1 #define GL_GLEXT_PROTOTYPES 1
17 #include "alpha_division_effect.h"
18 #include "alpha_multiplication_effect.h"
19 #include "colorspace_conversion_effect.h"
20 #include "dither_effect.h"
22 #include "effect_chain.h"
23 #include "effect_util.h"
24 #include "gamma_compression_effect.h"
25 #include "gamma_expansion_effect.h"
28 #include "resource_pool.h"
30 #include "ycbcr_conversion_effect.h"
32 using namespace Eigen;
37 EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
38 : aspect_nom(aspect_nom),
39 aspect_denom(aspect_denom),
40 output_color_rgba(false),
41 output_color_ycbcr(false),
44 output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
46 resource_pool(resource_pool),
47 do_phase_timing(false) {
48 if (resource_pool == NULL) {
49 this->resource_pool = new ResourcePool();
50 owns_resource_pool = true;
52 owns_resource_pool = false;
56 EffectChain::~EffectChain()
58 for (unsigned i = 0; i < nodes.size(); ++i) {
59 delete nodes[i]->effect;
62 for (unsigned i = 0; i < phases.size(); ++i) {
63 resource_pool->release_glsl_program(phases[i]->glsl_program_num);
66 if (owns_resource_pool) {
71 Input *EffectChain::add_input(Input *input)
74 inputs.push_back(input);
79 void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
82 assert(!output_color_rgba);
83 output_format = format;
84 output_alpha_format = alpha_format;
85 output_color_rgba = true;
88 void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
89 const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting)
92 assert(!output_color_ycbcr);
93 output_format = format;
94 output_alpha_format = alpha_format;
95 output_color_ycbcr = true;
96 output_ycbcr_format = ycbcr_format;
97 output_ycbcr_splitting = output_splitting;
99 assert(ycbcr_format.chroma_subsampling_x == 1);
100 assert(ycbcr_format.chroma_subsampling_y == 1);
103 Node *EffectChain::add_node(Effect *effect)
105 for (unsigned i = 0; i < nodes.size(); ++i) {
106 assert(nodes[i]->effect != effect);
109 Node *node = new Node;
110 node->effect = effect;
111 node->disabled = false;
112 node->output_color_space = COLORSPACE_INVALID;
113 node->output_gamma_curve = GAMMA_INVALID;
114 node->output_alpha_type = ALPHA_INVALID;
115 node->needs_mipmaps = false;
116 node->one_to_one_sampling = false;
118 nodes.push_back(node);
119 node_map[effect] = node;
120 effect->inform_added(this);
124 void EffectChain::connect_nodes(Node *sender, Node *receiver)
126 sender->outgoing_links.push_back(receiver);
127 receiver->incoming_links.push_back(sender);
130 void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
132 new_receiver->incoming_links = old_receiver->incoming_links;
133 old_receiver->incoming_links.clear();
135 for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
136 Node *sender = new_receiver->incoming_links[i];
137 for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
138 if (sender->outgoing_links[j] == old_receiver) {
139 sender->outgoing_links[j] = new_receiver;
145 void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
147 new_sender->outgoing_links = old_sender->outgoing_links;
148 old_sender->outgoing_links.clear();
150 for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
151 Node *receiver = new_sender->outgoing_links[i];
152 for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
153 if (receiver->incoming_links[j] == old_sender) {
154 receiver->incoming_links[j] = new_sender;
160 void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
162 for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
163 if (sender->outgoing_links[i] == receiver) {
164 sender->outgoing_links[i] = middle;
165 middle->incoming_links.push_back(sender);
168 for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
169 if (receiver->incoming_links[i] == sender) {
170 receiver->incoming_links[i] = middle;
171 middle->outgoing_links.push_back(receiver);
175 assert(middle->incoming_links.size() == middle->effect->num_inputs());
178 GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
180 assert(node->effect->needs_texture_bounce());
181 assert(input_num < node->incoming_links.size());
182 assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
183 assert(node->incoming_links[input_num]->bound_sampler_num < 8);
184 return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
187 GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
189 assert(input_num < node->incoming_links.size());
190 return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
191 node->incoming_links[input_num]->bound_sampler_num < 8;
194 void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
196 if (node->output_gamma_curve == GAMMA_LINEAR &&
197 node->effect->effect_type_id() != "GammaCompressionEffect") {
200 if (node->effect->num_inputs() == 0) {
201 nonlinear_inputs->push_back(node);
203 assert(node->effect->num_inputs() == node->incoming_links.size());
204 for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
205 find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
210 Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
213 assert(inputs.size() == effect->num_inputs());
214 Node *node = add_node(effect);
215 for (unsigned i = 0; i < inputs.size(); ++i) {
216 assert(node_map.count(inputs[i]) != 0);
217 connect_nodes(node_map[inputs[i]], node);
222 // ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
223 string replace_prefix(const string &text, const string &prefix)
228 while (start < text.size()) {
229 size_t pos = text.find("PREFIX(", start);
230 if (pos == string::npos) {
231 output.append(text.substr(start, string::npos));
235 output.append(text.substr(start, pos - start));
236 output.append(prefix);
239 pos += strlen("PREFIX(");
241 // Output stuff until we find the matching ), which we then eat.
243 size_t end_arg_pos = pos;
244 while (end_arg_pos < text.size()) {
245 if (text[end_arg_pos] == '(') {
247 } else if (text[end_arg_pos] == ')') {
255 output.append(text.substr(pos, end_arg_pos - pos));
266 void extract_uniform_declarations(const vector<Uniform<T> > &effect_uniforms,
267 const string &type_specifier,
268 const string &effect_id,
269 vector<Uniform<T> > *phase_uniforms,
272 for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
273 phase_uniforms->push_back(effect_uniforms[i]);
274 phase_uniforms->back().prefix = effect_id;
276 *glsl_string += string("uniform ") + type_specifier + " " + effect_id
277 + "_" + effect_uniforms[i].name + ";\n";
282 void extract_uniform_array_declarations(const vector<Uniform<T> > &effect_uniforms,
283 const string &type_specifier,
284 const string &effect_id,
285 vector<Uniform<T> > *phase_uniforms,
288 for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
289 phase_uniforms->push_back(effect_uniforms[i]);
290 phase_uniforms->back().prefix = effect_id;
293 snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
294 type_specifier.c_str(), effect_id.c_str(),
295 effect_uniforms[i].name.c_str(),
296 int(effect_uniforms[i].num_values));
302 void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T> > *phase_uniforms)
304 for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
305 Uniform<T> &uniform = (*phase_uniforms)[i];
306 uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
312 void EffectChain::compile_glsl_program(Phase *phase)
314 string frag_shader_header = read_version_dependent_file("header", "frag");
315 string frag_shader = "";
317 // Create functions and uniforms for all the texture inputs that we need.
