326                 frag_shader += "\treturn tex2D(tex_" + string(effect_id) + ", tc);\n";
327                 frag_shader += "}\n";
328                 frag_shader += "\n";
329
330                 Uniform<int> uniform;
331                 uniform.name = effect_id;
332                 uniform.value = &phase->input_samplers[i];
333                 uniform.prefix = "tex";
334                 uniform.num_values = 1;
335                 uniform.location = -1;
336                 phase->uniforms_sampler2d.push_back(uniform);
337         }
338
339         // Give each effect in the phase its own ID.
340         for (unsigned i = 0; i < phase->effects.size(); ++i) {
341                 Node *node = phase->effects[i];
342                 char effect_id[256];
343                 sprintf(effect_id, "eff%u", i);
344                 phase->effect_ids.insert(make_pair(node, effect_id));
345         }
346
347         for (unsigned i = 0; i < phase->effects.size(); ++i) {
348                 Node *node = phase->effects[i];
349                 const string effect_id = phase->effect_ids[node];
350                 if (node->incoming_links.size() == 1) {
351                         frag_shader += string("#define INPUT ") + phase->effect_ids[node->incoming_links[0]] + "\n";
352                 } else {
353                         for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
354                                 char buf[256];
355                                 sprintf(buf, "#define INPUT%d %s\n", j + 1, phase->effect_ids[node->incoming_links[j]].c_str());
356                                 frag_shader += buf;
357                         }
358                 }
359         
360                 frag_shader += "\n";
361                 frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
362                 frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
363                 frag_shader += "#undef PREFIX\n";
364                 frag_shader += "#undef FUNCNAME\n";
365                 if (node->incoming_links.size() == 1) {
366                         frag_shader += "#undef INPUT\n";
367                 } else {
368                         for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
369                                 char buf[256];
370                                 sprintf(buf, "#undef INPUT%d\n", j + 1);
371                                 frag_shader += buf;
372                         }
373                 }
374                 frag_shader += "\n";
375         }
376         frag_shader += string("#define INPUT ") + phase->effect_ids[phase->effects.back()] + "\n";
377
378         // If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
379         if (phase->output_node->outgoing_links.empty() && output_color_ycbcr) {
380                 switch (output_ycbcr_splitting) {
381                 case YCBCR_OUTPUT_INTERLEAVED:
382                         // No #defines set.
383                         break;
384                 case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
385                         frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
386                         break;
387                 case YCBCR_OUTPUT_PLANAR:
388                         frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
389                         break;
390                 default:
391                         assert(false);
392                 }
393
394                 if (output_color_rgba) {
395                         // Note: Needs to come in the header, because not only the
396                         // output needs to see it (YCbCrConversionEffect and DitherEffect
397                         // do, too).
398                         frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
399                 }
400         }
401         frag_shader.append(read_file("footer.frag"));
402
403         // Collect uniforms from all effects and output them. Note that this needs
404         // to happen after output_fragment_shader(), even though the uniforms come
405         // before in the output source, since output_fragment_shader() is allowed
406         // to register new uniforms (e.g. arrays that are of unknown length until
407         // finalization time).
408         // TODO: Make a uniform block for platforms that support it.
409         string frag_shader_uniforms = "";
410         for (unsigned i = 0; i < phase->effects.size(); ++i) {
411                 Node *node = phase->effects[i];
412                 Effect *effect = node->effect;
413                 const string effect_id = phase->effect_ids[node];
414                 extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
415                 extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
416                 extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
417                 extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
418                 extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
419                 extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
420                 extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
421                 extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
422                 extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
423                 extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
424         }
425
426         frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;
427
428         string vert_shader = read_version_dependent_file("vs", "vert");
429
430         // If we're the last phase and need to flip the picture to compensate for
431         // the origin, tell the vertex shader so.
432         if (phase->output_node->outgoing_links.empty() && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
433                 const string needle = "#define FLIP_ORIGIN 0";
434                 size_t pos = vert_shader.find(needle);
435                 assert(pos != string::npos);
436
437                 vert_shader[pos + needle.size() - 1] = '1';
438         }
439
440         phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader);
441
442         // Collect the resulting location numbers for each uniform.
443         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
444         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
445         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
446         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
447         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
448         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
449         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
450         collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
451 }
452
453 // Construct GLSL programs, starting at the given effect and following
454 // the chain from there. We end a program every time we come to an effect
455 // marked as "needs texture bounce", one that is used by multiple other
456 // effects, every time we need to bounce due to output size change
457 // (not all size changes require ending), and of course at the end.
458 //
459 // We follow a quite simple depth-first search from the output, although
460 // without recursing explicitly within each phase.
461 Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
462 {
463         if (completed_effects->count(output)) {
464                 return (*completed_effects)[output];
465         }
466
467         Phase *phase = new Phase;
468         phase->output_node = output;
469
470         // If the output effect has one-to-one sampling, we try to trace this
471         // status down through the dependency chain. This is important in case
472         // we hit an effect that changes output size (and not sets a virtual
473         // output size); if we have one-to-one sampling, we don't have to break
474         // the phase.
475         output->one_to_one_sampling = output->effect->one_to_one_sampling();
476
477         // Effects that we have yet to calculate, but that we know should
478         // be in the current phase.
479         stack<Node *> effects_todo_this_phase;
480         effects_todo_this_phase.push(output);
481
482         while (!effects_todo_this_phase.empty()) {
483                 Node *node = effects_todo_this_phase.top();
484                 effects_todo_this_phase.pop();
485
486                 if (node->effect->needs_mipmaps()) {
487                         node->needs_mipmaps = true;
488                 }
489
490                 // This should currently only happen for effects that are inputs
491                 // (either true inputs or phase outputs). We special-case inputs,
492                 // and then deduplicate phase outputs below.
493                 if (node->effect->num_inputs() == 0) {
494                         if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
495                                 continue;
496                         }
497                 } else {
498                         assert(completed_effects->count(node) == 0);
499                 }
500
501                 phase->effects.push_back(node);
502
503                 // Find all the dependencies of this effect, and add them to the stack.
504                 vector<Node *> deps = node->incoming_links;
505                 assert(node->effect->num_inputs() == deps.size());
506                 for (unsigned i = 0; i < deps.size(); ++i) {
507                         bool start_new_phase = false;
508
509                         if (node->effect->needs_texture_bounce() &&
510                             !deps[i]->effect->is_single_texture() &&
511                             !deps[i]->effect->override_disable_bounce()) {
512                                 start_new_phase = true;
513                         }
514
515                         // Propagate information about needing mipmaps down the chain,
516                         // breaking the phase if we notice an incompatibility.
517                         //
518                         // Note that we cannot do this propagation as a normal pass,
519                         // because it needs information about where the phases end
520                         // (we should not propagate the flag across phases).
521                         if (node->needs_mipmaps) {
522                                 if (deps[i]->effect->num_inputs() == 0) {
523                                         Input *input = static_cast<Input *>(deps[i]->effect);
524                                         start_new_phase |= !input->can_supply_mipmaps();
525                                 } else {
526                                         deps[i]->needs_mipmaps = true;
527                                 }
528                         }
529
530                         if (deps[i]->outgoing_links.size() > 1) {
531                                 if (!deps[i]->effect->is_single_texture()) {
532                                         // More than one effect uses this as the input,
533                                         // and it is not a texture itself.
