15 #include "alpha_division_effect.h"
16 #include "alpha_multiplication_effect.h"
17 #include "colorspace_conversion_effect.h"
18 #include "dither_effect.h"
20 #include "effect_chain.h"
21 #include "effect_util.h"
22 #include "gamma_compression_effect.h"
23 #include "gamma_expansion_effect.h"
26 #include "resource_pool.h"
28 #include "ycbcr_conversion_effect.h"
30 using namespace Eigen;
35 EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
36 : aspect_nom(aspect_nom),
37 aspect_denom(aspect_denom),
38 output_color_rgba(false),
39 num_output_color_ycbcr(0),
41 ycbcr_conversion_effect_node(NULL),
42 intermediate_format(GL_RGBA16F),
43 intermediate_transformation(NO_FRAMEBUFFER_TRANSFORMATION),
45 output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
47 resource_pool(resource_pool),
48 do_phase_timing(false) {
49 if (resource_pool == NULL) {
50 this->resource_pool = new ResourcePool();
51 owns_resource_pool = true;
53 owns_resource_pool = false;
56 // Generate a VBO with some data in (shared position and texture coordinate data).
62 vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
65 EffectChain::~EffectChain()
67 for (unsigned i = 0; i < nodes.size(); ++i) {
68 delete nodes[i]->effect;
71 for (unsigned i = 0; i < phases.size(); ++i) {
72 resource_pool->release_glsl_program(phases[i]->glsl_program_num);
75 if (owns_resource_pool) {
78 glDeleteBuffers(1, &vbo);
82 Input *EffectChain::add_input(Input *input)
85 inputs.push_back(input);
90 void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
93 assert(!output_color_rgba);
94 output_format = format;
95 output_alpha_format = alpha_format;
96 output_color_rgba = true;
99 void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
100 const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting,
104 assert(num_output_color_ycbcr < 2);
105 output_format = format;
106 output_alpha_format = alpha_format;
108 if (num_output_color_ycbcr == 1) {
109 // Check that the format is the same.
110 assert(output_ycbcr_format.luma_coefficients == ycbcr_format.luma_coefficients);
111 assert(output_ycbcr_format.full_range == ycbcr_format.full_range);
112 assert(output_ycbcr_format.num_levels == ycbcr_format.num_levels);
113 assert(output_ycbcr_format.chroma_subsampling_x == 1);
114 assert(output_ycbcr_format.chroma_subsampling_y == 1);
115 assert(output_ycbcr_type == output_type);
117 output_ycbcr_format = ycbcr_format;
118 output_ycbcr_type = output_type;
120 output_ycbcr_splitting[num_output_color_ycbcr++] = output_splitting;
122 assert(ycbcr_format.chroma_subsampling_x == 1);
123 assert(ycbcr_format.chroma_subsampling_y == 1);
126 void EffectChain::change_ycbcr_output_format(const YCbCrFormat &ycbcr_format)
128 assert(num_output_color_ycbcr > 0);
129 assert(output_ycbcr_format.chroma_subsampling_x == 1);
130 assert(output_ycbcr_format.chroma_subsampling_y == 1);
132 output_ycbcr_format = ycbcr_format;
134 YCbCrConversionEffect *effect = (YCbCrConversionEffect *)(ycbcr_conversion_effect_node->effect);
135 effect->change_output_format(ycbcr_format);
139 Node *EffectChain::add_node(Effect *effect)
141 for (unsigned i = 0; i < nodes.size(); ++i) {
142 assert(nodes[i]->effect != effect);
145 Node *node = new Node;
146 node->effect = effect;
147 node->disabled = false;
148 node->output_color_space = COLORSPACE_INVALID;
149 node->output_gamma_curve = GAMMA_INVALID;
150 node->output_alpha_type = ALPHA_INVALID;
151 node->needs_mipmaps = false;
152 node->one_to_one_sampling = false;
154 nodes.push_back(node);
155 node_map[effect] = node;
156 effect->inform_added(this);
160 void EffectChain::connect_nodes(Node *sender, Node *receiver)
162 sender->outgoing_links.push_back(receiver);
163 receiver->incoming_links.push_back(sender);
166 void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
168 new_receiver->incoming_links = old_receiver->incoming_links;
169 old_receiver->incoming_links.clear();
171 for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
172 Node *sender = new_receiver->incoming_links[i];
173 for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
174 if (sender->outgoing_links[j] == old_receiver) {
175 sender->outgoing_links[j] = new_receiver;
181 void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
183 new_sender->outgoing_links = old_sender->outgoing_links;
184 old_sender->outgoing_links.clear();
186 for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
187 Node *receiver = new_sender->outgoing_links[i];
188 for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
189 if (receiver->incoming_links[j] == old_sender) {
190 receiver->incoming_links[j] = new_sender;
196 void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
198 for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
199 if (sender->outgoing_links[i] == receiver) {
200 sender->outgoing_links[i] = middle;
201 middle->incoming_links.push_back(sender);
204 for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
205 if (receiver->incoming_links[i] == sender) {
206 receiver->incoming_links[i] = middle;
207 middle->outgoing_links.push_back(receiver);
211 assert(middle->incoming_links.size() == middle->effect->num_inputs());
214 GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
216 assert(node->effect->needs_texture_bounce());
217 assert(input_num < node->incoming_links.size());
218 assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
219 assert(node->incoming_links[input_num]->bound_sampler_num < 8);
220 return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
223 GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
225 assert(input_num < node->incoming_links.size());
226 return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
227 node->incoming_links[input_num]->bound_sampler_num < 8;
230 void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
232 if (node->output_gamma_curve == GAMMA_LINEAR &&
233 node->effect->effect_type_id() != "GammaCompressionEffect") {
236 if (node->effect->num_inputs() == 0) {
237 nonlinear_inputs->push_back(node);
239 assert(node->effect->num_inputs() == node->incoming_links.size());
240 for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
241 find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
246 Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
249 assert(inputs.size() == effect->num_inputs());
250 Node *node = add_node(effect);
251 for (unsigned i = 0; i < inputs.size(); ++i) {
252 assert(node_map.count(inputs[i]) != 0);
253 connect_nodes(node_map[inputs[i]], node);
258 // ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
259 string replace_prefix(const string &text, const string &prefix)
264 while (start < text.size()) {
265 size_t pos = text.find("PREFIX(", start);
266 if (pos == string::npos) {
267 output.append(text.substr(start, string::npos));
271 output.append(text.substr(start, pos - start));
272 output.append(prefix);
275 pos += strlen("PREFIX(");
277 // Output stuff until we find the matching ), which we then eat.
279 size_t end_arg_pos = pos;
280 while (end_arg_pos < text.size()) {
281 if (text[end_arg_pos] == '(') {
283 } else if (text[end_arg_pos] == ')') {
291 output.append(text.substr(pos, end_arg_pos - pos));
302 void extract_uniform_declarations(const vector<Uniform<T> > &effect_uniforms,
303 const string &type_specifier,
304 const string &effect_id,
305 vector<Uniform<T> > *phase_uniforms,
308 for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
309 phase_uniforms->push_back(effect_uniforms[i]);
310 phase_uniforms->back().prefix = effect_id;
312 *glsl_string += string("uniform ") + type_specifier + " " + effect_id
313 + "_" + effect_uniforms[i].name + ";\n";
318 void extract_uniform_array_declarations(const vector<Uniform<T> > &effect_uniforms,
319 const string &type_specifier,
320 const string &effect_id,
321 vector<Uniform<T> > *phase_uniforms,
324 for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
325 phase_uniforms->push_back(effect_uniforms[i]);
326 phase_uniforms->back().prefix = effect_id;
329 snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
330 type_specifier.c_str(), effect_id.c_str(),
331 effect_uniforms[i].name.c_str(),
332 int(effect_uniforms[i].num_values));
338 void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T> > *phase_uniforms)
340 for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
341 Uniform<T> &uniform = (*phase_uniforms)[i];
342 uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
348 void EffectChain::compile_glsl_program(Phase *phase)
350 string frag_shader_header = read_version_dependent_file("header", "frag");
351 string frag_shader = "";
353 // Create functions and uniforms for all the texture inputs that we need.