318 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
319 Node *input = phase->inputs[i]->output_node;
321 sprintf(effect_id, "in%u", i);
322 phase->effect_ids.insert(make_pair(input, effect_id));
324 frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
325 frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
326 frag_shader += "\treturn tex2D(tex_" + string(effect_id) + ", tc);\n";
327 frag_shader += "}\n";
330 Uniform<int> uniform;
331 uniform.name = effect_id;
332 uniform.value = &phase->input_samplers[i];
333 uniform.prefix = "tex";
334 uniform.num_values = 1;
335 uniform.location = -1;
336 phase->uniforms_sampler2d.push_back(uniform);
339 // Give each effect in the phase its own ID.
340 for (unsigned i = 0; i < phase->effects.size(); ++i) {
341 Node *node = phase->effects[i];
343 sprintf(effect_id, "eff%u", i);
344 phase->effect_ids.insert(make_pair(node, effect_id));
347 for (unsigned i = 0; i < phase->effects.size(); ++i) {
348 Node *node = phase->effects[i];
349 const string effect_id = phase->effect_ids[node];
350 if (node->incoming_links.size() == 1) {
351 frag_shader += string("#define INPUT ") + phase->effect_ids[node->incoming_links[0]] + "\n";
353 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
355 sprintf(buf, "#define INPUT%d %s\n", j + 1, phase->effect_ids[node->incoming_links[j]].c_str());
361 frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
362 frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
363 frag_shader += "#undef PREFIX\n";
364 frag_shader += "#undef FUNCNAME\n";
365 if (node->incoming_links.size() == 1) {
366 frag_shader += "#undef INPUT\n";
368 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
370 sprintf(buf, "#undef INPUT%d\n", j + 1);
376 frag_shader += string("#define INPUT ") + phase->effect_ids[phase->effects.back()] + "\n";
378 // If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
379 vector<string> frag_shader_outputs; // In order.
380 if (phase->output_node->outgoing_links.empty() && output_color_ycbcr) {
381 switch (output_ycbcr_splitting) {
382 case YCBCR_OUTPUT_INTERLEAVED:
384 frag_shader_outputs.push_back("FragColor");
386 case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
387 frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
388 frag_shader_outputs.push_back("Y");
389 frag_shader_outputs.push_back("Chroma");
391 case YCBCR_OUTPUT_PLANAR:
392 frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
393 frag_shader_outputs.push_back("Y");
394 frag_shader_outputs.push_back("Cb");
395 frag_shader_outputs.push_back("Cr");
401 if (output_color_rgba) {
402 // Note: Needs to come in the header, because not only the
403 // output needs to see it (YCbCrConversionEffect and DitherEffect
405 frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
406 frag_shader_outputs.push_back("RGBA");
409 frag_shader.append(read_file("footer.frag"));
411 // Collect uniforms from all effects and output them. Note that this needs
412 // to happen after output_fragment_shader(), even though the uniforms come
413 // before in the output source, since output_fragment_shader() is allowed
414 // to register new uniforms (e.g. arrays that are of unknown length until
415 // finalization time).
416 // TODO: Make a uniform block for platforms that support it.
417 string frag_shader_uniforms = "";
418 for (unsigned i = 0; i < phase->effects.size(); ++i) {
419 Node *node = phase->effects[i];
420 Effect *effect = node->effect;
421 const string effect_id = phase->effect_ids[node];
422 extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
423 extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
424 extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
425 extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
426 extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
427 extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
428 extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
429 extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
430 extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
431 extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
432 extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
433 extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
436 frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;
438 string vert_shader = read_version_dependent_file("vs", "vert");
440 // If we're the last phase and need to flip the picture to compensate for
441 // the origin, tell the vertex shader so.
442 if (phase->output_node->outgoing_links.empty() && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
443 const string needle = "#define FLIP_ORIGIN 0";
444 size_t pos = vert_shader.find(needle);
445 assert(pos != string::npos);
447 vert_shader[pos + needle.size() - 1] = '1';
450 phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs);
452 // Collect the resulting location numbers for each uniform.
453 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
454 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
455 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
456 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
457 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
458 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
459 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
460 collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
463 // Construct GLSL programs, starting at the given effect and following
464 // the chain from there. We end a program every time we come to an effect
465 // marked as "needs texture bounce", one that is used by multiple other
466 // effects, every time we need to bounce due to output size change
467 // (not all size changes require ending), and of course at the end.
469 // We follow a quite simple depth-first search from the output, although
470 // without recursing explicitly within each phase.
471 Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
473 if (completed_effects->count(output)) {
474 return (*completed_effects)[output];
477 Phase *phase = new Phase;
478 phase->output_node = output;
480 // If the output effect has one-to-one sampling, we try to trace this
481 // status down through the dependency chain. This is important in case
482 // we hit an effect that changes output size (and not sets a virtual
483 // output size); if we have one-to-one sampling, we don't have to break
485 output->one_to_one_sampling = output->effect->one_to_one_sampling();
487 // Effects that we have yet to calculate, but that we know should
488 // be in the current phase.
489 stack<Node *> effects_todo_this_phase;
490 effects_todo_this_phase.push(output);
492 while (!effects_todo_this_phase.empty()) {
493 Node *node = effects_todo_this_phase.top();
494 effects_todo_this_phase.pop();
496 if (node->effect->needs_mipmaps()) {
497 node->needs_mipmaps = true;
500 // This should currently only happen for effects that are inputs
501 // (either true inputs or phase outputs). We special-case inputs,
502 // and then deduplicate phase outputs below.