534                                         // The easiest thing to do (and probably also the safest
535                                         // performance-wise in most cases) is to bounce it to a texture
536                                         // and then let the next passes read from that.
537                                         start_new_phase = true;
538                                 } else {
539                                         assert(deps[i]->effect->num_inputs() == 0);
540
541                                         // For textures, we try to be slightly more clever;
542                                         // if none of our outputs need a bounce, we don't bounce
543                                         // but instead simply use the effect many times.
544                                         //
545                                         // Strictly speaking, we could bounce it for some outputs
546                                         // and use it directly for others, but the processing becomes
547                                         // somewhat simpler if the effect is only used in one such way.
548                                         for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) {
549                                                 Node *rdep = deps[i]->outgoing_links[j];
550                                                 start_new_phase |= rdep->effect->needs_texture_bounce();
551                                         }
552                                 }
553                         }
554
555                         if (deps[i]->effect->sets_virtual_output_size()) {
556                                 assert(deps[i]->effect->changes_output_size());
557                                 // If the next effect sets a virtual size to rely on OpenGL's
558                                 // bilinear sampling, we'll really need to break the phase here.
559                                 start_new_phase = true;
560                         } else if (deps[i]->effect->changes_output_size() && !node->one_to_one_sampling) {
561                                 // If the next effect changes size and we don't have one-to-one sampling,
562                                 // we also need to break here.
563                                 start_new_phase = true;
564                         }
565
566                         if (start_new_phase) {
567                                 phase->inputs.push_back(construct_phase(deps[i], completed_effects));
568                         } else {
569                                 effects_todo_this_phase.push(deps[i]);
570
571                                 // Propagate the one-to-one status down through the dependency.
572                                 deps[i]->one_to_one_sampling = node->one_to_one_sampling &&
573                                         deps[i]->effect->one_to_one_sampling();
574                         }
575                 }
576         }
577
578         // No more effects to do this phase. Take all the ones we have,
579         // and create a GLSL program for it.
580         assert(!phase->effects.empty());
581
582         // Deduplicate the inputs.
583         sort(phase->inputs.begin(), phase->inputs.end());
584         phase->inputs.erase(unique(phase->inputs.begin(), phase->inputs.end()), phase->inputs.end());
585
586         // Allocate samplers for each input.
587         phase->input_samplers.resize(phase->inputs.size());
588
589         // We added the effects from the output and back, but we need to output
590         // them in topological sort order in the shader.
591         phase->effects = topological_sort(phase->effects);
592
593         // Figure out if we need mipmaps or not, and if so, tell the inputs that.
594         phase->input_needs_mipmaps = false;
595         for (unsigned i = 0; i < phase->effects.size(); ++i) {
596                 Node *node = phase->effects[i];
597                 phase->input_needs_mipmaps |= node->effect->needs_mipmaps();
598         }
599         for (unsigned i = 0; i < phase->effects.size(); ++i) {
600                 Node *node = phase->effects[i];
601                 if (node->effect->num_inputs() == 0) {
602                         Input *input = static_cast<Input *>(node->effect);
603                         assert(!phase->input_needs_mipmaps || input->can_supply_mipmaps());
604                         CHECK(input->set_int("needs_mipmaps", phase->input_needs_mipmaps));
605                 }
606         }
607
608         // Tell each node which phase it ended up in, so that the unit test
609         // can check that the phases were split in the right place.
610         // Note that this ignores that effects may be part of multiple phases;
611         // if the unit tests need to test such cases, we'll reconsider.
612         for (unsigned i = 0; i < phase->effects.size(); ++i) {
613                 phase->effects[i]->containing_phase = phase;
614         }
615
616         // Actually make the shader for this phase.
617         compile_glsl_program(phase);
618
619         // Initialize timer objects.
620         if (movit_timer_queries_supported) {
621                 glGenQueries(1, &phase->timer_query_object);
622                 phase->time_elapsed_ns = 0;
623                 phase->num_measured_iterations = 0;
624         }
625
626         assert(completed_effects->count(output) == 0);
627         completed_effects->insert(make_pair(output, phase));
628         phases.push_back(phase);
629         return phase;
630 }
631
632 void EffectChain::output_dot(const char *filename)
633 {
634         if (movit_debug_level != MOVIT_DEBUG_ON) {
635                 return;
636         }
637
638         FILE *fp = fopen(filename, "w");
639         if (fp == NULL) {
640                 perror(filename);
641                 exit(1);
642         }
643
644         fprintf(fp, "digraph G {\n");
645         fprintf(fp, "  output [shape=box label=\"(output)\"];\n");
646         for (unsigned i = 0; i < nodes.size(); ++i) {
647                 // Find out which phase this event belongs to.
648                 vector<int> in_phases;
649                 for (unsigned j = 0; j < phases.size(); ++j) {
650                         const Phase* p = phases[j];
651                         if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
652                                 in_phases.push_back(j);
653                         }
654                 }
655
656                 if (in_phases.empty()) {
657                         fprintf(fp, "  n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
658                 } else if (in_phases.size() == 1) {
659                         fprintf(fp, "  n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
660                                 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
661                                 (in_phases[0] % 8) + 1);
662                 } else {
663                         // If we had new enough Graphviz, style="wedged" would probably be ideal here.
664                         // But alas.
665                         fprintf(fp, "  n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
666                                 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
667                                 (in_phases[0] % 8) + 1);
668                 }
669
670                 char from_node_id[256];
671                 snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);
672
673                 for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
674                         char to_node_id[256];
675                         snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);
676
677                         vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
678                         output_dot_edge(fp, from_node_id, to_node_id, labels);
679                 }
680
681                 if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
682                         // Output node.
683                         vector<string> labels = get_labels_for_edge(nodes[i], NULL);
684                         output_dot_edge(fp, from_node_id, "output", labels);
685                 }
686         }
687         fprintf(fp, "}\n");
688
689         fclose(fp);
690 }
691
692 vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
693 {
694         vector<string> labels;
695
696         if (to != NULL && to->effect->needs_texture_bounce()) {
697                 labels.push_back("needs_bounce");
698         }
699         if (from->effect->changes_output_size()) {
700                 labels.push_back("resize");
701         }
702
703         switch (from->output_color_space) {
704         case COLORSPACE_INVALID:
705                 labels.push_back("spc[invalid]");
706                 break;
707         case COLORSPACE_REC_601_525:
708                 labels.push_back("spc[rec601-525]");
709                 break;
710         case COLORSPACE_REC_601_625:
711                 labels.push_back("spc[rec601-625]");
712                 break;
713         default:
714                 break;
715         }
716
717         switch (from->output_gamma_curve) {
718         case GAMMA_INVALID:
719                 labels.push_back("gamma[invalid]");
720                 break;
721         case GAMMA_sRGB:
722                 labels.push_back("gamma[sRGB]");
723                 break;
724         case GAMMA_REC_601:  // and GAMMA_REC_709
725                 labels.push_back("gamma[rec601/709]");
726                 break;
727         default:
728                 break;
729         }
730
731         switch (from->output_alpha_type) {
732         case ALPHA_INVALID:
733                 labels.push_back("alpha[invalid]");
734                 break;
735         case ALPHA_BLANK:
736                 labels.push_back("alpha[blank]");
737                 break;
738         case ALPHA_POSTMULTIPLIED:
739                 labels.push_back("alpha[postmult]");
740                 break;
741         default:
742                 break;
743         }
744
745         return labels;
746 }
747
748 void EffectChain::output_dot_edge(FILE *fp,
749                                   const string &from_node_id,
750                                   const string &to_node_id,
751                                   const vector<string> &labels)
752 {
753         if (labels.empty()) {
754                 fprintf(fp, "  %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
755         } else {
756                 string label = labels[0];
757                 for (unsigned k = 1; k < labels.size(); ++k) {
758                         label += ", " + labels[k];
759                 }
760                 fprintf(fp, "  %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
761         }
762 }
763
764 void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
765 {
766         unsigned scaled_width, scaled_height;
767
768         if (float(width) * aspect_denom >= float(height) * aspect_nom) {
769                 // Same aspect, or W/H > aspect (image is wider than the frame).