354 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
355 Node *input = phase->inputs[i]->output_node;
357 sprintf(effect_id, "in%u", i);
358 phase->effect_ids.insert(make_pair(input, effect_id));
360 frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
361 frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
362 frag_shader += "\tvec4 tmp = tex2D(tex_" + string(effect_id) + ", tc);\n";
364 if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
365 phase->inputs[i]->output_node->output_gamma_curve == GAMMA_LINEAR) {
366 frag_shader += "\ttmp.rgb *= tmp.rgb;\n";
369 frag_shader += "\treturn tmp;\n";
370 frag_shader += "}\n";
373 Uniform<int> uniform;
374 uniform.name = effect_id;
375 uniform.value = &phase->input_samplers[i];
376 uniform.prefix = "tex";
377 uniform.num_values = 1;
378 uniform.location = -1;
379 phase->uniforms_sampler2d.push_back(uniform);
382 // Give each effect in the phase its own ID.
383 for (unsigned i = 0; i < phase->effects.size(); ++i) {
384 Node *node = phase->effects[i];
386 sprintf(effect_id, "eff%u", i);
387 phase->effect_ids.insert(make_pair(node, effect_id));
390 for (unsigned i = 0; i < phase->effects.size(); ++i) {
391 Node *node = phase->effects[i];
392 const string effect_id = phase->effect_ids[node];
393 if (node->incoming_links.size() == 1) {
394 frag_shader += string("#define INPUT ") + phase->effect_ids[node->incoming_links[0]] + "\n";
396 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
398 sprintf(buf, "#define INPUT%d %s\n", j + 1, phase->effect_ids[node->incoming_links[j]].c_str());
404 frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
405 frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
406 frag_shader += "#undef FUNCNAME\n";
407 if (node->incoming_links.size() == 1) {
408 frag_shader += "#undef INPUT\n";
410 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
412 sprintf(buf, "#undef INPUT%d\n", j + 1);
418 frag_shader += string("#define INPUT ") + phase->effect_ids[phase->effects.back()] + "\n";
420 // If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
421 vector<string> frag_shader_outputs; // In order.
422 if (phase->output_node->outgoing_links.empty() && num_output_color_ycbcr > 0) {
423 switch (output_ycbcr_splitting[0]) {
424 case YCBCR_OUTPUT_INTERLEAVED:
426 frag_shader_outputs.push_back("FragColor");
428 case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
429 frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
430 frag_shader_outputs.push_back("Y");
431 frag_shader_outputs.push_back("Chroma");
433 case YCBCR_OUTPUT_PLANAR:
434 frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
435 frag_shader_outputs.push_back("Y");
436 frag_shader_outputs.push_back("Cb");
437 frag_shader_outputs.push_back("Cr");
443 if (num_output_color_ycbcr > 1) {
444 switch (output_ycbcr_splitting[1]) {
445 case YCBCR_OUTPUT_INTERLEAVED:
446 frag_shader += "#define SECOND_YCBCR_OUTPUT_INTERLEAVED 1\n";
447 frag_shader_outputs.push_back("YCbCr2");
449 case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
450 frag_shader += "#define SECOND_YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
451 frag_shader_outputs.push_back("Y2");
452 frag_shader_outputs.push_back("Chroma2");
454 case YCBCR_OUTPUT_PLANAR:
455 frag_shader += "#define SECOND_YCBCR_OUTPUT_PLANAR 1\n";
456 frag_shader_outputs.push_back("Y2");
457 frag_shader_outputs.push_back("Cb2");
458 frag_shader_outputs.push_back("Cr2");
465 if (output_color_rgba) {
466 // Note: Needs to come in the header, because not only the
467 // output needs to see it (YCbCrConversionEffect and DitherEffect
469 frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
470 frag_shader_outputs.push_back("RGBA");
474 // If we're bouncing to a temporary texture, signal transformation if desired.
475 if (!phase->output_node->outgoing_links.empty()) {
476 if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
477 phase->output_node->output_gamma_curve == GAMMA_LINEAR) {
478 frag_shader += "#define SQUARE_ROOT_TRANSFORMATION 1\n";
482 frag_shader.append(read_file("footer.frag"));
484 // Collect uniforms from all effects and output them. Note that this needs
485 // to happen after output_fragment_shader(), even though the uniforms come
486 // before in the output source, since output_fragment_shader() is allowed
487 // to register new uniforms (e.g. arrays that are of unknown length until
488 // finalization time).
489 // TODO: Make a uniform block for platforms that support it.
490 string frag_shader_uniforms = "";
491 for (unsigned i = 0; i < phase->effects.size(); ++i) {
492 Node *node = phase->effects[i];
493 Effect *effect = node->effect;
494 const string effect_id = phase->effect_ids[node];
495 extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
496 extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
497 extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
498 extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
499 extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
500 extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
501 extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
502 extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
503 extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
504 extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
505 extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
506 extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
509 frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;
511 string vert_shader = read_version_dependent_file("vs", "vert");
513 // If we're the last phase and need to flip the picture to compensate for
514 // the origin, tell the vertex shader so.
515 if (phase->output_node->outgoing_links.empty() && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
516 const string needle = "#define FLIP_ORIGIN 0";
517 size_t pos = vert_shader.find(needle);
518 assert(pos != string::npos);
520 vert_shader[pos + needle.size() - 1] = '1';
523 phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs);
524 GLint position_attribute_index = glGetAttribLocation(phase->glsl_program_num, "position");
525 GLint texcoord_attribute_index = glGetAttribLocation(phase->glsl_program_num, "texcoord");
526 if (position_attribute_index != -1) {
527 phase->attribute_indexes.insert(position_attribute_index);
529 if (texcoord_attribute_index != -1) {
530 phase->attribute_indexes.insert(texcoord_attribute_index);
533 // Collect the resulting location numbers for each uniform.
534 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
535 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
536 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
537 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
538 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
539 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
540 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
541 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
544 // Construct GLSL programs, starting at the given effect and following
545 // the chain from there. We end a program every time we come to an effect
546 // marked as "needs texture bounce", one that is used by multiple other
547 // effects, every time we need to bounce due to output size change
548 // (not all size changes require ending), and of course at the end.
550 // We follow a quite simple depth-first search from the output, although
551 // without recursing explicitly within each phase.
552 Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
554 if (completed_effects->count(output)) {
555 return (*completed_effects)[output];
558 Phase *phase = new Phase;
559 phase->output_node = output;
561 // If the output effect has one-to-one sampling, we try to trace this
562 // status down through the dependency chain. This is important in case
563 // we hit an effect that changes output size (and not sets a virtual
564 // output size); if we have one-to-one sampling, we don't have to break
566 output->one_to_one_sampling = output->effect->one_to_one_sampling();
568 // Effects that we have yet to calculate, but that we know should
569 // be in the current phase.