503 if (node->effect->num_inputs() == 0) {
504 if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
508 assert(completed_effects->count(node) == 0);
511 phase->effects.push_back(node);
513 // Find all the dependencies of this effect, and add them to the stack.
514 vector<Node *> deps = node->incoming_links;
515 assert(node->effect->num_inputs() == deps.size());
516 for (unsigned i = 0; i < deps.size(); ++i) {
517 bool start_new_phase = false;
519 if (node->effect->needs_texture_bounce() &&
520 !deps[i]->effect->is_single_texture() &&
521 !deps[i]->effect->override_disable_bounce()) {
522 start_new_phase = true;
525 // Propagate information about needing mipmaps down the chain,
526 // breaking the phase if we notice an incompatibility.
528 // Note that we cannot do this propagation as a normal pass,
529 // because it needs information about where the phases end
530 // (we should not propagate the flag across phases).
531 if (node->needs_mipmaps) {
532 if (deps[i]->effect->num_inputs() == 0) {
533 Input *input = static_cast<Input *>(deps[i]->effect);
534 start_new_phase |= !input->can_supply_mipmaps();
536 deps[i]->needs_mipmaps = true;
540 if (deps[i]->outgoing_links.size() > 1) {
541 if (!deps[i]->effect->is_single_texture()) {
542 // More than one effect uses this as the input,
543 // and it is not a texture itself.
544 // The easiest thing to do (and probably also the safest
545 // performance-wise in most cases) is to bounce it to a texture
546 // and then let the next passes read from that.
547 start_new_phase = true;
549 assert(deps[i]->effect->num_inputs() == 0);
551 // For textures, we try to be slightly more clever;
552 // if none of our outputs need a bounce, we don't bounce
553 // but instead simply use the effect many times.
555 // Strictly speaking, we could bounce it for some outputs
556 // and use it directly for others, but the processing becomes
557 // somewhat simpler if the effect is only used in one such way.
558 for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) {
559 Node *rdep = deps[i]->outgoing_links[j];
560 start_new_phase |= rdep->effect->needs_texture_bounce();
565 if (deps[i]->effect->sets_virtual_output_size()) {
566 assert(deps[i]->effect->changes_output_size());
567 // If the next effect sets a virtual size to rely on OpenGL's
568 // bilinear sampling, we'll really need to break the phase here.
569 start_new_phase = true;
570 } else if (deps[i]->effect->changes_output_size() && !node->one_to_one_sampling) {
571 // If the next effect changes size and we don't have one-to-one sampling,
572 // we also need to break here.
573 start_new_phase = true;
576 if (start_new_phase) {
577 phase->inputs.push_back(construct_phase(deps[i], completed_effects));
579 effects_todo_this_phase.push(deps[i]);
581 // Propagate the one-to-one status down through the dependency.
582 deps[i]->one_to_one_sampling = node->one_to_one_sampling &&
583 deps[i]->effect->one_to_one_sampling();
588 // No more effects to do this phase. Take all the ones we have,
589 // and create a GLSL program for it.
590 assert(!phase->effects.empty());
592 // Deduplicate the inputs.
593 sort(phase->inputs.begin(), phase->inputs.end());
594 phase->inputs.erase(unique(phase->inputs.begin(), phase->inputs.end()), phase->inputs.end());
596 // Allocate samplers for each input.
597 phase->input_samplers.resize(phase->inputs.size());
599 // We added the effects from the output and back, but we need to output
600 // them in topological sort order in the shader.
601 phase->effects = topological_sort(phase->effects);
603 // Figure out if we need mipmaps or not, and if so, tell the inputs that.
604 phase->input_needs_mipmaps = false;
605 for (unsigned i = 0; i < phase->effects.size(); ++i) {
606 Node *node = phase->effects[i];
607 phase->input_needs_mipmaps |= node->effect->needs_mipmaps();
609 for (unsigned i = 0; i < phase->effects.size(); ++i) {
610 Node *node = phase->effects[i];
611 if (node->effect->num_inputs() == 0) {
612 Input *input = static_cast<Input *>(node->effect);
613 assert(!phase->input_needs_mipmaps || input->can_supply_mipmaps());
614 CHECK(input->set_int("needs_mipmaps", phase->input_needs_mipmaps));
618 // Tell each node which phase it ended up in, so that the unit test
619 // can check that the phases were split in the right place.
620 // Note that this ignores that effects may be part of multiple phases;
621 // if the unit tests need to test such cases, we'll reconsider.
622 for (unsigned i = 0; i < phase->effects.size(); ++i) {
623 phase->effects[i]->containing_phase = phase;
626 // Actually make the shader for this phase.
627 compile_glsl_program(phase);
629 // Initialize timer objects.
630 if (movit_timer_queries_supported) {
631 glGenQueries(1, &phase->timer_query_object);
632 phase->time_elapsed_ns = 0;
633 phase->num_measured_iterations = 0;
636 assert(completed_effects->count(output) == 0);
637 completed_effects->insert(make_pair(output, phase));
638 phases.push_back(phase);
642 void EffectChain::output_dot(const char *filename)
644 if (movit_debug_level != MOVIT_DEBUG_ON) {
648 FILE *fp = fopen(filename, "w");
654 fprintf(fp, "digraph G {\n");
655 fprintf(fp, " output [shape=box label=\"(output)\"];\n");
656 for (unsigned i = 0; i < nodes.size(); ++i) {
657 // Find out which phase this event belongs to.
658 vector<int> in_phases;
659 for (unsigned j = 0; j < phases.size(); ++j) {
660 const Phase* p = phases[j];
661 if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
662 in_phases.push_back(j);
666 if (in_phases.empty()) {
667 fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
668 } else if (in_phases.size() == 1) {
669 fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
670 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
671 (in_phases[0] % 8) + 1);
673 // If we had new enough Graphviz, style="wedged" would probably be ideal here.