770                 // In either case, keep width, and adjust height.
771                 scaled_width = width;
772                 scaled_height = lrintf(width * aspect_denom / aspect_nom);
773         } else {
774                 // W/H < aspect (image is taller than the frame), so keep height,
775                 // and adjust width.
776                 scaled_width = lrintf(height * aspect_nom / aspect_denom);
777                 scaled_height = height;
778         }
779
780         // We should be consistently larger or smaller then the existing choice,
781         // since we have the same aspect.
782         assert(!(scaled_width < *output_width && scaled_height > *output_height));
783         assert(!(scaled_height < *output_height && scaled_width > *output_width));
784
785         if (scaled_width >= *output_width && scaled_height >= *output_height) {
786                 *output_width = scaled_width;
787                 *output_height = scaled_height;
788         }
789 }
790
791 // Propagate input texture sizes throughout, and inform effects downstream.
792 // (Like a lot of other code, we depend on effects being in topological order.)
793 void EffectChain::inform_input_sizes(Phase *phase)
794 {
795         // All effects that have a defined size (inputs and RTT inputs)
796         // get that. Reset all others.
797         for (unsigned i = 0; i < phase->effects.size(); ++i) {
798                 Node *node = phase->effects[i];
799                 if (node->effect->num_inputs() == 0) {
800                         Input *input = static_cast<Input *>(node->effect);
801                         node->output_width = input->get_width();
802                         node->output_height = input->get_height();
803                         assert(node->output_width != 0);
804                         assert(node->output_height != 0);
805                 } else {
806                         node->output_width = node->output_height = 0;
807                 }
808         }
809         for (unsigned i = 0; i < phase->inputs.size(); ++i) {
810                 Phase *input = phase->inputs[i];
811                 input->output_node->output_width = input->virtual_output_width;
812                 input->output_node->output_height = input->virtual_output_height;
813                 assert(input->output_node->output_width != 0);
814                 assert(input->output_node->output_height != 0);
815         }
816
817         // Now propagate from the inputs towards the end, and inform as we go.
818         // The rules are simple:
819         //
820         //   1. Don't touch effects that already have given sizes (ie., inputs
821         //      or effects that change the output size).
822         //   2. If all of your inputs have the same size, that will be your output size.
823         //   3. Otherwise, your output size is 0x0.
824         for (unsigned i = 0; i < phase->effects.size(); ++i) {
825                 Node *node = phase->effects[i];
826                 if (node->effect->num_inputs() == 0) {
827                         continue;
828                 }
829                 unsigned this_output_width = 0;
830                 unsigned this_output_height = 0;
831                 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
832                         Node *input = node->incoming_links[j];
833                         node->effect->inform_input_size(j, input->output_width, input->output_height);
834                         if (j == 0) {
835                                 this_output_width = input->output_width;
836                                 this_output_height = input->output_height;
837                         } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
838                                 // Inputs disagree.
839                                 this_output_width = 0;
840                                 this_output_height = 0;
841                         }
842                 }
843                 if (node->effect->changes_output_size()) {
844                         // We cannot call get_output_size() before we've done inform_input_size()
845                         // on all inputs.
846                         unsigned real_width, real_height;
847                         node->effect->get_output_size(&real_width, &real_height,
848                                                       &node->output_width, &node->output_height);
849                         assert(node->effect->sets_virtual_output_size() ||
850                                (real_width == node->output_width &&
851                                 real_height == node->output_height));
852                 } else {
853                         node->output_width = this_output_width;
854                         node->output_height = this_output_height;
855                 }
856         }
857 }
858
859 // Note: You should call inform_input_sizes() before this, as the last effect's
860 // desired output size might change based on the inputs.
861 void EffectChain::find_output_size(Phase *phase)
862 {
863         Node *output_node = phase->effects.back();
864
865         // If the last effect explicitly sets an output size, use that.
866         if (output_node->effect->changes_output_size()) {
867                 output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
868                                                      &phase->virtual_output_width, &phase->virtual_output_height);
869                 assert(output_node->effect->sets_virtual_output_size() ||
870                        (phase->output_width == phase->virtual_output_width &&
871                         phase->output_height == phase->virtual_output_height));
872                 return;
873         }
874
875         // If all effects have the same size, use that.
876         unsigned output_width = 0, output_height = 0;
877         bool all_inputs_same_size = true;
878
879         for (unsigned i = 0; i < phase->inputs.size(); ++i) {
880                 Phase *input = phase->inputs[i];
881                 assert(input->output_width != 0);
882                 assert(input->output_height != 0);
883                 if (output_width == 0 && output_height == 0) {
884                         output_width = input->virtual_output_width;
885                         output_height = input->virtual_output_height;
886                 } else if (output_width != input->virtual_output_width ||
887                            output_height != input->virtual_output_height) {
888                         all_inputs_same_size = false;
889                 }
890         }
891         for (unsigned i = 0; i < phase->effects.size(); ++i) {
892                 Effect *effect = phase->effects[i]->effect;
893                 if (effect->num_inputs() != 0) {
894                         continue;
895                 }
896
897                 Input *input = static_cast<Input *>(effect);
898                 if (output_width == 0 && output_height == 0) {
899                         output_width = input->get_width();
900                         output_height = input->get_height();
901                 } else if (output_width != input->get_width() ||
902                            output_height != input->get_height()) {
903                         all_inputs_same_size = false;
904                 }
905         }
906
907         if (all_inputs_same_size) {
908                 assert(output_width != 0);
909                 assert(output_height != 0);
910                 phase->virtual_output_width = phase->output_width = output_width;
911                 phase->virtual_output_height = phase->output_height = output_height;
912                 return;
913         }
914
915         // If not, fit all the inputs into the current aspect, and select the largest one. 