570 stack<Node *> effects_todo_this_phase;
571 effects_todo_this_phase.push(output);
573 while (!effects_todo_this_phase.empty()) {
574 Node *node = effects_todo_this_phase.top();
575 effects_todo_this_phase.pop();
577 if (node->effect->needs_mipmaps()) {
578 node->needs_mipmaps = true;
581 // This should currently only happen for effects that are inputs
582 // (either true inputs or phase outputs). We special-case inputs,
583 // and then deduplicate phase outputs below.
584 if (node->effect->num_inputs() == 0) {
585 if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
589 assert(completed_effects->count(node) == 0);
592 phase->effects.push_back(node);
594 // Find all the dependencies of this effect, and add them to the stack.
595 vector<Node *> deps = node->incoming_links;
596 assert(node->effect->num_inputs() == deps.size());
597 for (unsigned i = 0; i < deps.size(); ++i) {
598 bool start_new_phase = false;
600 if (node->effect->needs_texture_bounce() &&
601 !deps[i]->effect->is_single_texture() &&
602 !deps[i]->effect->override_disable_bounce()) {
603 start_new_phase = true;
606 // Propagate information about needing mipmaps down the chain,
607 // breaking the phase if we notice an incompatibility.
609 // Note that we cannot do this propagation as a normal pass,
610 // because it needs information about where the phases end
611 // (we should not propagate the flag across phases).
612 if (node->needs_mipmaps) {
613 if (deps[i]->effect->num_inputs() == 0) {
614 Input *input = static_cast<Input *>(deps[i]->effect);
615 start_new_phase |= !input->can_supply_mipmaps();
617 deps[i]->needs_mipmaps = true;
621 if (deps[i]->outgoing_links.size() > 1) {
622 if (!deps[i]->effect->is_single_texture()) {
623 // More than one effect uses this as the input,
624 // and it is not a texture itself.
625 // The easiest thing to do (and probably also the safest
626 // performance-wise in most cases) is to bounce it to a texture
627 // and then let the next passes read from that.
628 start_new_phase = true;
630 assert(deps[i]->effect->num_inputs() == 0);
632 // For textures, we try to be slightly more clever;
633 // if none of our outputs need a bounce, we don't bounce
634 // but instead simply use the effect many times.
636 // Strictly speaking, we could bounce it for some outputs
637 // and use it directly for others, but the processing becomes
638 // somewhat simpler if the effect is only used in one such way.
639 for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) {
640 Node *rdep = deps[i]->outgoing_links[j];
641 start_new_phase |= rdep->effect->needs_texture_bounce();
646 if (deps[i]->effect->sets_virtual_output_size()) {
647 assert(deps[i]->effect->changes_output_size());
648 // If the next effect sets a virtual size to rely on OpenGL's
649 // bilinear sampling, we'll really need to break the phase here.
650 start_new_phase = true;
651 } else if (deps[i]->effect->changes_output_size() && !node->one_to_one_sampling) {
652 // If the next effect changes size and we don't have one-to-one sampling,
653 // we also need to break here.
654 start_new_phase = true;
657 if (start_new_phase) {
658 phase->inputs.push_back(construct_phase(deps[i], completed_effects));
660 effects_todo_this_phase.push(deps[i]);
662 // Propagate the one-to-one status down through the dependency.
663 deps[i]->one_to_one_sampling = node->one_to_one_sampling &&
664 deps[i]->effect->one_to_one_sampling();
669 // No more effects to do this phase. Take all the ones we have,
670 // and create a GLSL program for it.
671 assert(!phase->effects.empty());
673 // Deduplicate the inputs, but don't change the ordering e.g. by sorting;
674 // that would be nondeterministic and thus reduce cacheability.
675 // TODO: Make this even more deterministic.
676 vector<Phase *> dedup_inputs;
677 set<Phase *> seen_inputs;
678 for (size_t i = 0; i < phase->inputs.size(); ++i) {
679 if (seen_inputs.insert(phase->inputs[i]).second) {
680 dedup_inputs.push_back(phase->inputs[i]);
683 swap(phase->inputs, dedup_inputs);
685 // Allocate samplers for each input.
686 phase->input_samplers.resize(phase->inputs.size());
688 // We added the effects from the output and back, but we need to output
689 // them in topological sort order in the shader.
690 phase->effects = topological_sort(phase->effects);
692 // Figure out if we need mipmaps or not, and if so, tell the inputs that.
693 phase->input_needs_mipmaps = false;
694 for (unsigned i = 0; i < phase->effects.size(); ++i) {
695 Node *node = phase->effects[i];
696 phase->input_needs_mipmaps |= node->effect->needs_mipmaps();
698 for (unsigned i = 0; i < phase->effects.size(); ++i) {
699 Node *node = phase->effects[i];
700 if (node->effect->num_inputs() == 0) {
701 Input *input = static_cast<Input *>(node->effect);
702 assert(!phase->input_needs_mipmaps || input->can_supply_mipmaps());
703 CHECK(input->set_int("needs_mipmaps", phase->input_needs_mipmaps));
707 // Tell each node which phase it ended up in, so that the unit test
708 // can check that the phases were split in the right place.
709 // Note that this ignores that effects may be part of multiple phases;
710 // if the unit tests need to test such cases, we'll reconsider.
711 for (unsigned i = 0; i < phase->effects.size(); ++i) {
712 phase->effects[i]->containing_phase = phase;
715 // Actually make the shader for this phase.
716 compile_glsl_program(phase);
718 // Initialize timers.
719 if (movit_timer_queries_supported) {
720 phase->time_elapsed_ns = 0;
721 phase->num_measured_iterations = 0;
724 assert(completed_effects->count(output) == 0);
725 completed_effects->insert(make_pair(output, phase));
726 phases.push_back(phase);
730 void EffectChain::output_dot(const char *filename)
732 if (movit_debug_level != MOVIT_DEBUG_ON) {
736 FILE *fp = fopen(filename, "w");
742 fprintf(fp, "digraph G {\n");
743 fprintf(fp, " output [shape=box label=\"(output)\"];\n");
744 for (unsigned i = 0; i < nodes.size(); ++i) {
745 // Find out which phase this event belongs to.
746 vector<int> in_phases;
747 for (unsigned j = 0; j < phases.size(); ++j) {
748 const Phase* p = phases[j];
749 if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
750 in_phases.push_back(j);
754 if (in_phases.empty()) {
755 fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
756 } else if (in_phases.size() == 1) {
757 fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
758 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
759 (in_phases[0] % 8) + 1);
761 // If we had new enough Graphviz, style="wedged" would probably be ideal here.
