1 #define GL_GLEXT_PROTOTYPES 1
14 #include "effect_chain.h"
15 #include "gamma_expansion_effect.h"
16 #include "gamma_compression_effect.h"
17 #include "colorspace_conversion_effect.h"
21 EffectChain::EffectChain(float aspect_nom, float aspect_denom)
22 : aspect_nom(aspect_nom),
23 aspect_denom(aspect_denom),
26 Input *EffectChain::add_input(Input *input)
28 inputs.push_back(input);
30 Node *node = add_node(input);
31 node->output_color_space = input->get_color_space();
32 node->output_gamma_curve = input->get_gamma_curve();
36 void EffectChain::add_output(const ImageFormat &format)
38 output_format = format;
41 Node *EffectChain::add_node(Effect *effect)
44 sprintf(effect_id, "eff%u", (unsigned)nodes.size());
46 Node *node = new Node;
47 node->effect = effect;
48 node->disabled = false;
49 node->effect_id = effect_id;
50 node->output_color_space = COLORSPACE_INVALID;
51 node->output_gamma_curve = GAMMA_INVALID;
53 nodes.push_back(node);
54 node_map[effect] = node;
58 void EffectChain::connect_nodes(Node *sender, Node *receiver)
60 sender->outgoing_links.push_back(receiver);
61 receiver->incoming_links.push_back(sender);
64 void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
66 new_receiver->incoming_links = old_receiver->incoming_links;
67 old_receiver->incoming_links.clear();
69 for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
70 Node *sender = new_receiver->incoming_links[i];
71 for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
72 if (sender->outgoing_links[j] == old_receiver) {
73 sender->outgoing_links[j] = new_receiver;
79 void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
81 new_sender->outgoing_links = old_sender->outgoing_links;
82 old_sender->outgoing_links.clear();
84 for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
85 Node *receiver = new_sender->outgoing_links[i];
86 for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
87 if (receiver->incoming_links[j] == old_sender) {
88 receiver->incoming_links[j] = new_sender;
94 void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
96 for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
97 if (sender->outgoing_links[i] == receiver) {
98 sender->outgoing_links[i] = middle;
99 middle->incoming_links.push_back(sender);
102 for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
103 if (receiver->incoming_links[i] == sender) {
104 receiver->incoming_links[i] = middle;
105 middle->outgoing_links.push_back(receiver);
109 assert(middle->incoming_links.size() == middle->effect->num_inputs());
112 void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *nonlinear_inputs)
114 if (node->output_gamma_curve == GAMMA_LINEAR &&
115 node->effect->effect_type_id() != "GammaCompressionEffect") {
118 if (node->effect->num_inputs() == 0) {
119 nonlinear_inputs->push_back(node);
121 assert(node->effect->num_inputs() == node->incoming_links.size());
122 for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
123 find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
128 Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
130 assert(inputs.size() == effect->num_inputs());
131 Node *node = add_node(effect);
132 for (unsigned i = 0; i < inputs.size(); ++i) {
133 assert(node_map.count(inputs[i]) != 0);
134 connect_nodes(node_map[inputs[i]], node);
139 // GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
140 std::string replace_prefix(const std::string &text, const std::string &prefix)
145 while (start < text.size()) {
146 size_t pos = text.find("PREFIX(", start);
147 if (pos == std::string::npos) {
148 output.append(text.substr(start, std::string::npos));
152 output.append(text.substr(start, pos - start));
153 output.append(prefix);
156 pos += strlen("PREFIX(");
158 // Output stuff until we find the matching ), which we then eat.
160 size_t end_arg_pos = pos;
161 while (end_arg_pos < text.size()) {
162 if (text[end_arg_pos] == '(') {
164 } else if (text[end_arg_pos] == ')') {
172 output.append(text.substr(pos, end_arg_pos - pos));
180 Phase *EffectChain::compile_glsl_program(
181 const std::vector<Node *> &inputs,
182 const std::vector<Node *> &effects)
184 assert(!effects.empty());
186 // Deduplicate the inputs.
187 std::vector<Node *> true_inputs = inputs;
188 std::sort(true_inputs.begin(), true_inputs.end());
189 true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
191 bool input_needs_mipmaps = false;
192 std::string frag_shader = read_file("header.frag");
194 // Create functions for all the texture inputs that we need.