916         output_width = 0;
917         output_height = 0;
918         for (unsigned i = 0; i < phase->inputs.size(); ++i) {
919                 Phase *input = phase->inputs[i];
920                 assert(input->output_width != 0);
921                 assert(input->output_height != 0);
922                 size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
923         }
924         for (unsigned i = 0; i < phase->effects.size(); ++i) {
925                 Effect *effect = phase->effects[i]->effect;
926                 if (effect->num_inputs() != 0) {
927                         continue;
928                 }
929
930                 Input *input = static_cast<Input *>(effect);
931                 size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
932         }
933         assert(output_width != 0);
934         assert(output_height != 0);
935         phase->virtual_output_width = phase->output_width = output_width;
936         phase->virtual_output_height = phase->output_height = output_height;
937 }
938
939 void EffectChain::sort_all_nodes_topologically()
940 {
941         nodes = topological_sort(nodes);
942 }
943
944 vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
945 {
946         set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
947         vector<Node *> sorted_list;
948         for (unsigned i = 0; i < nodes.size(); ++i) {
949                 topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
950         }
951         reverse(sorted_list.begin(), sorted_list.end());
952         return sorted_list;
953 }
954
955 void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
956 {
957         if (nodes_left_to_visit->count(node) == 0) {
958                 return;
959         }
960         nodes_left_to_visit->erase(node);
961         for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
962                 topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
963         }
964         sorted_list->push_back(node);
965 }
966
967 void EffectChain::find_color_spaces_for_inputs()
968 {
969         for (unsigned i = 0; i < nodes.size(); ++i) {
970                 Node *node = nodes[i];
971                 if (node->disabled) {
972                         continue;
973                 }
974                 if (node->incoming_links.size() == 0) {
975                         Input *input = static_cast<Input *>(node->effect);
976                         node->output_color_space = input->get_color_space();
977                         node->output_gamma_curve = input->get_gamma_curve();
978
979                         Effect::AlphaHandling alpha_handling = input->alpha_handling();
980                         switch (alpha_handling) {
981                         case Effect::OUTPUT_BLANK_ALPHA:
982                                 node->output_alpha_type = ALPHA_BLANK;
983                                 break;
984                         case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
985                                 node->output_alpha_type = ALPHA_PREMULTIPLIED;
986                                 break;
987                         case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
988                                 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
989                                 break;
990                         case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
991                         case Effect::DONT_CARE_ALPHA_TYPE:
992                         default:
993                                 assert(false);
994                         }
995
996                         if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
997                                 assert(node->output_gamma_curve == GAMMA_LINEAR);
998                         }
999                 }
1000         }
1001 }
1002
1003 // Propagate gamma and color space information as far as we can in the graph.
1004 // The rules are simple: Anything where all the inputs agree, get that as
1005 // output as well. Anything else keeps having *_INVALID.
1006 void EffectChain::propagate_gamma_and_color_space()
1007 {
1008         // We depend on going through the nodes in order.
1009         sort_all_nodes_topologically();
1010
1011         for (unsigned i = 0; i < nodes.size(); ++i) {
1012                 Node *node = nodes[i];
1013                 if (node->disabled) {
1014                         continue;
1015                 }
1016                 assert(node->incoming_links.size() == node->effect->num_inputs());
1017                 if (node->incoming_links.size() == 0) {
1018                         assert(node->output_color_space != COLORSPACE_INVALID);
1019                         assert(node->output_gamma_curve != GAMMA_INVALID);
1020                         continue;
1021                 }
1022
1023                 Colorspace color_space = node->incoming_links[0]->output_color_space;
1024                 GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
1025                 for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
1026                         if (node->incoming_links[j]->output_color_space != color_space) {
1027                                 color_space = COLORSPACE_INVALID;
1028                         }
1029                         if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
1030                                 gamma_curve = GAMMA_INVALID;
1031                         }
1032                 }
1033
1034                 // The conversion effects already have their outputs set correctly,
1035                 // so leave them alone.
1036                 if (node->effect->effect_type_id() != "ColorspaceConversionEffect") {
1037                         node->output_color_space = color_space;
1038                 }               
1039                 if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
1040                     node->effect->effect_type_id() != "GammaExpansionEffect") {
1041                         node->output_gamma_curve = gamma_curve;
1042                 }               
1043         }
1044 }
1045
1046 // Propagate alpha information as far as we can in the graph.
1047 // Similar to propagate_gamma_and_color_space().
1048 void EffectChain::propagate_alpha()
1049 {
1050         // We depend on going through the nodes in order.
1051         sort_all_nodes_topologically();
1052
1053         for (unsigned i = 0; i < nodes.size(); ++i) {
1054                 Node *node = nodes[i];
1055                 if (node->disabled) {
1056                         continue;
1057                 }
1058                 assert(node->incoming_links.size() == node->effect->num_inputs());
1059                 if (node->incoming_links.size() == 0) {
1060                         assert(node->output_alpha_type != ALPHA_INVALID);
1061                         continue;
1062                 }
1063
1064                 // The alpha multiplication/division effects are special cases.
1065                 if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
1066                         assert(node->incoming_links.size() == 1);
1067                         assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
1068                         node->output_alpha_type = ALPHA_PREMULTIPLIED;
1069                         continue;
1070                 }
1071                 if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
1072                         assert(node->incoming_links.size() == 1);
1073                         assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1074                         node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1075                         continue;
1076                 }
1077
1078                 // GammaCompressionEffect and GammaExpansionEffect are also a special case,
1079                 // because they are the only one that _need_ postmultiplied alpha.
1080                 if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
1081                     node->effect->effect_type_id() == "GammaExpansionEffect") {
1082                         assert(node->incoming_links.size() == 1);
1083                         if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
1084                                 node->output_alpha_type = ALPHA_BLANK;
1085                         } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
1086                                 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1087                         } else {
1088                                 node->output_alpha_type = ALPHA_INVALID;
1089                         }
1090                         continue;
1091                 }
1092
1093                 // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
1094                 // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
1095                 // taken care of above. Rationale: Even if you could imagine
1096                 // e.g. an effect that took in an image and set alpha=1.0
1097                 // unconditionally, it wouldn't make any sense to have it as
1098                 // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
1099                 // got its input pre- or postmultiplied, so it wouldn't know
1100                 // whether to divide away the old alpha or not.
1101                 Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
1102                 assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1103                        alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
1104                        alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1105
1106                 // If the node has multiple inputs, check that they are all valid and
1107                 // the same.
1108                 bool any_invalid = false;
1109                 bool any_premultiplied = false;
1110                 bool any_postmultiplied = false;
1111
1112                 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1113                         switch (node->incoming_links[j]->output_alpha_type) {
1114                         case ALPHA_INVALID:
1115                                 any_invalid = true;
1116                                 break;
1117                         case ALPHA_BLANK:
1118                                 // Blank is good as both pre- and postmultiplied alpha,
1119                                 // so just ignore it.
1120                                 break;
1121                         case ALPHA_PREMULTIPLIED:
1122                                 any_premultiplied = true;
1123                                 break;
1124                         case ALPHA_POSTMULTIPLIED:
1125                                 any_postmultiplied = true;
1126                                 break;
1127                         default:
1128                                 assert(false);
1129                         }
1130                 }
1131
1132                 if (any_invalid) {
1133                         node->output_alpha_type = ALPHA_INVALID;
1134                         continue;
1135                 }
1136
1137                 // Inputs must be of the same type.
1138                 if (any_premultiplied && any_postmultiplied) {
1139                         node->output_alpha_type = ALPHA_INVALID;
1140                         continue;
1141                 }
1142
1143                 if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1144                     alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1145                         // If the effect has asked for premultiplied alpha, check that it has got it.
1146                         if (any_postmultiplied) {
1147                                 node->output_alpha_type = ALPHA_INVALID;
1148                         } else if (!any_premultiplied &&
1149                                    alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1150                                 // Blank input alpha, and the effect preserves blank alpha.
1151                                 node->output_alpha_type = ALPHA_BLANK;
1152                         } else {
1153                                 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1154                         }
1155                 } else {
1156                         // OK, all inputs are the same, and this effect is not going
1157                         // to change it.