763 fprintf(fp, " n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
764 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
765 (in_phases[0] % 8) + 1);
768 char from_node_id[256];
769 snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);
771 for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
772 char to_node_id[256];
773 snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);
775 vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
776 output_dot_edge(fp, from_node_id, to_node_id, labels);
779 if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
781 vector<string> labels = get_labels_for_edge(nodes[i], NULL);
782 output_dot_edge(fp, from_node_id, "output", labels);
790 vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
792 vector<string> labels;
794 if (to != NULL && to->effect->needs_texture_bounce()) {
795 labels.push_back("needs_bounce");
797 if (from->effect->changes_output_size()) {
798 labels.push_back("resize");
801 switch (from->output_color_space) {
802 case COLORSPACE_INVALID:
803 labels.push_back("spc[invalid]");
805 case COLORSPACE_REC_601_525:
806 labels.push_back("spc[rec601-525]");
808 case COLORSPACE_REC_601_625:
809 labels.push_back("spc[rec601-625]");
815 switch (from->output_gamma_curve) {
817 labels.push_back("gamma[invalid]");
820 labels.push_back("gamma[sRGB]");
822 case GAMMA_REC_601: // and GAMMA_REC_709
823 labels.push_back("gamma[rec601/709]");
829 switch (from->output_alpha_type) {
831 labels.push_back("alpha[invalid]");
834 labels.push_back("alpha[blank]");
836 case ALPHA_POSTMULTIPLIED:
837 labels.push_back("alpha[postmult]");
846 void EffectChain::output_dot_edge(FILE *fp,
847 const string &from_node_id,
848 const string &to_node_id,
849 const vector<string> &labels)
851 if (labels.empty()) {
852 fprintf(fp, " %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
854 string label = labels[0];
855 for (unsigned k = 1; k < labels.size(); ++k) {
856 label += ", " + labels[k];
858 fprintf(fp, " %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
862 void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
864 unsigned scaled_width, scaled_height;
866 if (float(width) * aspect_denom >= float(height) * aspect_nom) {
867 // Same aspect, or W/H > aspect (image is wider than the frame).
868 // In either case, keep width, and adjust height.
869 scaled_width = width;
870 scaled_height = lrintf(width * aspect_denom / aspect_nom);
872 // W/H < aspect (image is taller than the frame), so keep height,
874 scaled_width = lrintf(height * aspect_nom / aspect_denom);
875 scaled_height = height;
878 // We should be consistently larger or smaller then the existing choice,
879 // since we have the same aspect.
880 assert(!(scaled_width < *output_width && scaled_height > *output_height));
881 assert(!(scaled_height < *output_height && scaled_width > *output_width));
883 if (scaled_width >= *output_width && scaled_height >= *output_height) {
884 *output_width = scaled_width;
885 *output_height = scaled_height;
889 // Propagate input texture sizes throughout, and inform effects downstream.
890 // (Like a lot of other code, we depend on effects being in topological order.)
891 void EffectChain::inform_input_sizes(Phase *phase)
893 // All effects that have a defined size (inputs and RTT inputs)
894 // get that. Reset all others.
895 for (unsigned i = 0; i < phase->effects.size(); ++i) {
896 Node *node = phase->effects[i];
897 if (node->effect->num_inputs() == 0) {
898 Input *input = static_cast<Input *>(node->effect);
899 node->output_width = input->get_width();
900 node->output_height = input->get_height();
901 assert(node->output_width != 0);
902 assert(node->output_height != 0);
904 node->output_width = node->output_height = 0;
907 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
908 Phase *input = phase->inputs[i];
909 input->output_node->output_width = input->virtual_output_width;
910 input->output_node->output_height = input->virtual_output_height;
911 assert(input->output_node->output_width != 0);
912 assert(input->output_node->output_height != 0);
915 // Now propagate from the inputs towards the end, and inform as we go.
916 // The rules are simple:
918 // 1. Don't touch effects that already have given sizes (ie., inputs
919 // or effects that change the output size).
920 // 2. If all of your inputs have the same size, that will be your output size.
921 // 3. Otherwise, your output size is 0x0.
922 for (unsigned i = 0; i < phase->effects.size(); ++i) {
923 Node *node = phase->effects[i];
924 if (node->effect->num_inputs() == 0) {
927 unsigned this_output_width = 0;
928 unsigned this_output_height = 0;
929 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
930 Node *input = node->incoming_links[j];
931 node->effect->inform_input_size(j, input->output_width, input->output_height);
933 this_output_width = input->output_width;
934 this_output_height = input->output_height;
935 } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
937 this_output_width = 0;
938 this_output_height = 0;
941 if (node->effect->changes_output_size()) {
942 // We cannot call get_output_size() before we've done inform_input_size()
944 unsigned real_width, real_height;
945 node->effect->get_output_size(&real_width, &real_height,
946 &node->output_width, &node->output_height);
947 assert(node->effect->sets_virtual_output_size() ||
948 (real_width == node->output_width &&
949 real_height == node->output_height));
951 node->output_width = this_output_width;
952 node->output_height = this_output_height;
957 // Note: You should call inform_input_sizes() before this, as the last effect's
958 // desired output size might change based on the inputs.
959 void EffectChain::find_output_size(Phase *phase)
961 Node *output_node = phase->effects.back();
963 // If the last effect explicitly sets an output size, use that.
964 if (output_node->effect->changes_output_size()) {
965 output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
966 &phase->virtual_output_width, &phase->virtual_output_height);
967 assert(output_node->effect->sets_virtual_output_size() ||
968 (phase->output_width == phase->virtual_output_width &&
969 phase->output_height == phase->virtual_output_height));
973 // If all effects have the same size, use that.
974 unsigned output_width = 0, output_height = 0;
975 bool all_inputs_same_size = true;
977 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
978 Phase *input = phase->inputs[i];
979 assert(input->output_width != 0);
980 assert(input->output_height != 0);
981 if (output_width == 0 && output_height == 0) {
982 output_width = input->virtual_output_width;
983 output_height = input->virtual_output_height;
984 } else if (output_width != input->virtual_output_width ||
985 output_height != input->virtual_output_height) {
986 all_inputs_same_size = false;
989 for (unsigned i = 0; i < phase->effects.size(); ++i) {
990 Effect *effect = phase->effects[i]->effect;
991 if (effect->num_inputs() != 0) {
995 Input *input = static_cast<Input *>(effect);
996 if (output_width == 0 && output_height == 0) {
997 output_width = input->get_width();
998 output_height = input->get_height();
999 } else if (output_width != input->get_width() ||
1000 output_height != input->get_height()) {
1001 all_inputs_same_size = false;
1005 if (all_inputs_same_size) {
1006 assert(output_width != 0);
1007 assert(output_height != 0);
1008 phase->virtual_output_width = phase->output_width = output_width;
1009 phase->virtual_output_height = phase->output_height = output_height;
1013 // If not, fit all the inputs into the current aspect, and select the largest one.