675 fprintf(fp, " n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
676 (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
677 (in_phases[0] % 8) + 1);
680 char from_node_id[256];
681 snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);
683 for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
684 char to_node_id[256];
685 snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);
687 vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
688 output_dot_edge(fp, from_node_id, to_node_id, labels);
691 if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
693 vector<string> labels = get_labels_for_edge(nodes[i], NULL);
694 output_dot_edge(fp, from_node_id, "output", labels);
702 vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
704 vector<string> labels;
706 if (to != NULL && to->effect->needs_texture_bounce()) {
707 labels.push_back("needs_bounce");
709 if (from->effect->changes_output_size()) {
710 labels.push_back("resize");
713 switch (from->output_color_space) {
714 case COLORSPACE_INVALID:
715 labels.push_back("spc[invalid]");
717 case COLORSPACE_REC_601_525:
718 labels.push_back("spc[rec601-525]");
720 case COLORSPACE_REC_601_625:
721 labels.push_back("spc[rec601-625]");
727 switch (from->output_gamma_curve) {
729 labels.push_back("gamma[invalid]");
732 labels.push_back("gamma[sRGB]");
734 case GAMMA_REC_601: // and GAMMA_REC_709
735 labels.push_back("gamma[rec601/709]");
741 switch (from->output_alpha_type) {
743 labels.push_back("alpha[invalid]");
746 labels.push_back("alpha[blank]");
748 case ALPHA_POSTMULTIPLIED:
749 labels.push_back("alpha[postmult]");
758 void EffectChain::output_dot_edge(FILE *fp,
759 const string &from_node_id,
760 const string &to_node_id,
761 const vector<string> &labels)
763 if (labels.empty()) {
764 fprintf(fp, " %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
766 string label = labels[0];
767 for (unsigned k = 1; k < labels.size(); ++k) {
768 label += ", " + labels[k];
770 fprintf(fp, " %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
774 void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
776 unsigned scaled_width, scaled_height;
778 if (float(width) * aspect_denom >= float(height) * aspect_nom) {
779 // Same aspect, or W/H > aspect (image is wider than the frame).
780 // In either case, keep width, and adjust height.
781 scaled_width = width;
782 scaled_height = lrintf(width * aspect_denom / aspect_nom);
784 // W/H < aspect (image is taller than the frame), so keep height,
786 scaled_width = lrintf(height * aspect_nom / aspect_denom);
787 scaled_height = height;
790 // We should be consistently larger or smaller then the existing choice,
791 // since we have the same aspect.
792 assert(!(scaled_width < *output_width && scaled_height > *output_height));
793 assert(!(scaled_height < *output_height && scaled_width > *output_width));
795 if (scaled_width >= *output_width && scaled_height >= *output_height) {
796 *output_width = scaled_width;
797 *output_height = scaled_height;
801 // Propagate input texture sizes throughout, and inform effects downstream.
802 // (Like a lot of other code, we depend on effects being in topological order.)
803 void EffectChain::inform_input_sizes(Phase *phase)
805 // All effects that have a defined size (inputs and RTT inputs)
806 // get that. Reset all others.
807 for (unsigned i = 0; i < phase->effects.size(); ++i) {
808 Node *node = phase->effects[i];
809 if (node->effect->num_inputs() == 0) {
810 Input *input = static_cast<Input *>(node->effect);
811 node->output_width = input->get_width();
812 node->output_height = input->get_height();
813 assert(node->output_width != 0);
814 assert(node->output_height != 0);
816 node->output_width = node->output_height = 0;
819 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
820 Phase *input = phase->inputs[i];
821 input->output_node->output_width = input->virtual_output_width;
822 input->output_node->output_height = input->virtual_output_height;
823 assert(input->output_node->output_width != 0);
824 assert(input->output_node->output_height != 0);
827 // Now propagate from the inputs towards the end, and inform as we go.
828 // The rules are simple:
830 // 1. Don't touch effects that already have given sizes (ie., inputs
831 // or effects that change the output size).
832 // 2. If all of your inputs have the same size, that will be your output size.
833 // 3. Otherwise, your output size is 0x0.
834 for (unsigned i = 0; i < phase->effects.size(); ++i) {
835 Node *node = phase->effects[i];
836 if (node->effect->num_inputs() == 0) {
839 unsigned this_output_width = 0;
840 unsigned this_output_height = 0;
841 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
842 Node *input = node->incoming_links[j];
843 node->effect->inform_input_size(j, input->output_width, input->output_height);
845 this_output_width = input->output_width;
846 this_output_height = input->output_height;
847 } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
849 this_output_width = 0;
850 this_output_height = 0;
853 if (node->effect->changes_output_size()) {
854 // We cannot call get_output_size() before we've done inform_input_size()
856 unsigned real_width, real_height;
857 node->effect->get_output_size(&real_width, &real_height,
858 &node->output_width, &node->output_height);
859 assert(node->effect->sets_virtual_output_size() ||
860 (real_width == node->output_width &&
861 real_height == node->output_height));
863 node->output_width = this_output_width;
864 node->output_height = this_output_height;
869 // Note: You should call inform_input_sizes() before this, as the last effect's
870 // desired output size might change based on the inputs.
871 void EffectChain::find_output_size(Phase *phase)
873 Node *output_node = phase->effects.back();
875 // If the last effect explicitly sets an output size, use that.
876 if (output_node->effect->changes_output_size()) {
877 output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
878 &phase->virtual_output_width, &phase->virtual_output_height);
879 assert(output_node->effect->sets_virtual_output_size() ||
880 (phase->output_width == phase->virtual_output_width &&
881 phase->output_height == phase->virtual_output_height));
885 // If all effects have the same size, use that.
886 unsigned output_width = 0, output_height = 0;
887 bool all_inputs_same_size = true;
889 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
890 Phase *input = phase->inputs[i];
891 assert(input->output_width != 0);
892 assert(input->output_height != 0);
893 if (output_width == 0 && output_height == 0) {
894 output_width = input->virtual_output_width;
895 output_height = input->virtual_output_height;
896 } else if (output_width != input->virtual_output_width ||
897 output_height != input->virtual_output_height) {
898 all_inputs_same_size = false;
901 for (unsigned i = 0; i < phase->effects.size(); ++i) {
902 Effect *effect = phase->effects[i]->effect;
903 if (effect->num_inputs() != 0) {
907 Input *input = static_cast<Input *>(effect);
908 if (output_width == 0 && output_height == 0) {
909 output_width = input->get_width();
910 output_height = input->get_height();
911 } else if (output_width != input->get_width() ||
912 output_height != input->get_height()) {
913 all_inputs_same_size = false;
917 if (all_inputs_same_size) {
918 assert(output_width != 0);
919 assert(output_height != 0);
920 phase->virtual_output_width = phase->output_width = output_width;
921 phase->virtual_output_height = phase->output_height = output_height;
925 // If not, fit all the inputs into the current aspect, and select the largest one.