195 for (unsigned i = 0; i < true_inputs.size(); ++i) {
196 Node *input = true_inputs[i];
198 frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
199 frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
200 frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
201 frag_shader += "}\n";
205 for (unsigned i = 0; i < effects.size(); ++i) {
206 Node *node = effects[i];
208 if (node->incoming_links.size() == 1) {
209 frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
211 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
213 sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
219 frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
220 frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
221 frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
222 frag_shader += "#undef PREFIX\n";
223 frag_shader += "#undef FUNCNAME\n";
224 if (node->incoming_links.size() == 1) {
225 frag_shader += "#undef INPUT\n";
227 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
229 sprintf(buf, "#undef INPUT%d\n", j + 1);
235 input_needs_mipmaps |= node->effect->needs_mipmaps();
237 for (unsigned i = 0; i < effects.size(); ++i) {
238 Node *node = effects[i];
239 if (node->effect->num_inputs() == 0) {
240 node->effect->set_int("needs_mipmaps", input_needs_mipmaps);
243 frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
244 frag_shader.append(read_file("footer.frag"));
246 // Output shader to a temporary file, for easier debugging.
247 static int compiled_shader_num = 0;
249 sprintf(filename, "chain-%03d.frag", compiled_shader_num++);
250 FILE *fp = fopen(filename, "w");
255 fprintf(fp, "%s\n", frag_shader.c_str());
258 GLuint glsl_program_num = glCreateProgram();
259 GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
260 GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
261 glAttachShader(glsl_program_num, vs_obj);
263 glAttachShader(glsl_program_num, fs_obj);
265 glLinkProgram(glsl_program_num);
268 Phase *phase = new Phase;
269 phase->glsl_program_num = glsl_program_num;
270 phase->input_needs_mipmaps = input_needs_mipmaps;
271 phase->inputs = true_inputs;
272 phase->effects = effects;
277 // Construct GLSL programs, starting at the given effect and following
278 // the chain from there. We end a program every time we come to an effect
279 // marked as "needs texture bounce", one that is used by multiple other
280 // effects, every time an effect wants to change the output size,
281 // and of course at the end.
283 // We follow a quite simple depth-first search from the output, although
284 // without any explicit recursion.
285 void EffectChain::construct_glsl_programs(Node *output)
287 // Which effects have already been completed in this phase?
288 // We need to keep track of it, as an effect with multiple outputs
289 // could otherwise be calculate multiple times.
290 std::set<Node *> completed_effects;
292 // Effects in the current phase, as well as inputs (outputs from other phases
293 // that we depend on). Note that since we start iterating from the end,
294 // the effect list will be in the reverse order.
295 std::vector<Node *> this_phase_inputs;
296 std::vector<Node *> this_phase_effects;
298 // Effects that we have yet to calculate, but that we know should
299 // be in the current phase.
300 std::stack<Node *> effects_todo_this_phase;
302 // Effects that we have yet to calculate, but that come from other phases.
303 // We delay these until we have this phase done in its entirety,
304 // at which point we pick any of them and start a new phase from that.
305 std::stack<Node *> effects_todo_other_phases;
307 effects_todo_this_phase.push(output);
309 for ( ;; ) { // Termination condition within loop.
310 if (!effects_todo_this_phase.empty()) {
311 // OK, we have more to do this phase.
312 Node *node = effects_todo_this_phase.top();
313 effects_todo_this_phase.pop();
315 // This should currently only happen for effects that are phase outputs,
316 // and we throw those out separately below.
317 assert(completed_effects.count(node) == 0);
319 this_phase_effects.push_back(node);
320 completed_effects.insert(node);
322 // Find all the dependencies of this effect, and add them to the stack.
323 std::vector<Node *> deps = node->incoming_links;
324 assert(node->effect->num_inputs() == deps.size());
325 for (unsigned i = 0; i < deps.size(); ++i) {
326 bool start_new_phase = false;
328 // FIXME: If we sample directly from a texture, we won't need this.
329 if (node->effect->needs_texture_bounce()) {
330 start_new_phase = true;
333 if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) {
334 // More than one effect uses this as the input,
335 // and it is not a texture itself.