1158                         assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1159                         if (any_premultiplied) {
1160                                 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1161                         } else if (any_postmultiplied) {
1162                                 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1163                         } else {
1164                                 node->output_alpha_type = ALPHA_BLANK;
1165                         }
1166                 }
1167         }
1168 }
1169
1170 bool EffectChain::node_needs_colorspace_fix(Node *node)
1171 {
1172         if (node->disabled) {
1173                 return false;
1174         }
1175         if (node->effect->num_inputs() == 0) {
1176                 return false;
1177         }
1178
1179         // propagate_gamma_and_color_space() has already set our output
1180         // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
1181         if (node->output_color_space == COLORSPACE_INVALID) {
1182                 return true;
1183         }
1184         return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
1185 }
1186
1187 // Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
1188 // the graph. Our strategy is not always optimal, but quite simple:
1189 // Find an effect that's as early as possible where the inputs are of
1190 // unacceptable colorspaces (that is, either different, or, if the effect only
1191 // wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
1192 // propagate the information anew, and repeat until there are no more such
1193 // effects.
1194 void EffectChain::fix_internal_color_spaces()
1195 {
1196         unsigned colorspace_propagation_pass = 0;
1197         bool found_any;
1198         do {
1199                 found_any = false;
1200                 for (unsigned i = 0; i < nodes.size(); ++i) {
1201                         Node *node = nodes[i];
1202                         if (!node_needs_colorspace_fix(node)) {
1203                                 continue;
1204                         }
1205
1206                         // Go through each input that is not sRGB, and insert
1207                         // a colorspace conversion after it.
1208                         for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1209                                 Node *input = node->incoming_links[j];
1210                                 assert(input->output_color_space != COLORSPACE_INVALID);
1211                                 if (input->output_color_space == COLORSPACE_sRGB) {
1212                                         continue;
1213                                 }
1214                                 Node *conversion = add_node(new ColorspaceConversionEffect());
1215                                 CHECK(conversion->effect->set_int("source_space", input->output_color_space));
1216                                 CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
1217                                 conversion->output_color_space = COLORSPACE_sRGB;
1218                                 replace_sender(input, conversion);
1219                                 connect_nodes(input, conversion);
1220                         }
1221
1222                         // Re-sort topologically, and propagate the new information.
1223                         propagate_gamma_and_color_space();
1224                         
1225                         found_any = true;
1226                         break;
1227                 }
1228         
1229                 char filename[256];
1230                 sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
1231                 output_dot(filename);
1232                 assert(colorspace_propagation_pass < 100);
1233         } while (found_any);
1234
1235         for (unsigned i = 0; i < nodes.size(); ++i) {
1236                 Node *node = nodes[i];
1237                 if (node->disabled) {
1238                         continue;
1239                 }
1240                 assert(node->output_color_space != COLORSPACE_INVALID);
1241         }
1242 }
1243
1244 bool EffectChain::node_needs_alpha_fix(Node *node)
1245 {
1246         if (node->disabled) {
1247                 return false;
1248         }
1249
1250         // propagate_alpha() has already set our output to ALPHA_INVALID if the
1251         // inputs differ or we are otherwise in mismatch, so we can rely on that.
1252         return (node->output_alpha_type == ALPHA_INVALID);
1253 }
1254
1255 // Fix up alpha so that there are no ALPHA_INVALID nodes left in
1256 // the graph. Similar to fix_internal_color_spaces().
1257 void EffectChain::fix_internal_alpha(unsigned step)
1258 {
1259         unsigned alpha_propagation_pass = 0;
1260         bool found_any;
1261         do {
1262                 found_any = false;
1263                 for (unsigned i = 0; i < nodes.size(); ++i) {
1264                         Node *node = nodes[i];
1265                         if (!node_needs_alpha_fix(node)) {
1266                                 continue;
1267                         }
1268
1269                         // If we need to fix up GammaExpansionEffect, then clearly something
1270                         // is wrong, since the combination of premultiplied alpha and nonlinear inputs
1271                         // is meaningless.
1272                         assert(node->effect->effect_type_id() != "GammaExpansionEffect");
1273
1274                         AlphaType desired_type = ALPHA_PREMULTIPLIED;
1275
1276                         // GammaCompressionEffect is special; it needs postmultiplied alpha.
1277                         if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1278                                 assert(node->incoming_links.size() == 1);
1279                                 assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1280                                 desired_type = ALPHA_POSTMULTIPLIED;
1281                         }
1282
1283                         // Go through each input that is not premultiplied alpha, and insert
1284                         // a conversion before it.
1285                         for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1286                                 Node *input = node->incoming_links[j];
1287                                 assert(input->output_alpha_type != ALPHA_INVALID);
1288                                 if (input->output_alpha_type == desired_type ||
1289                                     input->output_alpha_type == ALPHA_BLANK) {
1290                                         continue;
1291                                 }
1292                                 Node *conversion;
1293                                 if (desired_type == ALPHA_PREMULTIPLIED) {
1294                                         conversion = add_node(new AlphaMultiplicationEffect());
1295                                 } else {
1296                                         conversion = add_node(new AlphaDivisionEffect());
1297                                 }
1298                                 conversion->output_alpha_type = desired_type;
1299                                 replace_sender(input, conversion);
1300                                 connect_nodes(input, conversion);
1301                         }
1302
1303                         // Re-sort topologically, and propagate the new information.
1304                         propagate_gamma_and_color_space();
1305                         propagate_alpha();
1306                         
1307                         found_any = true;
1308                         break;
1309                 }
1310         
1311                 char filename[256];
1312                 sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
1313                 output_dot(filename);
1314                 assert(alpha_propagation_pass < 100);
1315         } while (found_any);
1316
1317         for (unsigned i = 0; i < nodes.size(); ++i) {
1318                 Node *node = nodes[i];
1319                 if (node->disabled) {
1320                         continue;
1321                 }
1322                 assert(node->output_alpha_type != ALPHA_INVALID);
1323         }
1324 }
1325
1326 // Make so that the output is in the desired color space.
1327 void EffectChain::fix_output_color_space()
1328 {
1329         Node *output = find_output_node();
1330         if (output->output_color_space != output_format.color_space) {
1331                 Node *conversion = add_node(new ColorspaceConversionEffect());
1332                 CHECK(conversion->effect->set_int("source_space", output->output_color_space));
1333                 CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
1334                 conversion->output_color_space = output_format.color_space;
1335                 connect_nodes(output, conversion);
1336                 propagate_alpha();
1337                 propagate_gamma_and_color_space();
1338         }
1339 }
1340
1341 // Make so that the output is in the desired pre-/postmultiplication alpha state.
1342 void EffectChain::fix_output_alpha()
1343 {
1344         Node *output = find_output_node();
1345         assert(output->output_alpha_type != ALPHA_INVALID);
1346         if (output->output_alpha_type == ALPHA_BLANK) {
1347                 // No alpha output, so we don't care.