928 for (unsigned i = 0; i < phase->inputs.size(); ++i) {
929 Phase *input = phase->inputs[i];
930 assert(input->output_width != 0);
931 assert(input->output_height != 0);
932 size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
934 for (unsigned i = 0; i < phase->effects.size(); ++i) {
935 Effect *effect = phase->effects[i]->effect;
936 if (effect->num_inputs() != 0) {
940 Input *input = static_cast<Input *>(effect);
941 size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
943 assert(output_width != 0);
944 assert(output_height != 0);
945 phase->virtual_output_width = phase->output_width = output_width;
946 phase->virtual_output_height = phase->output_height = output_height;
949 void EffectChain::sort_all_nodes_topologically()
951 nodes = topological_sort(nodes);
954 vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
956 set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
957 vector<Node *> sorted_list;
958 for (unsigned i = 0; i < nodes.size(); ++i) {
959 topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
961 reverse(sorted_list.begin(), sorted_list.end());
965 void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
967 if (nodes_left_to_visit->count(node) == 0) {
970 nodes_left_to_visit->erase(node);
971 for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
972 topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
974 sorted_list->push_back(node);
977 void EffectChain::find_color_spaces_for_inputs()
979 for (unsigned i = 0; i < nodes.size(); ++i) {
980 Node *node = nodes[i];
981 if (node->disabled) {
984 if (node->incoming_links.size() == 0) {
985 Input *input = static_cast<Input *>(node->effect);
986 node->output_color_space = input->get_color_space();
987 node->output_gamma_curve = input->get_gamma_curve();
989 Effect::AlphaHandling alpha_handling = input->alpha_handling();
990 switch (alpha_handling) {
991 case Effect::OUTPUT_BLANK_ALPHA:
992 node->output_alpha_type = ALPHA_BLANK;
994 case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
995 node->output_alpha_type = ALPHA_PREMULTIPLIED;
997 case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
998 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1000 case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
1001 case Effect::DONT_CARE_ALPHA_TYPE:
1006 if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
1007 assert(node->output_gamma_curve == GAMMA_LINEAR);
1013 // Propagate gamma and color space information as far as we can in the graph.
1014 // The rules are simple: Anything where all the inputs agree, get that as
1015 // output as well. Anything else keeps having *_INVALID.
1016 void EffectChain::propagate_gamma_and_color_space()
1018 // We depend on going through the nodes in order.
1019 sort_all_nodes_topologically();
1021 for (unsigned i = 0; i < nodes.size(); ++i) {
1022 Node *node = nodes[i];
1023 if (node->disabled) {
1026 assert(node->incoming_links.size() == node->effect->num_inputs());
1027 if (node->incoming_links.size() == 0) {
1028 assert(node->output_color_space != COLORSPACE_INVALID);
1029 assert(node->output_gamma_curve != GAMMA_INVALID);
1033 Colorspace color_space = node->incoming_links[0]->output_color_space;
1034 GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
1035 for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
1036 if (node->incoming_links[j]->output_color_space != color_space) {
1037 color_space = COLORSPACE_INVALID;
1039 if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
1040 gamma_curve = GAMMA_INVALID;
1044 // The conversion effects already have their outputs set correctly,
1045 // so leave them alone.
1046 if (node->effect->effect_type_id() != "ColorspaceConversionEffect") {
1047 node->output_color_space = color_space;
1049 if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
1050 node->effect->effect_type_id() != "GammaExpansionEffect") {
1051 node->output_gamma_curve = gamma_curve;
1056 // Propagate alpha information as far as we can in the graph.
1057 // Similar to propagate_gamma_and_color_space().
1058 void EffectChain::propagate_alpha()
1060 // We depend on going through the nodes in order.
1061 sort_all_nodes_topologically();
1063 for (unsigned i = 0; i < nodes.size(); ++i) {
1064 Node *node = nodes[i];
1065 if (node->disabled) {
1068 assert(node->incoming_links.size() == node->effect->num_inputs());
1069 if (node->incoming_links.size() == 0) {
1070 assert(node->output_alpha_type != ALPHA_INVALID);
1074 // The alpha multiplication/division effects are special cases.
1075 if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
1076 assert(node->incoming_links.size() == 1);
1077 assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
1078 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1081 if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
1082 assert(node->incoming_links.size() == 1);
1083 assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1084 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1088 // GammaCompressionEffect and GammaExpansionEffect are also a special case,
1089 // because they are the only one that _need_ postmultiplied alpha.
1090 if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
1091 node->effect->effect_type_id() == "GammaExpansionEffect") {
1092 assert(node->incoming_links.size() == 1);
1093 if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
1094 node->output_alpha_type = ALPHA_BLANK;
1095 } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
1096 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1098 node->output_alpha_type = ALPHA_INVALID;
1103 // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
1104 // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
1105 // taken care of above. Rationale: Even if you could imagine
1106 // e.g. an effect that took in an image and set alpha=1.0
1107 // unconditionally, it wouldn't make any sense to have it as
1108 // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
1109 // got its input pre- or postmultiplied, so it wouldn't know
1110 // whether to divide away the old alpha or not.
1111 Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
1112 assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1113 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
1114 alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1116 // If the node has multiple inputs, check that they are all valid and
1118 bool any_invalid = false;
1119 bool any_premultiplied = false;
1120 bool any_postmultiplied = false;
1122 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1123 switch (node->incoming_links[j]->output_alpha_type) {
1128 // Blank is good as both pre- and postmultiplied alpha,
1129 // so just ignore it.