336 // The easiest thing to do (and probably also the safest
337 // performance-wise in most cases) is to bounce it to a texture
338 // and then let the next passes read from that.
339 start_new_phase = true;
342 if (deps[i]->effect->changes_output_size()) {
343 start_new_phase = true;
346 if (start_new_phase) {
347 effects_todo_other_phases.push(deps[i]);
348 this_phase_inputs.push_back(deps[i]);
350 effects_todo_this_phase.push(deps[i]);
356 // No more effects to do this phase. Take all the ones we have,
357 // and create a GLSL program for it.
358 if (!this_phase_effects.empty()) {
359 reverse(this_phase_effects.begin(), this_phase_effects.end());
360 phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
361 this_phase_effects.back()->phase = phases.back();
362 this_phase_inputs.clear();
363 this_phase_effects.clear();
365 assert(this_phase_inputs.empty());
366 assert(this_phase_effects.empty());
368 // If we have no effects left, exit.
369 if (effects_todo_other_phases.empty()) {
373 Node *node = effects_todo_other_phases.top();
374 effects_todo_other_phases.pop();
376 if (completed_effects.count(node) == 0) {
377 // Start a new phase, calculating from this effect.
378 effects_todo_this_phase.push(node);
382 // Finally, since the phases are found from the output but must be executed
383 // from the input(s), reverse them, too.
384 std::reverse(phases.begin(), phases.end());
387 void EffectChain::output_dot(const char *filename)
389 FILE *fp = fopen(filename, "w");
395 fprintf(fp, "digraph G {\n");
396 for (unsigned i = 0; i < nodes.size(); ++i) {
397 fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
398 for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
399 std::vector<std::string> labels;
401 if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) {
402 labels.push_back("needs_bounce");
404 if (nodes[i]->effect->changes_output_size()) {
405 labels.push_back("resize");
408 switch (nodes[i]->output_color_space) {
409 case COLORSPACE_INVALID:
410 labels.push_back("spc[invalid]");
412 case COLORSPACE_REC_601_525:
413 labels.push_back("spc[rec601-525]");
415 case COLORSPACE_REC_601_625:
416 labels.push_back("spc[rec601-625]");
422 switch (nodes[i]->output_gamma_curve) {
424 labels.push_back("gamma[invalid]");
427 labels.push_back("gamma[sRGB]");
429 case GAMMA_REC_601: // and GAMMA_REC_709
430 labels.push_back("gamma[rec601/709]");
436 if (labels.empty()) {
437 fprintf(fp, " n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]);
439 std::string label = labels[0];
440 for (unsigned k = 1; k < labels.size(); ++k) {
441 label += ", " + labels[k];
443 fprintf(fp, " n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str());
452 unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height)
454 if (float(width) * aspect_denom >= float(height) * aspect_nom) {
455 // Same aspect, or W/H > aspect (image is wider than the frame).
456 // In either case, keep width.
459 // W/H < aspect (image is taller than the frame), so keep height,
460 // and adjust width correspondingly.
461 return lrintf(height * aspect_nom / aspect_denom);
465 // Propagate input texture sizes throughout, and inform effects downstream.
466 // (Like a lot of other code, we depend on effects being in topological order.)
467 void EffectChain::inform_input_sizes(Phase *phase)
469 // All effects that have a defined size (inputs and RTT inputs)
470 // get that. Reset all others.
471 for (unsigned i = 0; i < phase->effects.size(); ++i) {
472 Node *node = phase->effects[i];
473 if (node->effect->num_inputs() == 0) {
474 Input *input = static_cast<Input *>(node->effect);
475 node->output_width = input->get_width();
476 node->output_height = input->get_height();
477 assert(node->output_width != 0);
478 assert(node->output_height != 0);
480 node->output_width = node->output_height = 0;
483 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
484 Node *input = phase->inputs[i];
485 input->output_width = input->phase->output_width;
486 input->output_height = input->phase->output_height;
487 assert(input->output_width != 0);
488 assert(input->output_height != 0);
491 // Now propagate from the inputs towards the end, and inform as we go.
492 // The rules are simple:
494 // 1. Don't touch effects that already have given sizes (ie., inputs).