1016 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
1017 Phase *input = phase->inputs[i];
1018 assert(input->output_width != 0);
1019 assert(input->output_height != 0);
1020 size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
1022 for (unsigned i = 0; i < phase->effects.size(); ++i) {
1023 Effect *effect = phase->effects[i]->effect;
1024 if (effect->num_inputs() != 0) {
1028 Input *input = static_cast<Input *>(effect);
1029 size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
1031 assert(output_width != 0);
1032 assert(output_height != 0);
1033 phase->virtual_output_width = phase->output_width = output_width;
1034 phase->virtual_output_height = phase->output_height = output_height;
1037 void EffectChain::sort_all_nodes_topologically()
1039 nodes = topological_sort(nodes);
1042 vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
1044 set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
1045 vector<Node *> sorted_list;
1046 for (unsigned i = 0; i < nodes.size(); ++i) {
1047 topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
1049 reverse(sorted_list.begin(), sorted_list.end());
1053 void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
1055 if (nodes_left_to_visit->count(node) == 0) {
1058 nodes_left_to_visit->erase(node);
1059 for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
1060 topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
1062 sorted_list->push_back(node);
1065 void EffectChain::find_color_spaces_for_inputs()
1067 for (unsigned i = 0; i < nodes.size(); ++i) {
1068 Node *node = nodes[i];
1069 if (node->disabled) {
1072 if (node->incoming_links.size() == 0) {
1073 Input *input = static_cast<Input *>(node->effect);
1074 node->output_color_space = input->get_color_space();
1075 node->output_gamma_curve = input->get_gamma_curve();
1077 Effect::AlphaHandling alpha_handling = input->alpha_handling();
1078 switch (alpha_handling) {
1079 case Effect::OUTPUT_BLANK_ALPHA:
1080 node->output_alpha_type = ALPHA_BLANK;
1082 case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
1083 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1085 case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
1086 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1088 case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
1089 case Effect::DONT_CARE_ALPHA_TYPE:
1094 if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
1095 assert(node->output_gamma_curve == GAMMA_LINEAR);
1101 // Propagate gamma and color space information as far as we can in the graph.
1102 // The rules are simple: Anything where all the inputs agree, get that as
1103 // output as well. Anything else keeps having *_INVALID.
1104 void EffectChain::propagate_gamma_and_color_space()
1106 // We depend on going through the nodes in order.
1107 sort_all_nodes_topologically();
1109 for (unsigned i = 0; i < nodes.size(); ++i) {
1110 Node *node = nodes[i];
1111 if (node->disabled) {
1114 assert(node->incoming_links.size() == node->effect->num_inputs());
1115 if (node->incoming_links.size() == 0) {
1116 assert(node->output_color_space != COLORSPACE_INVALID);
1117 assert(node->output_gamma_curve != GAMMA_INVALID);
1121 Colorspace color_space = node->incoming_links[0]->output_color_space;
1122 GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
1123 for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
1124 if (node->incoming_links[j]->output_color_space != color_space) {
1125 color_space = COLORSPACE_INVALID;
1127 if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
1128 gamma_curve = GAMMA_INVALID;
1132 // The conversion effects already have their outputs set correctly,
1133 // so leave them alone.
1134 if (node->effect->effect_type_id() != "ColorspaceConversionEffect") {
1135 node->output_color_space = color_space;
1137 if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
1138 node->effect->effect_type_id() != "GammaExpansionEffect") {
1139 node->output_gamma_curve = gamma_curve;
1144 // Propagate alpha information as far as we can in the graph.
1145 // Similar to propagate_gamma_and_color_space().
1146 void EffectChain::propagate_alpha()
1148 // We depend on going through the nodes in order.
1149 sort_all_nodes_topologically();
1151 for (unsigned i = 0; i < nodes.size(); ++i) {
1152 Node *node = nodes[i];
1153 if (node->disabled) {
1156 assert(node->incoming_links.size() == node->effect->num_inputs());
1157 if (node->incoming_links.size() == 0) {
1158 assert(node->output_alpha_type != ALPHA_INVALID);
1162 // The alpha multiplication/division effects are special cases.
1163 if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
1164 assert(node->incoming_links.size() == 1);
1165 assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
1166 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1169 if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
1170 assert(node->incoming_links.size() == 1);
1171 assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1172 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1176 // GammaCompressionEffect and GammaExpansionEffect are also a special case,
1177 // because they are the only one that _need_ postmultiplied alpha.
1178 if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
1179 node->effect->effect_type_id() == "GammaExpansionEffect") {
1180 assert(node->incoming_links.size() == 1);
1181 if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
1182 node->output_alpha_type = ALPHA_BLANK;
1183 } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
1184 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1186 node->output_alpha_type = ALPHA_INVALID;
1191 // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
1192 // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
1193 // taken care of above. Rationale: Even if you could imagine
1194 // e.g. an effect that took in an image and set alpha=1.0
1195 // unconditionally, it wouldn't make any sense to have it as
1196 // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
1197 // got its input pre- or postmultiplied, so it wouldn't know
1198 // whether to divide away the old alpha or not.
1199 Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
1200 assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1201 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
1202 alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1204 // If the node has multiple inputs, check that they are all valid and
1206 bool any_invalid = false;
1207 bool any_premultiplied = false;
1208 bool any_postmultiplied = false;
1210 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1211 switch (node->incoming_links[j]->output_alpha_type) {
1216 // Blank is good as both pre- and postmultiplied alpha,
1217 // so just ignore it.
1219 case ALPHA_PREMULTIPLIED:
1220 any_premultiplied = true;
1222 case ALPHA_POSTMULTIPLIED:
1223 any_postmultiplied = true;
1231 node->output_alpha_type = ALPHA_INVALID;
1235 // Inputs must be of the same type.
1236 if (any_premultiplied && any_postmultiplied) {
1237 node->output_alpha_type = ALPHA_INVALID;
1241 if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1242 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1243 // This combination (requiring premultiplied alpha, but _not_ requiring
1244 // linear light) is illegal, since the combination of premultiplied alpha
1245 // and nonlinear inputs is meaningless.
1246 assert(node->effect->needs_linear_light());
1248 // If the effect has asked for premultiplied alpha, check that it has got it.
1249 if (any_postmultiplied) {
1250 node->output_alpha_type = ALPHA_INVALID;
1251 } else if (!any_premultiplied &&
1252 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1253 // Blank input alpha, and the effect preserves blank alpha.
1254 node->output_alpha_type = ALPHA_BLANK;
1256 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1259 // OK, all inputs are the same, and this effect is not going
1261 assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1262 if (any_premultiplied) {
1263 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1264 } else if (any_postmultiplied) {
1265 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1267 node->output_alpha_type = ALPHA_BLANK;
1273 bool EffectChain::node_needs_colorspace_fix(Node *node)
1275 if (node->disabled) {
1278 if (node->effect->num_inputs() == 0) {
1282 // propagate_gamma_and_color_space() has already set our output
1283 // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
1284 if (node->output_color_space == COLORSPACE_INVALID) {
1287 return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
1290 // Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
1291 // the graph. Our strategy is not always optimal, but quite simple:
1292 // Find an effect that's as early as possible where the inputs are of
1293 // unacceptable colorspaces (that is, either different, or, if the effect only
1294 // wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
1295 // propagate the information anew, and repeat until there are no more such
1297 void EffectChain::fix_internal_color_spaces()
1299 unsigned colorspace_propagation_pass = 0;
1303 for (unsigned i = 0; i < nodes.size(); ++i) {
1304 Node *node = nodes[i];
1305 if (!node_needs_colorspace_fix(node)) {
1309 // Go through each input that is not sRGB, and insert
1310 // a colorspace conversion after it.
1311 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1312 Node *input = node->incoming_links[j];
1313 assert(input->output_color_space != COLORSPACE_INVALID);
1314 if (input->output_color_space == COLORSPACE_sRGB) {
1317 Node *conversion = add_node(new ColorspaceConversionEffect());
1318 CHECK(conversion->effect->set_int("source_space", input->output_color_space));
1319 CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
1320 conversion->output_color_space = COLORSPACE_sRGB;
1321 replace_sender(input, conversion);
1322 connect_nodes(input, conversion);
1325 // Re-sort topologically, and propagate the new information.