1131 case ALPHA_PREMULTIPLIED:
1132 any_premultiplied = true;
1134 case ALPHA_POSTMULTIPLIED:
1135 any_postmultiplied = true;
1143 node->output_alpha_type = ALPHA_INVALID;
1147 // Inputs must be of the same type.
1148 if (any_premultiplied && any_postmultiplied) {
1149 node->output_alpha_type = ALPHA_INVALID;
1153 if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
1154 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1155 // If the effect has asked for premultiplied alpha, check that it has got it.
1156 if (any_postmultiplied) {
1157 node->output_alpha_type = ALPHA_INVALID;
1158 } else if (!any_premultiplied &&
1159 alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
1160 // Blank input alpha, and the effect preserves blank alpha.
1161 node->output_alpha_type = ALPHA_BLANK;
1163 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1166 // OK, all inputs are the same, and this effect is not going
1168 assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
1169 if (any_premultiplied) {
1170 node->output_alpha_type = ALPHA_PREMULTIPLIED;
1171 } else if (any_postmultiplied) {
1172 node->output_alpha_type = ALPHA_POSTMULTIPLIED;
1174 node->output_alpha_type = ALPHA_BLANK;
1180 bool EffectChain::node_needs_colorspace_fix(Node *node)
1182 if (node->disabled) {
1185 if (node->effect->num_inputs() == 0) {
1189 // propagate_gamma_and_color_space() has already set our output
1190 // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
1191 if (node->output_color_space == COLORSPACE_INVALID) {
1194 return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
1197 // Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
1198 // the graph. Our strategy is not always optimal, but quite simple:
1199 // Find an effect that's as early as possible where the inputs are of
1200 // unacceptable colorspaces (that is, either different, or, if the effect only
1201 // wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
1202 // propagate the information anew, and repeat until there are no more such
1204 void EffectChain::fix_internal_color_spaces()
1206 unsigned colorspace_propagation_pass = 0;
1210 for (unsigned i = 0; i < nodes.size(); ++i) {
1211 Node *node = nodes[i];
1212 if (!node_needs_colorspace_fix(node)) {
1216 // Go through each input that is not sRGB, and insert
1217 // a colorspace conversion after it.
1218 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1219 Node *input = node->incoming_links[j];
1220 assert(input->output_color_space != COLORSPACE_INVALID);
1221 if (input->output_color_space == COLORSPACE_sRGB) {
1224 Node *conversion = add_node(new ColorspaceConversionEffect());
1225 CHECK(conversion->effect->set_int("source_space", input->output_color_space));
1226 CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
1227 conversion->output_color_space = COLORSPACE_sRGB;
1228 replace_sender(input, conversion);
1229 connect_nodes(input, conversion);
1232 // Re-sort topologically, and propagate the new information.
1233 propagate_gamma_and_color_space();
1240 sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
1241 output_dot(filename);
1242 assert(colorspace_propagation_pass < 100);
1243 } while (found_any);
1245 for (unsigned i = 0; i < nodes.size(); ++i) {
1246 Node *node = nodes[i];
1247 if (node->disabled) {
1250 assert(node->output_color_space != COLORSPACE_INVALID);
1254 bool EffectChain::node_needs_alpha_fix(Node *node)
1256 if (node->disabled) {
1260 // propagate_alpha() has already set our output to ALPHA_INVALID if the
1261 // inputs differ or we are otherwise in mismatch, so we can rely on that.
1262 return (node->output_alpha_type == ALPHA_INVALID);
1265 // Fix up alpha so that there are no ALPHA_INVALID nodes left in
1266 // the graph. Similar to fix_internal_color_spaces().
1267 void EffectChain::fix_internal_alpha(unsigned step)
1269 unsigned alpha_propagation_pass = 0;
1273 for (unsigned i = 0; i < nodes.size(); ++i) {
1274 Node *node = nodes[i];
1275 if (!node_needs_alpha_fix(node)) {
1279 // If we need to fix up GammaExpansionEffect, then clearly something
1280 // is wrong, since the combination of premultiplied alpha and nonlinear inputs
1282 assert(node->effect->effect_type_id() != "GammaExpansionEffect");
1284 AlphaType desired_type = ALPHA_PREMULTIPLIED;
1286 // GammaCompressionEffect is special; it needs postmultiplied alpha.
1287 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1288 assert(node->incoming_links.size() == 1);
1289 assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
1290 desired_type = ALPHA_POSTMULTIPLIED;
1293 // Go through each input that is not premultiplied alpha, and insert
1294 // a conversion before it.
1295 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1296 Node *input = node->incoming_links[j];
1297 assert(input->output_alpha_type != ALPHA_INVALID);
1298 if (input->output_alpha_type == desired_type ||
1299 input->output_alpha_type == ALPHA_BLANK) {
1303 if (desired_type == ALPHA_PREMULTIPLIED) {
1304 conversion = add_node(new AlphaMultiplicationEffect());
1306 conversion = add_node(new AlphaDivisionEffect());
1308 conversion->output_alpha_type = desired_type;
1309 replace_sender(input, conversion);
1310 connect_nodes(input, conversion);
1313 // Re-sort topologically, and propagate the new information.
1314 propagate_gamma_and_color_space();
1322 sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
1323 output_dot(filename);
1324 assert(alpha_propagation_pass < 100);
1325 } while (found_any);
1327 for (unsigned i = 0; i < nodes.size(); ++i) {
1328 Node *node = nodes[i];
1329 if (node->disabled) {
1332 assert(node->output_alpha_type != ALPHA_INVALID);
1336 // Make so that the output is in the desired color space.
1337 void EffectChain::fix_output_color_space()
1339 Node *output = find_output_node();
1340 if (output->output_color_space != output_format.color_space) {
1341 Node *conversion = add_node(new ColorspaceConversionEffect());
1342 CHECK(conversion->effect->set_int("source_space", output->output_color_space));
1343 CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
1344 conversion->output_color_space = output_format.color_space;
1345 connect_nodes(output, conversion);
1347 propagate_gamma_and_color_space();
1351 // Make so that the output is in the desired pre-/postmultiplication alpha state.
1352 void EffectChain::fix_output_alpha()
1354 Node *output = find_output_node();
1355 assert(output->output_alpha_type != ALPHA_INVALID);
1356 if (output->output_alpha_type == ALPHA_BLANK) {
1357 // No alpha output, so we don't care.