1348                 return;
1349         }
1350         if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
1351             output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
1352                 Node *conversion = add_node(new AlphaDivisionEffect());
1353                 connect_nodes(output, conversion);
1354                 propagate_alpha();
1355                 propagate_gamma_and_color_space();
1356         }
1357         if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
1358             output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
1359                 Node *conversion = add_node(new AlphaMultiplicationEffect());
1360                 connect_nodes(output, conversion);
1361                 propagate_alpha();
1362                 propagate_gamma_and_color_space();
1363         }
1364 }
1365
1366 bool EffectChain::node_needs_gamma_fix(Node *node)
1367 {
1368         if (node->disabled) {
1369                 return false;
1370         }
1371
1372         // Small hack since the output is not an explicit node:
1373         // If we are the last node and our output is in the wrong
1374         // space compared to EffectChain's output, we need to fix it.
1375         // This will only take us to linear, but fix_output_gamma()
1376         // will come and take us to the desired output gamma
1377         // if it is needed.
1378         //
1379         // This needs to be before everything else, since it could
1380         // even apply to inputs (if they are the only effect).
1381         if (node->outgoing_links.empty() &&
1382             node->output_gamma_curve != output_format.gamma_curve &&
1383             node->output_gamma_curve != GAMMA_LINEAR) {
1384                 return true;
1385         }
1386
1387         if (node->effect->num_inputs() == 0) {
1388                 return false;
1389         }
1390
1391         // propagate_gamma_and_color_space() has already set our output
1392         // to GAMMA_INVALID if the inputs differ, so we can rely on that,
1393         // except for GammaCompressionEffect.
1394         if (node->output_gamma_curve == GAMMA_INVALID) {
1395                 return true;
1396         }
1397         if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1398                 assert(node->incoming_links.size() == 1);
1399                 return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
1400         }
1401
1402         return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
1403 }
1404
1405 // Very similar to fix_internal_color_spaces(), but for gamma.
1406 // There is one difference, though; before we start adding conversion nodes,
1407 // we see if we can get anything out of asking the sources to deliver
1408 // linear gamma directly. fix_internal_gamma_by_asking_inputs()
1409 // does that part, while fix_internal_gamma_by_inserting_nodes()
1410 // inserts nodes as needed afterwards.
1411 void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
1412 {
1413         unsigned gamma_propagation_pass = 0;
1414         bool found_any;
1415         do {
1416                 found_any = false;
1417                 for (unsigned i = 0; i < nodes.size(); ++i) {
1418                         Node *node = nodes[i];
1419                         if (!node_needs_gamma_fix(node)) {
1420                                 continue;
1421                         }
1422
1423                         // See if all inputs can give us linear gamma. If not, leave it.
1424                         vector<Node *> nonlinear_inputs;
1425                         find_all_nonlinear_inputs(node, &nonlinear_inputs);
1426                         assert(!nonlinear_inputs.empty());
1427
1428                         bool all_ok = true;
1429                         for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1430                                 Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
1431                                 all_ok &= input->can_output_linear_gamma();
1432                         }
1433
1434                         if (!all_ok) {
1435                                 continue;
1436                         }
1437
1438                         for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1439                                 CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1));
1440                                 nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
1441                         }
1442
1443                         // Re-sort topologically, and propagate the new information.
1444                         propagate_gamma_and_color_space();
1445                         
1446                         found_any = true;
1447                         break;
1448                 }
1449         
1450                 char filename[256];
1451                 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1452                 output_dot(filename);
1453                 assert(gamma_propagation_pass < 100);
1454         } while (found_any);
1455 }
1456
1457 void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
1458 {
1459         unsigned gamma_propagation_pass = 0;
1460         bool found_any;
1461         do {
1462                 found_any = false;
1463                 for (unsigned i = 0; i < nodes.size(); ++i) {
1464                         Node *node = nodes[i];
1465                         if (!node_needs_gamma_fix(node)) {
1466                                 continue;
1467                         }
1468
1469                         // Special case: We could be an input and still be asked to
1470                         // fix our gamma; if so, we should be the only node
1471                         // (as node_needs_gamma_fix() would only return true in
1472                         // for an input in that case). That means we should insert
1473                         // a conversion node _after_ ourselves.
1474                         if (node->incoming_links.empty()) {
1475                                 assert(node->outgoing_links.empty());
1476                                 Node *conversion = add_node(new GammaExpansionEffect());
1477                                 CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve));
1478                                 conversion->output_gamma_curve = GAMMA_LINEAR;
1479                                 connect_nodes(node, conversion);
1480                         }
1481
1482                         // If not, go through each input that is not linear gamma,
1483                         // and insert a gamma conversion after it.
1484                         for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1485                                 Node *input = node->incoming_links[j];
1486                                 assert(input->output_gamma_curve != GAMMA_INVALID);
1487                                 if (input->output_gamma_curve == GAMMA_LINEAR) {
1488                                         continue;
1489                                 }
1490                                 Node *conversion = add_node(new GammaExpansionEffect());
1491                                 CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
1492                                 conversion->output_gamma_curve = GAMMA_LINEAR;
1493                                 replace_sender(input, conversion);
1494                                 connect_nodes(input, conversion);
1495                         }
1496
1497                         // Re-sort topologically, and propagate the new information.
1498                         propagate_alpha();
1499                         propagate_gamma_and_color_space();
1500                         
1501                         found_any = true;
1502                         break;
1503                 }
1504         
1505                 char filename[256];
1506                 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1507                 output_dot(filename);
1508                 assert(gamma_propagation_pass < 100);
1509         } while (found_any);
1510
1511         for (unsigned i = 0; i < nodes.size(); ++i) {
1512                 Node *node = nodes[i];
1513                 if (node->disabled) {
1514                         continue;
1515                 }
1516                 assert(node->output_gamma_curve != GAMMA_INVALID);
1517         }
1518 }
1519
1520 // Make so that the output is in the desired gamma.
1521 // Note that this assumes linear input gamma, so it might create the need
1522 // for another pass of fix_internal_gamma().
1523 void EffectChain::fix_output_gamma()
1524 {
1525         Node *output = find_output_node();
1526         if (output->output_gamma_curve != output_format.gamma_curve) {
1527                 Node *conversion = add_node(new GammaCompressionEffect());
1528                 CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve));
1529                 conversion->output_gamma_curve = output_format.gamma_curve;
1530                 connect_nodes(output, conversion);
1531         }
1532 }
1533
1534 // If the user has requested Y'CbCr output, we need to do this conversion
1535 // _after_ GammaCompressionEffect etc., but before dither (see below).
1536 // This is because Y'CbCr, with the exception of a special optional mode
1537 // in Rec. 2020 (which we currently don't support), is defined to work on
1538 // gamma-encoded data.
1539 void EffectChain::add_ycbcr_conversion_if_needed()
1540 {
1541         assert(output_color_rgba || output_color_ycbcr);
1542         if (!output_color_ycbcr) {
1543                 return;
1544         }
1545         Node *output = find_output_node();
1546         Node *ycbcr = add_node(new YCbCrConversionEffect(output_ycbcr_format));
1547         connect_nodes(output, ycbcr);
1548 }
1549         
1550 // If the user has requested dither, add a DitherEffect right at the end
1551 // (after GammaCompressionEffect etc.). This needs to be done after everything else,
1552 // since dither is about the only effect that can _not_ be done in linear space.
1553 void EffectChain::add_dither_if_needed()
1554 {
1555         if (num_dither_bits == 0) {
1556                 return;
1557         }
1558         Node *output = find_output_node();
1559         Node *dither = add_node(new DitherEffect());
1560         CHECK(dither->effect->set_int("num_bits", num_dither_bits));
1561         connect_nodes(output, dither);
1562
1563         dither_effect = dither->effect;
1564 }
1565
1566 // Find the output node. This is, simply, one that has no outgoing links.