495 // 2. If all of your inputs have the same size, that will be your output size.
496 // 3. Otherwise, your output size is 0x0.
497 for (unsigned i = 0; i < phase->effects.size(); ++i) {
498 Node *node = phase->effects[i];
499 if (node->effect->num_inputs() == 0) {
502 unsigned this_output_width = 0;
503 unsigned this_output_height = 0;
504 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
505 Node *input = node->incoming_links[j];
506 node->effect->inform_input_size(j, input->output_width, input->output_height);
508 this_output_width = input->output_width;
509 this_output_height = input->output_height;
510 } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
512 this_output_width = 0;
513 this_output_height = 0;
516 node->output_width = this_output_width;
517 node->output_height = this_output_height;
521 // Note: You should call inform_input_sizes() before this, as the last effect's
522 // desired output size might change based on the inputs.
523 void EffectChain::find_output_size(Phase *phase)
525 Node *output_node = phase->effects.back();
527 // If the last effect explicitly sets an output size, use that.
528 if (output_node->effect->changes_output_size()) {
529 output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
533 // If not, look at the input phases and textures.
534 // We select the largest one (by fit into the current aspect).
535 unsigned best_width = 0;
536 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
537 Node *input = phase->inputs[i];
538 assert(input->phase->output_width != 0);
539 assert(input->phase->output_height != 0);
540 unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height);
541 if (width > best_width) {
545 for (unsigned i = 0; i < phase->effects.size(); ++i) {
546 Effect *effect = phase->effects[i]->effect;
547 if (effect->num_inputs() != 0) {
551 Input *input = static_cast<Input *>(effect);
552 unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height());
553 if (width > best_width) {
557 assert(best_width != 0);
558 phase->output_width = best_width;
559 phase->output_height = best_width * aspect_denom / aspect_nom;
562 void EffectChain::sort_nodes_topologically()
564 std::set<Node *> visited_nodes;
565 std::vector<Node *> sorted_list;
566 for (unsigned i = 0; i < nodes.size(); ++i) {
567 if (nodes[i]->incoming_links.size() == 0) {
568 topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list);
571 reverse(sorted_list.begin(), sorted_list.end());
575 void EffectChain::topological_sort_visit_node(Node *node, std::set<Node *> *visited_nodes, std::vector<Node *> *sorted_list)
577 if (visited_nodes->count(node) != 0) {
580 visited_nodes->insert(node);
581 for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
582 topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list);
584 sorted_list->push_back(node);
587 // Propagate gamma and color space information as far as we can in the graph.
588 // The rules are simple: Anything where all the inputs agree, get that as
589 // output as well. Anything else keeps having *_INVALID.
590 void EffectChain::propagate_gamma_and_color_space()
592 // We depend on going through the nodes in order.
593 sort_nodes_topologically();
595 for (unsigned i = 0; i < nodes.size(); ++i) {
596 Node *node = nodes[i];
597 if (node->disabled) {
600 assert(node->incoming_links.size() == node->effect->num_inputs());
601 if (node->incoming_links.size() == 0) {
602 assert(node->output_color_space != COLORSPACE_INVALID);
603 assert(node->output_gamma_curve != GAMMA_INVALID);
607 ColorSpace color_space = node->incoming_links[0]->output_color_space;
608 GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
609 for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
610 if (node->incoming_links[j]->output_color_space != color_space) {
611 color_space = COLORSPACE_INVALID;
613 if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
614 gamma_curve = GAMMA_INVALID;
618 // The conversion effects already have their outputs set correctly,
619 // so leave them alone.
620 if (node->effect->effect_type_id() != "ColorSpaceConversionEffect") {
621 node->output_color_space = color_space;
623 if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
624 node->effect->effect_type_id() != "GammaExpansionEffect") {
625 node->output_gamma_curve = gamma_curve;
630 bool EffectChain::node_needs_colorspace_fix(Node *node)
632 if (node->disabled) {
635 if (node->effect->num_inputs() == 0) {
639 // propagate_gamma_and_color_space() has already set our output
640 // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
641 if (node->output_color_space == COLORSPACE_INVALID) {
644 return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
647 // Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
648 // the graph. Our strategy is not always optimal, but quite simple:
649 // Find an effect that's as early as possible where the inputs are of
650 // unacceptable colorspaces (that is, either different, or, if the effect only
651 // wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
652 // propagate the information anew, and repeat until there are no more such
654 void EffectChain::fix_internal_color_spaces()
656 unsigned colorspace_propagation_pass = 0;
660 for (unsigned i = 0; i < nodes.size(); ++i) {
661 Node *node = nodes[i];
662 if (!node_needs_colorspace_fix(node)) {
666 // Go through each input that is not sRGB, and insert
667 // a colorspace conversion before it.