1360 if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
1361 output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
1362 Node *conversion = add_node(new AlphaDivisionEffect());
1363 connect_nodes(output, conversion);
1365 propagate_gamma_and_color_space();
1367 if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
1368 output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
1369 Node *conversion = add_node(new AlphaMultiplicationEffect());
1370 connect_nodes(output, conversion);
1372 propagate_gamma_and_color_space();
1376 bool EffectChain::node_needs_gamma_fix(Node *node)
1378 if (node->disabled) {
1382 // Small hack since the output is not an explicit node:
1383 // If we are the last node and our output is in the wrong
1384 // space compared to EffectChain's output, we need to fix it.
1385 // This will only take us to linear, but fix_output_gamma()
1386 // will come and take us to the desired output gamma
1389 // This needs to be before everything else, since it could
1390 // even apply to inputs (if they are the only effect).
1391 if (node->outgoing_links.empty() &&
1392 node->output_gamma_curve != output_format.gamma_curve &&
1393 node->output_gamma_curve != GAMMA_LINEAR) {
1397 if (node->effect->num_inputs() == 0) {
1401 // propagate_gamma_and_color_space() has already set our output
1402 // to GAMMA_INVALID if the inputs differ, so we can rely on that,
1403 // except for GammaCompressionEffect.
1404 if (node->output_gamma_curve == GAMMA_INVALID) {
1407 if (node->effect->effect_type_id() == "GammaCompressionEffect") {
1408 assert(node->incoming_links.size() == 1);
1409 return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
1412 return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
1415 // Very similar to fix_internal_color_spaces(), but for gamma.
1416 // There is one difference, though; before we start adding conversion nodes,
1417 // we see if we can get anything out of asking the sources to deliver
1418 // linear gamma directly. fix_internal_gamma_by_asking_inputs()
1419 // does that part, while fix_internal_gamma_by_inserting_nodes()
1420 // inserts nodes as needed afterwards.
1421 void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
1423 unsigned gamma_propagation_pass = 0;
1427 for (unsigned i = 0; i < nodes.size(); ++i) {
1428 Node *node = nodes[i];
1429 if (!node_needs_gamma_fix(node)) {
1433 // See if all inputs can give us linear gamma. If not, leave it.
1434 vector<Node *> nonlinear_inputs;
1435 find_all_nonlinear_inputs(node, &nonlinear_inputs);
1436 assert(!nonlinear_inputs.empty());
1439 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1440 Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
1441 all_ok &= input->can_output_linear_gamma();
1448 for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
1449 CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1));
1450 nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
1453 // Re-sort topologically, and propagate the new information.
1454 propagate_gamma_and_color_space();
1461 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1462 output_dot(filename);
1463 assert(gamma_propagation_pass < 100);
1464 } while (found_any);
1467 void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
1469 unsigned gamma_propagation_pass = 0;
1473 for (unsigned i = 0; i < nodes.size(); ++i) {
1474 Node *node = nodes[i];
1475 if (!node_needs_gamma_fix(node)) {
1479 // Special case: We could be an input and still be asked to
1480 // fix our gamma; if so, we should be the only node
1481 // (as node_needs_gamma_fix() would only return true in
1482 // for an input in that case). That means we should insert
1483 // a conversion node _after_ ourselves.
1484 if (node->incoming_links.empty()) {
1485 assert(node->outgoing_links.empty());
1486 Node *conversion = add_node(new GammaExpansionEffect());
1487 CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve));
1488 conversion->output_gamma_curve = GAMMA_LINEAR;
1489 connect_nodes(node, conversion);
1492 // If not, go through each input that is not linear gamma,
1493 // and insert a gamma conversion after it.
1494 for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
1495 Node *input = node->incoming_links[j];
1496 assert(input->output_gamma_curve != GAMMA_INVALID);
1497 if (input->output_gamma_curve == GAMMA_LINEAR) {
1500 Node *conversion = add_node(new GammaExpansionEffect());
1501 CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
1502 conversion->output_gamma_curve = GAMMA_LINEAR;
1503 replace_sender(input, conversion);
1504 connect_nodes(input, conversion);
1507 // Re-sort topologically, and propagate the new information.
1509 propagate_gamma_and_color_space();
1516 sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
1517 output_dot(filename);
1518 assert(gamma_propagation_pass < 100);
1519 } while (found_any);
1521 for (unsigned i = 0; i < nodes.size(); ++i) {
1522 Node *node = nodes[i];
1523 if (node->disabled) {
1526 assert(node->output_gamma_curve != GAMMA_INVALID);
1530 // Make so that the output is in the desired gamma.
1531 // Note that this assumes linear input gamma, so it might create the need
1532 // for another pass of fix_internal_gamma().
1533 void EffectChain::fix_output_gamma()
1535 Node *output = find_output_node();
1536 if (output->output_gamma_curve != output_format.gamma_curve) {
1537 Node *conversion = add_node(new GammaCompressionEffect());
1538 CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve));
1539 conversion->output_gamma_curve = output_format.gamma_curve;
1540 connect_nodes(output, conversion);
1544 // If the user has requested Y'CbCr output, we need to do this conversion
1545 // _after_ GammaCompressionEffect etc., but before dither (see below).
1546 // This is because Y'CbCr, with the exception of a special optional mode
1547 // in Rec. 2020 (which we currently don't support), is defined to work on
1548 // gamma-encoded data.
1549 void EffectChain::add_ycbcr_conversion_if_needed()
1551 assert(output_color_rgba || output_color_ycbcr);
1552 if (!output_color_ycbcr) {
1555 Node *output = find_output_node();
1556 Node *ycbcr = add_node(new YCbCrConversionEffect(output_ycbcr_format));
1557 connect_nodes(output, ycbcr);
1560 // If the user has requested dither, add a DitherEffect right at the end
1561 // (after GammaCompressionEffect etc.). This needs to be done after everything else,
1562 // since dither is about the only effect that can _not_ be done in linear space.