1326 propagate_gamma_and_color_space();
1333 sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
1334 output_dot(filename);
1335 assert(colorspace_propagation_pass < 100);
1336 } while (found_any);
1338 for (unsigned i = 0; i < nodes.size(); ++i) {
1339 Node *node = nodes[i];
1340 if (node->disabled) {
1343 assert(node->output_color_space != COLORSPACE_INVALID);
1347 bool EffectChain::node_needs_alpha_fix(Node *node)
1349 if (node->disabled) {
1353 // propagate_alpha() has already set our output to ALPHA_INVALID if the
1354 // inputs differ or we are otherwise in mismatch, so we can rely on that.
1355 return (node->output_alpha_type == ALPHA_INVALID);
1358 // Fix up alpha so that there are no ALPHA_INVALID nodes left in
1359 // the graph. Similar to fix_internal_color_spaces().
1360 void EffectChain::fix_internal_alpha(unsigned step)
1362 unsigned alpha_propagation_pass = 0;
1366 for (unsigned i = 0; i < nodes.size(); ++i) {
1367 Node *node = nodes[i];
1368 if (!node_needs_alpha_fix(node)) {
1372 // If we need to fix up GammaExpansionEffect, then clearly something
1373 // is wrong, since the combination of premultiplied alpha and nonlinear inputs
1375 assert(node->effect->effect_type_id() != "GammaExpansionEffect");
1377 AlphaType desired_type = ALPHA_PREMULTIPLIED;
1379 // GammaCompressionEffect is special; it needs postmultiplied alpha.
1380 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1381 assert(node->incoming_links.size() == 1);
1382 assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1383 desired_type = ALPHA_POSTMULTIPLIED;
1386 // Go through each input that is not premultiplied alpha, and insert
1387 // a conversion before it.
1388 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1389 Node *input = node->incoming_links[j];
1390 assert(input->output_alpha_type != ALPHA_INVALID);
1391 if (input->output_alpha_type == desired_type ||
1392 input->output_alpha_type == ALPHA_BLANK) {
1396 if (desired_type == ALPHA_PREMULTIPLIED) {
1397 conversion = add_node(new AlphaMultiplicationEffect());
1399 conversion = add_node(new AlphaDivisionEffect());
1401 conversion->output_alpha_type = desired_type;
1402 replace_sender(input, conversion);
1403 connect_nodes(input, conversion);
1406 // Re-sort topologically, and propagate the new information.
1407 propagate_gamma_and_color_space();
1415 sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
1416 output_dot(filename);
1417 assert(alpha_propagation_pass < 100);
1418 } while (found_any);
1420 for (unsigned i = 0; i < nodes.size(); ++i) {
1421 Node *node = nodes[i];
1422 if (node->disabled) {
1425 assert(node->output_alpha_type != ALPHA_INVALID);
1429 // Make so that the output is in the desired color space.
1430 void EffectChain::fix_output_color_space()
1432 Node *output = find_output_node();
1433 if (output->output_color_space != output_format.color_space) {
1434 Node *conversion = add_node(new ColorspaceConversionEffect());
1435 CHECK(conversion->effect->set_int("source_space", output->output_color_space));
1436 CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
1437 conversion->output_color_space = output_format.color_space;
1438 connect_nodes(output, conversion);
1440 propagate_gamma_and_color_space();
1444 // Make so that the output is in the desired pre-/postmultiplication alpha state.
1445 void EffectChain::fix_output_alpha()
1447 Node *output = find_output_node();
1448 assert(output->output_alpha_type != ALPHA_INVALID);
1449 if (output->output_alpha_type == ALPHA_BLANK) {
1450 // No alpha output, so we don't care.
1453 if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
1454 output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
1455 Node *conversion = add_node(new AlphaDivisionEffect());
1456 connect_nodes(output, conversion);
1458 propagate_gamma_and_color_space();
1460 if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
1461 output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
1462 Node *conversion = add_node(new AlphaMultiplicationEffect());
1463 connect_nodes(output, conversion);
1465 propagate_gamma_and_color_space();
1469 bool EffectChain::node_needs_gamma_fix(Node *node)
1471 if (node->disabled) {
1475 // Small hack since the output is not an explicit node:
1476 // If we are the last node and our output is in the wrong
1477 // space compared to EffectChain's output, we need to fix it.
1478 // This will only take us to linear, but fix_output_gamma()
1479 // will come and take us to the desired output gamma
1482 // This needs to be before everything else, since it could
1483 // even apply to inputs (if they are the only effect).
1484 if (node->outgoing_links.empty() &&
1485 node->output_gamma_curve != output_format.gamma_curve &&
1486 node->output_gamma_curve != GAMMA_LINEAR) {
1490 if (node->effect->num_inputs() == 0) {
1494 // propagate_gamma_and_color_space() has already set our output
1495 // to GAMMA_INVALID if the inputs differ, so we can rely on that,
1496 // except for GammaCompressionEffect.
1497 if (node->output_gamma_curve == GAMMA_INVALID) {
1500 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1501 assert(node->incoming_links.size() == 1);
1502 return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
1505 return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
1508 // Very similar to fix_internal_color_spaces(), but for gamma.
1509 // There is one difference, though; before we start adding conversion nodes,
1510 // we see if we can get anything out of asking the sources to deliver
1511 // linear gamma directly. fix_internal_gamma_by_asking_inputs()
1512 // does that part, while fix_internal_gamma_by_inserting_nodes()
1513 // inserts nodes as needed afterwards.
1514 void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
1516 unsigned gamma_propagation_pass = 0;
1520 for (unsigned i = 0; i < nodes.size(); ++i) {
1521 Node *node = nodes[i];
1522 if (!node_needs_gamma_fix(node)) {
1526 // See if all inputs can give us linear gamma. If not, leave it.
1527 vector<Node *> nonlinear_inputs;
1528 find_all_nonlinear_inputs(node, &nonlinear_inputs);
1529 assert(!nonlinear_inputs.empty());
1532 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1533 Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
1534 all_ok &= input->can_output_linear_gamma();
1541 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1542 CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1));
1543 nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
1546 // Re-sort topologically, and propagate the new information.
1547 propagate_gamma_and_color_space();
1554 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1555 output_dot(filename);
1556 assert(gamma_propagation_pass < 100);
1557 } while (found_any);
1560 void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
1562 unsigned gamma_propagation_pass = 0;
1566 for (unsigned i = 0; i < nodes.size(); ++i) {
1567 Node *node = nodes[i];
1568 if (!node_needs_gamma_fix(node)) {
1572 // Special case: We could be an input and still be asked to
1573 // fix our gamma; if so, we should be the only node
1574 // (as node_needs_gamma_fix() would only return true in
1575 // for an input in that case). That means we should insert
1576 // a conversion node _after_ ourselves.
1577 if (node->incoming_links.empty()) {
1578 assert(node->outgoing_links.empty());
1579 Node *conversion = add_node(new GammaExpansionEffect());
1580 CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve));
1581 conversion->output_gamma_curve = GAMMA_LINEAR;
1582 connect_nodes(node, conversion);
1585 // If not, go through each input that is not linear gamma,
1586 // and insert a gamma conversion after it.
1587 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1588 Node *input = node->incoming_links[j];
1589 assert(input->output_gamma_curve != GAMMA_INVALID);
1590 if (input->output_gamma_curve == GAMMA_LINEAR) {
1593 Node *conversion = add_node(new GammaExpansionEffect());
1594 CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
1595 conversion->output_gamma_curve = GAMMA_LINEAR;
1596 replace_sender(input, conversion);
1597 connect_nodes(input, conversion);
1600 // Re-sort topologically, and propagate the new information.