668 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
669 Node *input = node->incoming_links[j];
670 assert(input->output_color_space != COLORSPACE_INVALID);
671 if (input->output_color_space == COLORSPACE_sRGB) {
674 Node *conversion = add_node(new ColorSpaceConversionEffect());
675 conversion->effect->set_int("source_space", input->output_color_space);
676 conversion->effect->set_int("destination_space", COLORSPACE_sRGB);
677 conversion->output_color_space = COLORSPACE_sRGB;
678 insert_node_between(input, conversion, node);
681 // Re-sort topologically, and propagate the new information.
682 propagate_gamma_and_color_space();
689 sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
690 output_dot(filename);
691 assert(colorspace_propagation_pass < 100);
694 for (unsigned i = 0; i < nodes.size(); ++i) {
695 Node *node = nodes[i];
696 if (node->disabled) {
699 assert(node->output_color_space != COLORSPACE_INVALID);
703 // Make so that the output is in the desired color space.
704 void EffectChain::fix_output_color_space()
706 Node *output = find_output_node();
707 if (output->output_color_space != output_format.color_space) {
708 Node *conversion = add_node(new ColorSpaceConversionEffect());
709 conversion->effect->set_int("source_space", output->output_color_space);
710 conversion->effect->set_int("destination_space", output_format.color_space);
711 conversion->output_color_space = output_format.color_space;
712 connect_nodes(output, conversion);
716 bool EffectChain::node_needs_gamma_fix(Node *node)
718 if (node->disabled) {
722 // Small hack since the output is not an explicit node:
723 // If we are the last node and our output is in the wrong
724 // space compared to EffectChain's output, we need to fix it.
725 // This will only take us to linear, but fix_output_gamma()
726 // will come and take us to the desired output gamma
729 // This needs to be before everything else, since it could
730 // even apply to inputs (if they are the only effect).
731 if (node->outgoing_links.empty() &&
732 node->output_gamma_curve != output_format.gamma_curve &&
733 node->output_gamma_curve != GAMMA_LINEAR) {
737 if (node->effect->num_inputs() == 0) {
741 // propagate_gamma_and_color_space() has already set our output
742 // to GAMMA_INVALID if the inputs differ, so we can rely on that,
743 // except for GammaCompressionEffect.
744 if (node->output_gamma_curve == GAMMA_INVALID) {
747 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
748 assert(node->incoming_links.size() == 1);
749 return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
752 return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
755 // Very similar to fix_internal_color_spaces(), but for gamma.
756 // There is one difference, though; before we start adding conversion nodes,
757 // we see if we can get anything out of asking the sources to deliver
758 // linear gamma directly. fix_internal_gamma_by_asking_inputs()
759 // does that part, while fix_internal_gamma_by_inserting_nodes()
760 // inserts nodes as needed afterwards.
761 void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
763 unsigned gamma_propagation_pass = 0;
767 for (unsigned i = 0; i < nodes.size(); ++i) {
768 Node *node = nodes[i];
769 if (!node_needs_gamma_fix(node)) {
773 // See if all inputs can give us linear gamma. If not, leave it.
774 std::vector<Node *> nonlinear_inputs;
775 find_all_nonlinear_inputs(node, &nonlinear_inputs);
776 assert(!nonlinear_inputs.empty());
779 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
780 Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
781 all_ok &= input->can_output_linear_gamma();
788 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
789 nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1);
790 nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
793 // Re-sort topologically, and propagate the new information.