1567 // If there are multiple ones, the graph is malformed (we do not support
1568 // multiple outputs right now).
1569 Node *EffectChain::find_output_node()
1570 {
1571         vector<Node *> output_nodes;
1572         for (unsigned i = 0; i < nodes.size(); ++i) {
1573                 Node *node = nodes[i];
1574                 if (node->disabled) {
1575                         continue;
1576                 }
1577                 if (node->outgoing_links.empty()) {
1578                         output_nodes.push_back(node);
1579                 }
1580         }
1581         assert(output_nodes.size() == 1);
1582         return output_nodes[0];
1583 }
1584
1585 void EffectChain::finalize()
1586 {
1587         // Output the graph as it is before we do any conversions on it.
1588         output_dot("step0-start.dot");
1589
1590         // Give each effect in turn a chance to rewrite its own part of the graph.
1591         // Note that if more effects are added as part of this, they will be
1592         // picked up as part of the same for loop, since they are added at the end.
1593         for (unsigned i = 0; i < nodes.size(); ++i) {
1594                 nodes[i]->effect->rewrite_graph(this, nodes[i]);
1595         }
1596         output_dot("step1-rewritten.dot");
1597
1598         find_color_spaces_for_inputs();
1599         output_dot("step2-input-colorspace.dot");
1600
1601         propagate_alpha();
1602         output_dot("step3-propagated-alpha.dot");
1603
1604         propagate_gamma_and_color_space();
1605         output_dot("step4-propagated-all.dot");
1606
1607         fix_internal_color_spaces();
1608         fix_internal_alpha(6);
1609         fix_output_color_space();
1610         output_dot("step7-output-colorspacefix.dot");
1611         fix_output_alpha();
1612         output_dot("step8-output-alphafix.dot");
1613
1614         // Note that we need to fix gamma after colorspace conversion,
1615         // because colorspace conversions might create needs for gamma conversions.
1616         // Also, we need to run an extra pass of fix_internal_gamma() after 
1617         // fixing the output gamma, as we only have conversions to/from linear,
1618         // and fix_internal_alpha() since GammaCompressionEffect needs
1619         // postmultiplied input.
1620         fix_internal_gamma_by_asking_inputs(9);
1621         fix_internal_gamma_by_inserting_nodes(10);
1622         fix_output_gamma();
1623         output_dot("step11-output-gammafix.dot");
1624         propagate_alpha();
1625         output_dot("step12-output-alpha-propagated.dot");
1626         fix_internal_alpha(13);
1627         output_dot("step14-output-alpha-fixed.dot");
1628         fix_internal_gamma_by_asking_inputs(15);
1629         fix_internal_gamma_by_inserting_nodes(16);
1630
1631         output_dot("step17-before-ycbcr.dot");
1632         add_ycbcr_conversion_if_needed();
1633
1634         output_dot("step18-before-dither.dot");
1635         add_dither_if_needed();
1636
1637         output_dot("step19-final.dot");
1638         
1639         // Construct all needed GLSL programs, starting at the output.
1640         // We need to keep track of which effects have already been computed,
1641         // as an effect with multiple users could otherwise be calculated
1642         // multiple times.
1643         map<Node *, Phase *> completed_effects;
1644         construct_phase(find_output_node(), &completed_effects);
1645
1646         output_dot("step20-split-to-phases.dot");
1647
1648         assert(phases[0]->inputs.empty());
1649         
1650         finalized = true;
1651 }
1652
1653 void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
1654 {
1655         assert(finalized);
1656
1657         // This needs to be set anew, in case we are coming from a different context
1658         // from when we initialized.
1659         check_error();
1660         glDisable(GL_DITHER);
1661         check_error();
1662
1663         // Save original viewport.
1664         GLuint x = 0, y = 0;
1665
1666         if (width == 0 && height == 0) {
1667                 GLint viewport[4];
1668                 glGetIntegerv(GL_VIEWPORT, viewport);
1669                 x = viewport[0];
1670                 y = viewport[1];
1671                 width = viewport[2];
1672                 height = viewport[3];
1673         }
1674
1675         // Basic state.
1676         check_error();
1677         glDisable(GL_BLEND);
1678         check_error();
1679         glDisable(GL_DEPTH_TEST);
1680         check_error();
1681         glDepthMask(GL_FALSE);
1682         check_error();
1683
1684         // Generate a VAO. All the phases should have exactly the same vertex attributes,
1685         // so it's safe to reuse this.
1686         float vertices[] = {
1687                 0.0f, 2.0f,
1688                 0.0f, 0.0f,
1689                 2.0f, 0.0f
1690         };
1691
1692         GLuint vao;
1693         glGenVertexArrays(1, &vao);
1694         check_error();
1695         glBindVertexArray(vao);
1696         check_error();
1697
1698         GLuint position_vbo = fill_vertex_attribute(phases[0]->glsl_program_num, "position", 2, GL_FLOAT, sizeof(vertices), vertices);
1699         GLuint texcoord_vbo = fill_vertex_attribute(phases[0]->glsl_program_num, "texcoord", 2, GL_FLOAT, sizeof(vertices), vertices);  // Same as vertices.
1700
1701         set<Phase *> generated_mipmaps;
1702
1703         // We choose the simplest option of having one texture per output,
1704         // since otherwise this turns into an (albeit simple) register allocation problem.
1705         map<Phase *, GLuint> output_textures;
1706
1707         for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1708                 Phase *phase = phases[phase_num];
1709
1710                 if (do_phase_timing) {
1711                         glBeginQuery(GL_TIME_ELAPSED, phase->timer_query_object);
1712                 }
1713                 if (phase_num == phases.size() - 1) {
1714                         // Last phase goes to the output the user specified.
1715                         glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
1716                         check_error();
1717                         GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
1718                         assert(status == GL_FRAMEBUFFER_COMPLETE);
1719                         glViewport(x, y, width, height);
1720                         if (dither_effect != NULL) {
1721                                 CHECK(dither_effect->set_int("output_width", width));
1722                                 CHECK(dither_effect->set_int("output_height", height));
1723                         }
1724                 }
1725                 execute_phase(phase, phase_num == phases.size() - 1, &output_textures, &generated_mipmaps);
1726                 if (do_phase_timing) {
1727                         glEndQuery(GL_TIME_ELAPSED);
1728                 }
1729         }
1730
1731         for (map<Phase *, GLuint>::const_iterator texture_it = output_textures.begin();
1732              texture_it != output_textures.end();
1733              ++texture_it) {
1734                 resource_pool->release_2d_texture(texture_it->second);
1735         }
1736
1737         glBindFramebuffer(GL_FRAMEBUFFER, 0);
1738         check_error();
1739         glUseProgram(0);
1740         check_error();
1741
1742         cleanup_vertex_attribute(phases[0]->glsl_program_num, "position", position_vbo);
1743         cleanup_vertex_attribute(phases[0]->glsl_program_num, "texcoord", texcoord_vbo);
1744
1745         glDeleteVertexArrays(1, &vao);
1746         check_error();
1747
1748         if (do_phase_timing) {
1749                 // Get back the timer queries.