1602 propagate_gamma_and_color_space();
1609 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1610 output_dot(filename);
1611 assert(gamma_propagation_pass < 100);
1612 } while (found_any);
1614 for (unsigned i = 0; i < nodes.size(); ++i) {
1615 Node *node = nodes[i];
1616 if (node->disabled) {
1619 assert(node->output_gamma_curve != GAMMA_INVALID);
1623 // Make so that the output is in the desired gamma.
1624 // Note that this assumes linear input gamma, so it might create the need
1625 // for another pass of fix_internal_gamma().
1626 void EffectChain::fix_output_gamma()
1628 Node *output = find_output_node();
1629 if (output->output_gamma_curve != output_format.gamma_curve) {
1630 Node *conversion = add_node(new GammaCompressionEffect());
1631 CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve));
1632 conversion->output_gamma_curve = output_format.gamma_curve;
1633 connect_nodes(output, conversion);
1637 // If the user has requested Y'CbCr output, we need to do this conversion
1638 // _after_ GammaCompressionEffect etc., but before dither (see below).
1639 // This is because Y'CbCr, with the exception of a special optional mode
1640 // in Rec. 2020 (which we currently don't support), is defined to work on
1641 // gamma-encoded data.
1642 void EffectChain::add_ycbcr_conversion_if_needed()
1644 assert(output_color_rgba || num_output_color_ycbcr > 0);
1645 if (num_output_color_ycbcr == 0) {
1648 Node *output = find_output_node();
1649 ycbcr_conversion_effect_node = add_node(new YCbCrConversionEffect(output_ycbcr_format, output_ycbcr_type));
1650 connect_nodes(output, ycbcr_conversion_effect_node);
1653 // If the user has requested dither, add a DitherEffect right at the end
1654 // (after GammaCompressionEffect etc.). This needs to be done after everything else,
1655 // since dither is about the only effect that can _not_ be done in linear space.
1656 void EffectChain::add_dither_if_needed()
1658 if (num_dither_bits == 0) {
1661 Node *output = find_output_node();
1662 Node *dither = add_node(new DitherEffect());
1663 CHECK(dither->effect->set_int("num_bits", num_dither_bits));
1664 connect_nodes(output, dither);
1666 dither_effect = dither->effect;
1669 // Find the output node. This is, simply, one that has no outgoing links.
1670 // If there are multiple ones, the graph is malformed (we do not support
1671 // multiple outputs right now).
1672 Node *EffectChain::find_output_node()
1674 vector<Node *> output_nodes;
1675 for (unsigned i = 0; i < nodes.size(); ++i) {
1676 Node *node = nodes[i];
1677 if (node->disabled) {
1680 if (node->outgoing_links.empty()) {
1681 output_nodes.push_back(node);
1684 assert(output_nodes.size() == 1);
1685 return output_nodes[0];
1688 void EffectChain::finalize()
1690 // Output the graph as it is before we do any conversions on it.
1691 output_dot("step0-start.dot");
1693 // Give each effect in turn a chance to rewrite its own part of the graph.
1694 // Note that if more effects are added as part of this, they will be
1695 // picked up as part of the same for loop, since they are added at the end.
1696 for (unsigned i = 0; i < nodes.size(); ++i) {
1697 nodes[i]->effect->rewrite_graph(this, nodes[i]);
1699 output_dot("step1-rewritten.dot");
1701 find_color_spaces_for_inputs();
1702 output_dot("step2-input-colorspace.dot");
1705 output_dot("step3-propagated-alpha.dot");
1707 propagate_gamma_and_color_space();
1708 output_dot("step4-propagated-all.dot");
1710 fix_internal_color_spaces();
1711 fix_internal_alpha(6);
1712 fix_output_color_space();
1713 output_dot("step7-output-colorspacefix.dot");
1715 output_dot("step8-output-alphafix.dot");
1717 // Note that we need to fix gamma after colorspace conversion,
1718 // because colorspace conversions might create needs for gamma conversions.
1719 // Also, we need to run an extra pass of fix_internal_gamma() after
1720 // fixing the output gamma, as we only have conversions to/from linear,
1721 // and fix_internal_alpha() since GammaCompressionEffect needs
1722 // postmultiplied input.
1723 fix_internal_gamma_by_asking_inputs(9);
1724 fix_internal_gamma_by_inserting_nodes(10);
1726 output_dot("step11-output-gammafix.dot");
1728 output_dot("step12-output-alpha-propagated.dot");
1729 fix_internal_alpha(13);
1730 output_dot("step14-output-alpha-fixed.dot");
1731 fix_internal_gamma_by_asking_inputs(15);
1732 fix_internal_gamma_by_inserting_nodes(16);
1734 output_dot("step17-before-ycbcr.dot");
1735 add_ycbcr_conversion_if_needed();
1737 output_dot("step18-before-dither.dot");
1738 add_dither_if_needed();
1740 output_dot("step19-final.dot");
1742 // Construct all needed GLSL programs, starting at the output.
1743 // We need to keep track of which effects have already been computed,
1744 // as an effect with multiple users could otherwise be calculated
1746 map<Node *, Phase *> completed_effects;
1747 construct_phase(find_output_node(), &completed_effects);
1749 output_dot("step20-split-to-phases.dot");
1751 assert(phases[0]->inputs.empty());
1756 void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
1760 // This needs to be set anew, in case we are coming from a different context
1761 // from when we initialized.
1763 glDisable(GL_DITHER);
1766 const bool final_srgb = glIsEnabled(GL_FRAMEBUFFER_SRGB);
1768 bool current_srgb = final_srgb;
1770 // Save original viewport.
1771 GLuint x = 0, y = 0;
1773 if (width == 0 && height == 0) {
1775 glGetIntegerv(GL_VIEWPORT, viewport);
1778 width = viewport[2];
1779 height = viewport[3];
1784 glDisable(GL_BLEND);
1786 glDisable(GL_DEPTH_TEST);
1788 glDepthMask(GL_FALSE);
1791 set<Phase *> generated_mipmaps;
1793 // We choose the simplest option of having one texture per output,
1794 // since otherwise this turns into an (albeit simple) register allocation problem.
1795 map<Phase *, GLuint> output_textures;
1797 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1798 Phase *phase = phases[phase_num];
1800 if (do_phase_timing) {
1801 GLuint timer_query_object;
1802 if (phase->timer_query_objects_free.empty()) {
1803 glGenQueries(1, &timer_query_object);
1805 timer_query_object = phase->timer_query_objects_free.front();
1806 phase->timer_query_objects_free.pop_front();
1808 glBeginQuery(GL_TIME_ELAPSED, timer_query_object);
1809 phase->timer_query_objects_running.push_back(timer_query_object);
1811 if (phase_num == phases.size() - 1) {
1812 // Last phase goes to the output the user specified.
1813 glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
1815 GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
1816 assert(status == GL_FRAMEBUFFER_COMPLETE);
1817 glViewport(x, y, width, height);
1818 if (dither_effect != NULL) {
1819 CHECK(dither_effect->set_int("output_width", width));
1820 CHECK(dither_effect->set_int("output_height", height));
1823 bool last_phase = (phase_num == phases.size() - 1);
1825 // Enable sRGB rendering for intermediates in case we are
1826 // rendering to an sRGB format.