794 propagate_gamma_and_color_space();
801 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
802 output_dot(filename);
803 assert(gamma_propagation_pass < 100);
807 void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
809 unsigned gamma_propagation_pass = 0;
813 for (unsigned i = 0; i < nodes.size(); ++i) {
814 Node *node = nodes[i];
815 if (!node_needs_gamma_fix(node)) {
819 // Special case: We could be an input and still be asked to
820 // fix our gamma; if so, we should be the only node
821 // (as node_needs_gamma_fix() would only return true in
822 // for an input in that case). That means we should insert
823 // a conversion node _after_ ourselves.
824 if (node->incoming_links.empty()) {
825 assert(node->outgoing_links.empty());
826 Node *conversion = add_node(new GammaExpansionEffect());
827 conversion->effect->set_int("source_curve", node->output_gamma_curve);
828 conversion->output_gamma_curve = GAMMA_LINEAR;
829 connect_nodes(node, conversion);
832 // If not, go through each input that is not linear gamma,
833 // and insert a gamma conversion before it.
834 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
835 Node *input = node->incoming_links[j];
836 assert(input->output_gamma_curve != GAMMA_INVALID);
837 if (input->output_gamma_curve == GAMMA_LINEAR) {
840 Node *conversion = add_node(new GammaExpansionEffect());
841 conversion->effect->set_int("source_curve", input->output_gamma_curve);
842 conversion->output_gamma_curve = GAMMA_LINEAR;
843 insert_node_between(input, conversion, node);
846 // Re-sort topologically, and propagate the new information.
847 propagate_gamma_and_color_space();
854 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
855 output_dot(filename);
856 assert(gamma_propagation_pass < 100);
859 for (unsigned i = 0; i < nodes.size(); ++i) {
860 Node *node = nodes[i];
861 if (node->disabled) {
864 assert(node->output_gamma_curve != GAMMA_INVALID);
868 // Make so that the output is in the desired gamma.
869 // Note that this assumes linear input gamma, so it might create the need
870 // for another pass of fix_internal_gamma().
871 void EffectChain::fix_output_gamma()
873 Node *output = find_output_node();
874 if (output->output_gamma_curve != output_format.gamma_curve) {
875 Node *conversion = add_node(new GammaCompressionEffect());
876 conversion->effect->set_int("destination_curve", output_format.gamma_curve);
877 conversion->output_gamma_curve = output_format.gamma_curve;
878 connect_nodes(output, conversion);
882 // Find the output node. This is, simply, one that has no outgoing links.
883 // If there are multiple ones, the graph is malformed (we do not support
884 // multiple outputs right now).
885 Node *EffectChain::find_output_node()
887 std::vector<Node *> output_nodes;
888 for (unsigned i = 0; i < nodes.size(); ++i) {
889 Node *node = nodes[i];
890 if (node->disabled) {
893 if (node->outgoing_links.empty()) {
894 output_nodes.push_back(node);
897 assert(output_nodes.size() == 1);
898 return output_nodes[0];
901 void EffectChain::finalize()
903 // Output the graph as it is before we do any conversions on it.
904 output_dot("step0-start.dot");
906 // Give each effect in turn a chance to rewrite its own part of the graph.
907 // Note that if more effects are added as part of this, they will be
908 // picked up as part of the same for loop, since they are added at the end.
909 for (unsigned i = 0; i < nodes.size(); ++i) {
910 nodes[i]->effect->rewrite_graph(this, nodes[i]);
912 output_dot("step1-rewritten.dot");
914 propagate_gamma_and_color_space();
915 output_dot("step2-propagated.dot");
917 fix_internal_color_spaces();
918 fix_output_color_space();
919 output_dot("step4-output-colorspacefix.dot");
921 // Note that we need to fix gamma after colorspace conversion,
922 // because colorspace conversions might create needs for gamma conversions.
923 // Also, we need to run an extra pass of fix_internal_gamma() after
924 // fixing the output gamma, as we only have conversions to/from linear.
925 fix_internal_gamma_by_asking_inputs(5);
926 fix_internal_gamma_by_inserting_nodes(6);
928 output_dot("step7-output-gammafix.dot");
929 fix_internal_gamma_by_asking_inputs(8);
930 fix_internal_gamma_by_inserting_nodes(9);
932 output_dot("step10-final.dot");
934 // Construct all needed GLSL programs, starting at the output.