1750                 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1751                         Phase *phase = phases[phase_num];
1752                         GLint available = 0;
1753                         while (!available) {
1754                                 glGetQueryObjectiv(phase->timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
1755                         }
1756                         GLuint64 time_elapsed;
1757                         glGetQueryObjectui64v(phase->timer_query_object, GL_QUERY_RESULT, &time_elapsed);
1758                         phase->time_elapsed_ns += time_elapsed;
1759                         ++phase->num_measured_iterations;
1760                 }
1761         }
1762 }
1763
1764 void EffectChain::enable_phase_timing(bool enable)
1765 {
1766         if (enable) {
1767                 assert(movit_timer_queries_supported);
1768         }
1769         this->do_phase_timing = enable;
1770 }
1771
1772 void EffectChain::reset_phase_timing()
1773 {
1774         for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1775                 Phase *phase = phases[phase_num];
1776                 phase->time_elapsed_ns = 0;
1777                 phase->num_measured_iterations = 0;
1778         }
1779 }
1780
1781 void EffectChain::print_phase_timing()
1782 {
1783         double total_time_ms = 0.0;
1784         for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1785                 Phase *phase = phases[phase_num];
1786                 double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
1787                 printf("Phase %d: %5.1f ms  [", phase_num, avg_time_ms);
1788                 for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
1789                         if (effect_num != 0) {
1790                                 printf(", ");
1791                         }
1792                         printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
1793                 }
1794                 printf("]\n");
1795                 total_time_ms += avg_time_ms;
1796         }
1797         printf("Total:   %5.1f ms\n", total_time_ms);
1798 }
1799
1800 void EffectChain::execute_phase(Phase *phase, bool last_phase, map<Phase *, GLuint> *output_textures, set<Phase *> *generated_mipmaps)
1801 {
1802         GLuint fbo = 0;
1803
1804         // Find a texture for this phase.
1805         inform_input_sizes(phase);
1806         if (!last_phase) {
1807                 find_output_size(phase);
1808
1809                 GLuint tex_num = resource_pool->create_2d_texture(GL_RGBA16F, phase->output_width, phase->output_height);
1810                 output_textures->insert(make_pair(phase, tex_num));
1811         }
1812
1813         const GLuint glsl_program_num = phase->glsl_program_num;
1814         check_error();
1815         glUseProgram(glsl_program_num);
1816         check_error();
1817
1818         // Set up RTT inputs for this phase.
1819         for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
1820                 glActiveTexture(GL_TEXTURE0 + sampler);
1821                 Phase *input = phase->inputs[sampler];
1822                 input->output_node->bound_sampler_num = sampler;
1823                 glBindTexture(GL_TEXTURE_2D, (*output_textures)[input]);
1824                 check_error();
1825                 if (phase->input_needs_mipmaps && generated_mipmaps->count(input) == 0) {
1826                         glGenerateMipmap(GL_TEXTURE_2D);
1827                         check_error();
1828                         generated_mipmaps->insert(input);
1829                 }
1830                 setup_rtt_sampler(sampler, phase->input_needs_mipmaps);
1831                 phase->input_samplers[sampler] = sampler;  // Bind the sampler to the right uniform.
1832         }
1833
1834         // And now the output. (Already set up for us if it is the last phase.)
1835         if (!last_phase) {
1836                 fbo = resource_pool->create_fbo((*output_textures)[phase]);
1837                 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1838                 glViewport(0, 0, phase->output_width, phase->output_height);
1839         }
1840
1841         // Give the required parameters to all the effects.
1842         unsigned sampler_num = phase->inputs.size();
1843         for (unsigned i = 0; i < phase->effects.size(); ++i) {
1844                 Node *node = phase->effects[i];
1845                 unsigned old_sampler_num = sampler_num;
1846                 node->effect->set_gl_state(glsl_program_num, phase->effect_ids[node], &sampler_num);
1847                 check_error();
1848
1849                 if (node->effect->is_single_texture()) {
1850                         assert(sampler_num - old_sampler_num == 1);
1851                         node->bound_sampler_num = old_sampler_num;
1852                 } else {
1853                         node->bound_sampler_num = -1;
1854                 }
1855         }
1856
1857         // Uniforms need to come after set_gl_state(), since they can be updated
1858         // from there.
1859         setup_uniforms(phase);
1860
1861         glDrawArrays(GL_TRIANGLES, 0, 3);
1862         check_error();
1863
1864         glUseProgram(0);
1865         check_error();
1866
1867         for (unsigned i = 0; i < phase->effects.size(); ++i) {
1868                 Node *node = phase->effects[i];
1869                 node->effect->clear_gl_state();
1870         }
1871
1872         if (!last_phase) {
1873                 resource_pool->release_fbo(fbo);
1874         }
1875 }
1876
1877 void EffectChain::setup_uniforms(Phase *phase)
1878 {
1879         // TODO: Use UBO blocks.
1880         for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
1881                 const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
1882                 if (uniform.location != -1) {
1883                         glUniform1iv(uniform.location, uniform.num_values, uniform.value);
1884                 }
1885         }
1886         for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
1887                 const Uniform<bool> &uniform = phase->uniforms_bool[i];
1888                 assert(uniform.num_values == 1);
1889                 if (uniform.location != -1) {
1890                         glUniform1i(uniform.location, *uniform.value);
1891                 }
1892         }
1893         for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
1894                 const Uniform<int> &uniform = phase->uniforms_int[i];
1895                 if (uniform.location != -1) {
1896                         glUniform1iv(uniform.location, uniform.num_values, uniform.value);
1897                 }
1898         }
1899         for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
1900                 const Uniform<float> &uniform = phase->uniforms_float[i];
1901                 if (uniform.location != -1) {
1902                         glUniform1fv(uniform.location, uniform.num_values, uniform.value);
1903                 }
1904         }
1905         for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
1906                 const Uniform<float> &uniform = phase->uniforms_vec2[i];
1907                 if (uniform.location != -1) {
1908                         glUniform2fv(uniform.location, uniform.num_values, uniform.value);
1909                 }
1910         }
1911         for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
1912                 const Uniform<float> &uniform = phase->uniforms_vec3[i];
1913                 if (uniform.location != -1) {
1914                         glUniform3fv(uniform.location, uniform.num_values, uniform.value);
1915                 }
1916         }
1917         for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
1918                 const Uniform<float> &uniform = phase->uniforms_vec4[i];
1919                 if (uniform.location != -1) {
1920                         glUniform4fv(uniform.location, uniform.num_values, uniform.value);
1921                 }
1922         }
1923         for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
1924                 const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
1925                 assert(uniform.num_values == 1);
1926                 if (uniform.location != -1) {
1927                         // Convert to float (GLSL has no double matrices).
1928                         float matrixf[9];
1929                         for (unsigned y = 0; y < 3; ++y) {
1930                                 for (unsigned x = 0; x < 3; ++x) {
1931                                         matrixf[y + x * 3] = (*uniform.value)(y, x);
1932                                 }
1933                         }
1934                         glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
1935                 }
1936         }
1937 }
1938
1939 void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
1940 {
1941         glActiveTexture(GL_TEXTURE0 + sampler_num);
1942         check_error();
1943         if (use_mipmaps) {
1944                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
1945                 check_error();
1946         } else {
1947                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1948                 check_error();
1949         }
1950         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1951         check_error();
1952         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1953         check_error();
1954 }
1955
1956 }  // namespace movit