1827 bool needs_srgb = last_phase ? final_srgb : true;
1828 if (needs_srgb && !current_srgb) {
1829 glEnable(GL_FRAMEBUFFER_SRGB);
1831 current_srgb = true;
1832 } else if (!needs_srgb && current_srgb) {
1833 glDisable(GL_FRAMEBUFFER_SRGB);
1835 current_srgb = true;
1838 execute_phase(phase, last_phase, &output_textures, &generated_mipmaps);
1839 if (do_phase_timing) {
1840 glEndQuery(GL_TIME_ELAPSED);
1844 for (map<Phase *, GLuint>::const_iterator texture_it = output_textures.begin();
1845 texture_it != output_textures.end();
1847 resource_pool->release_2d_texture(texture_it->second);
1850 glBindFramebuffer(GL_FRAMEBUFFER, 0);
1855 glBindBuffer(GL_ARRAY_BUFFER, 0);
1857 glBindVertexArray(0);
1860 if (do_phase_timing) {
1861 // Get back the timer queries.
1862 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1863 Phase *phase = phases[phase_num];
1864 for (std::list<GLuint>::iterator timer_it = phase->timer_query_objects_running.begin();
1865 timer_it != phase->timer_query_objects_running.end(); ) {
1866 GLint timer_query_object = *timer_it;
1868 glGetQueryObjectiv(timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
1870 GLuint64 time_elapsed;
1871 glGetQueryObjectui64v(timer_query_object, GL_QUERY_RESULT, &time_elapsed);
1872 phase->time_elapsed_ns += time_elapsed;
1873 ++phase->num_measured_iterations;
1874 phase->timer_query_objects_free.push_back(timer_query_object);
1875 phase->timer_query_objects_running.erase(timer_it++);
1884 void EffectChain::enable_phase_timing(bool enable)
1887 assert(movit_timer_queries_supported);
1889 this->do_phase_timing = enable;
1892 void EffectChain::reset_phase_timing()
1894 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1895 Phase *phase = phases[phase_num];
1896 phase->time_elapsed_ns = 0;
1897 phase->num_measured_iterations = 0;
1901 void EffectChain::print_phase_timing()
1903 double total_time_ms = 0.0;
1904 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1905 Phase *phase = phases[phase_num];
1906 double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
1907 printf("Phase %d: %5.1f ms [", phase_num, avg_time_ms);
1908 for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
1909 if (effect_num != 0) {
1912 printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
1915 total_time_ms += avg_time_ms;
1917 printf("Total: %5.1f ms\n", total_time_ms);
1920 void EffectChain::execute_phase(Phase *phase, bool last_phase,
1921 map<Phase *, GLuint> *output_textures,
1922 set<Phase *> *generated_mipmaps)
1926 // Find a texture for this phase.
1927 inform_input_sizes(phase);
1929 find_output_size(phase);
1931 GLuint tex_num = resource_pool->create_2d_texture(intermediate_format, phase->output_width, phase->output_height);
1932 output_textures->insert(make_pair(phase, tex_num));
1935 // Set up RTT inputs for this phase.
1936 for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
1937 glActiveTexture(GL_TEXTURE0 + sampler);
1938 Phase *input = phase->inputs[sampler];
1939 input->output_node->bound_sampler_num = sampler;
1940 glBindTexture(GL_TEXTURE_2D, (*output_textures)[input]);
1942 if (phase->input_needs_mipmaps && generated_mipmaps->count(input) == 0) {
1943 glGenerateMipmap(GL_TEXTURE_2D);
1945 generated_mipmaps->insert(input);
1947 setup_rtt_sampler(sampler, phase->input_needs_mipmaps);
1948 phase->input_samplers[sampler] = sampler; // Bind the sampler to the right uniform.
1951 // And now the output. (Already set up for us if it is the last phase.)
1953 fbo = resource_pool->create_fbo((*output_textures)[phase]);
1954 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1955 glViewport(0, 0, phase->output_width, phase->output_height);
1958 GLuint instance_program_num = resource_pool->use_glsl_program(phase->glsl_program_num);
1961 // Give the required parameters to all the effects.
1962 unsigned sampler_num = phase->inputs.size();
1963 for (unsigned i = 0; i < phase->effects.size(); ++i) {
1964 Node *node = phase->effects[i];
1965 unsigned old_sampler_num = sampler_num;
1966 node->effect->set_gl_state(instance_program_num, phase->effect_ids[node], &sampler_num);
1969 if (node->effect->is_single_texture()) {
1970 assert(sampler_num - old_sampler_num == 1);
1971 node->bound_sampler_num = old_sampler_num;
1973 node->bound_sampler_num = -1;
1977 // Uniforms need to come after set_gl_state(), since they can be updated
1979 setup_uniforms(phase);
1981 // Bind the vertex data.
1982 GLuint vao = resource_pool->create_vec2_vao(phase->attribute_indexes, vbo);
1983 glBindVertexArray(vao);
1985 glDrawArrays(GL_TRIANGLES, 0, 3);
1988 for (unsigned i = 0; i < phase->effects.size(); ++i) {
1989 Node *node = phase->effects[i];
1990 node->effect->clear_gl_state();
1993 resource_pool->unuse_glsl_program(instance_program_num);
1994 resource_pool->release_vec2_vao(vao);
1997 resource_pool->release_fbo(fbo);
2001 void EffectChain::setup_uniforms(Phase *phase)
2003 // TODO: Use UBO blocks.
2004 for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
2005 const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
2006 if (uniform.location != -1) {
2007 glUniform1iv(uniform.location, uniform.num_values, uniform.value);
2010 for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
2011 const Uniform<bool> &uniform = phase->uniforms_bool[i];
2012 assert(uniform.num_values == 1);
2013 if (uniform.location != -1) {
2014 glUniform1i(uniform.location, *uniform.value);
2017 for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
2018 const Uniform<int> &uniform = phase->uniforms_int[i];
2019 if (uniform.location != -1) {
2020 glUniform1iv(uniform.location, uniform.num_values, uniform.value);
2023 for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
2024 const Uniform<float> &uniform = phase->uniforms_float[i];
2025 if (uniform.location != -1) {
2026 glUniform1fv(uniform.location, uniform.num_values, uniform.value);
2029 for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
2030 const Uniform<float> &uniform = phase->uniforms_vec2[i];
2031 if (uniform.location != -1) {
2032 glUniform2fv(uniform.location, uniform.num_values, uniform.value);
2035 for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
2036 const Uniform<float> &uniform = phase->uniforms_vec3[i];
2037 if (uniform.location != -1) {
2038 glUniform3fv(uniform.location, uniform.num_values, uniform.value);
2041 for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
2042 const Uniform<float> &uniform = phase->uniforms_vec4[i];
2043 if (uniform.location != -1) {
2044 glUniform4fv(uniform.location, uniform.num_values, uniform.value);
2047 for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
2048 const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
2049 assert(uniform.num_values == 1);
2050 if (uniform.location != -1) {
2051 // Convert to float (GLSL has no double matrices).
2053 for (unsigned y = 0; y < 3; ++y) {
2054 for (unsigned x = 0; x < 3; ++x) {
2055 matrixf[y + x * 3] = (*uniform.value)(y, x);
2058 glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
2063 void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
2065 glActiveTexture(GL_TEXTURE0 + sampler_num);
2068 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
2071 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2074 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2076 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2080 } // namespace movit