935 construct_glsl_programs(find_output_node());
937 // If we have more than one phase, we need intermediate render-to-texture.
938 // Construct an FBO, and then as many textures as we need.
939 // We choose the simplest option of having one texture per output,
940 // since otherwise this turns into an (albeit simple)
941 // register allocation problem.
942 if (phases.size() > 1) {
943 glGenFramebuffers(1, &fbo);
945 for (unsigned i = 0; i < phases.size() - 1; ++i) {
946 inform_input_sizes(phases[i]);
947 find_output_size(phases[i]);
949 Node *output_node = phases[i]->effects.back();
950 glGenTextures(1, &output_node->output_texture);
952 glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
954 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
956 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
958 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
961 output_node->output_texture_width = phases[i]->output_width;
962 output_node->output_texture_height = phases[i]->output_height;
964 inform_input_sizes(phases.back());
967 for (unsigned i = 0; i < inputs.size(); ++i) {
968 inputs[i]->finalize();
971 assert(phases[0]->inputs.empty());
976 void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
980 // Save original viewport.
983 if (width == 0 && height == 0) {
985 glGetIntegerv(GL_VIEWPORT, viewport);
989 height = viewport[3];
995 glDisable(GL_DEPTH_TEST);
997 glDepthMask(GL_FALSE);
1000 glMatrixMode(GL_PROJECTION);
1002 glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
1004 glMatrixMode(GL_MODELVIEW);
1007 if (phases.size() > 1) {
1008 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1012 std::set<Node *> generated_mipmaps;
1014 for (unsigned phase = 0; phase < phases.size(); ++phase) {
1015 // See if the requested output size has changed. If so, we need to recreate
1016 // the texture (and before we start setting up inputs).
1017 inform_input_sizes(phases[phase]);
1018 if (phase != phases.size() - 1) {
1019 find_output_size(phases[phase]);
1021 Node *output_node = phases[phase]->effects.back();
1023 if (output_node->output_texture_width != phases[phase]->output_width ||
1024 output_node->output_texture_height != phases[phase]->output_height) {
1025 glActiveTexture(GL_TEXTURE0);
1027 glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
1029 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
1031 glBindTexture(GL_TEXTURE_2D, 0);
1034 output_node->output_texture_width = phases[phase]->output_width;
1035 output_node->output_texture_height = phases[phase]->output_height;
1039 glUseProgram(phases[phase]->glsl_program_num);
1042 // Set up RTT inputs for this phase.
1043 for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
1044 glActiveTexture(GL_TEXTURE0 + sampler);
1045 Node *input = phases[phase]->inputs[sampler];
1046 glBindTexture(GL_TEXTURE_2D, input->output_texture);
1048 if (phases[phase]->input_needs_mipmaps) {
1049 if (generated_mipmaps.count(input) == 0) {
1050 glGenerateMipmap(GL_TEXTURE_2D);
1052 generated_mipmaps.insert(input);
1054 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
1057 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1061 std::string texture_name = std::string("tex_") + input->effect_id;
1062 glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
1066 // And now the output.
1067 if (phase == phases.size() - 1) {
1068 // Last phase goes to the output the user specified.
1069 glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
1071 glViewport(x, y, width, height);
1073 Node *output_node = phases[phase]->effects.back();
1074 glFramebufferTexture2D(
1076 GL_COLOR_ATTACHMENT0,
1078 output_node->output_texture,
1081 glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
1084 // Give the required parameters to all the effects.
1085 unsigned sampler_num = phases[phase]->inputs.size();
1086 for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
1087 Node *node = phases[phase]->effects[i];
1088 node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
1095 glTexCoord2f(0.0f, 0.0f);
1096 glVertex2f(0.0f, 0.0f);
1098 glTexCoord2f(1.0f, 0.0f);
1099 glVertex2f(1.0f, 0.0f);
1101 glTexCoord2f(1.0f, 1.0f);
1102 glVertex2f(1.0f, 1.0f);
1104 glTexCoord2f(0.0f, 1.0f);
1105 glVertex2f(0.0f, 1.0f);
1110 for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
1111 Node *node = phases[phase]->effects[i];
1112 node->effect->clear_gl_state();