1563 void EffectChain::add_dither_if_needed()
1565 if (num_dither_bits == 0) {
1568 Node *output = find_output_node();
1569 Node *dither = add_node(new DitherEffect());
1570 CHECK(dither->effect->set_int("num_bits", num_dither_bits));
1571 connect_nodes(output, dither);
1573 dither_effect = dither->effect;
1576 // Find the output node. This is, simply, one that has no outgoing links.
1577 // If there are multiple ones, the graph is malformed (we do not support
1578 // multiple outputs right now).
1579 Node *EffectChain::find_output_node()
1581 vector<Node *> output_nodes;
1582 for (unsigned i = 0; i < nodes.size(); ++i) {
1583 Node *node = nodes[i];
1584 if (node->disabled) {
1587 if (node->outgoing_links.empty()) {
1588 output_nodes.push_back(node);
1591 assert(output_nodes.size() == 1);
1592 return output_nodes[0];
1595 void EffectChain::finalize()
1597 // Output the graph as it is before we do any conversions on it.
1598 output_dot("step0-start.dot");
1600 // Give each effect in turn a chance to rewrite its own part of the graph.
1601 // Note that if more effects are added as part of this, they will be
1602 // picked up as part of the same for loop, since they are added at the end.
1603 for (unsigned i = 0; i < nodes.size(); ++i) {
1604 nodes[i]->effect->rewrite_graph(this, nodes[i]);
1606 output_dot("step1-rewritten.dot");
1608 find_color_spaces_for_inputs();
1609 output_dot("step2-input-colorspace.dot");
1612 output_dot("step3-propagated-alpha.dot");
1614 propagate_gamma_and_color_space();
1615 output_dot("step4-propagated-all.dot");
1617 fix_internal_color_spaces();
1618 fix_internal_alpha(6);
1619 fix_output_color_space();
1620 output_dot("step7-output-colorspacefix.dot");
1622 output_dot("step8-output-alphafix.dot");
1624 // Note that we need to fix gamma after colorspace conversion,
1625 // because colorspace conversions might create needs for gamma conversions.
1626 // Also, we need to run an extra pass of fix_internal_gamma() after
1627 // fixing the output gamma, as we only have conversions to/from linear,
1628 // and fix_internal_alpha() since GammaCompressionEffect needs
1629 // postmultiplied input.
1630 fix_internal_gamma_by_asking_inputs(9);
1631 fix_internal_gamma_by_inserting_nodes(10);
1633 output_dot("step11-output-gammafix.dot");
1635 output_dot("step12-output-alpha-propagated.dot");
1636 fix_internal_alpha(13);
1637 output_dot("step14-output-alpha-fixed.dot");
1638 fix_internal_gamma_by_asking_inputs(15);
1639 fix_internal_gamma_by_inserting_nodes(16);
1641 output_dot("step17-before-ycbcr.dot");
1642 add_ycbcr_conversion_if_needed();
1644 output_dot("step18-before-dither.dot");
1645 add_dither_if_needed();
1647 output_dot("step19-final.dot");
1649 // Construct all needed GLSL programs, starting at the output.
1650 // We need to keep track of which effects have already been computed,
1651 // as an effect with multiple users could otherwise be calculated
1653 map<Node *, Phase *> completed_effects;
1654 construct_phase(find_output_node(), &completed_effects);
1656 output_dot("step20-split-to-phases.dot");
1658 assert(phases[0]->inputs.empty());
1663 void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
1667 // This needs to be set anew, in case we are coming from a different context
1668 // from when we initialized.
1670 glDisable(GL_DITHER);
1673 // Save original viewport.
1674 GLuint x = 0, y = 0;
1676 if (width == 0 && height == 0) {
1678 glGetIntegerv(GL_VIEWPORT, viewport);
1681 width = viewport[2];
1682 height = viewport[3];
1687 glDisable(GL_BLEND);
1689 glDisable(GL_DEPTH_TEST);
1691 glDepthMask(GL_FALSE);
1694 // Generate a VAO. All the phases should have exactly the same vertex attributes,
1695 // so it's safe to reuse this.
1696 float vertices[] = {
1703 glGenVertexArrays(1, &vao);
1705 glBindVertexArray(vao);
1708 GLuint position_vbo = fill_vertex_attribute(phases[0]->glsl_program_num, "position", 2, GL_FLOAT, sizeof(vertices), vertices);
1709 GLuint texcoord_vbo = fill_vertex_attribute(phases[0]->glsl_program_num, "texcoord", 2, GL_FLOAT, sizeof(vertices), vertices); // Same as vertices.
1711 set<Phase *> generated_mipmaps;
1713 // We choose the simplest option of having one texture per output,
1714 // since otherwise this turns into an (albeit simple) register allocation problem.
1715 map<Phase *, GLuint> output_textures;
1717 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1718 Phase *phase = phases[phase_num];
1720 if (do_phase_timing) {
1721 glBeginQuery(GL_TIME_ELAPSED, phase->timer_query_object);
1723 if (phase_num == phases.size() - 1) {
1724 // Last phase goes to the output the user specified.
1725 glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
1727 GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
1728 assert(status == GL_FRAMEBUFFER_COMPLETE);
1729 glViewport(x, y, width, height);
1730 if (dither_effect != NULL) {
1731 CHECK(dither_effect->set_int("output_width", width));
1732 CHECK(dither_effect->set_int("output_height", height));
1735 execute_phase(phase, phase_num == phases.size() - 1, &output_textures, &generated_mipmaps);
1736 if (do_phase_timing) {
1737 glEndQuery(GL_TIME_ELAPSED);
1741 for (map<Phase *, GLuint>::const_iterator texture_it = output_textures.begin();
1742 texture_it != output_textures.end();
1744 resource_pool->release_2d_texture(texture_it->second);
1747 glBindFramebuffer(GL_FRAMEBUFFER, 0);
1752 cleanup_vertex_attribute(phases[0]->glsl_program_num, "position", position_vbo);
1753 cleanup_vertex_attribute(phases[0]->glsl_program_num, "texcoord", texcoord_vbo);
1755 glDeleteVertexArrays(1, &vao);
1758 if (do_phase_timing) {
1759 // Get back the timer queries.
1760 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1761 Phase *phase = phases[phase_num];
1762 GLint available = 0;
1763 while (!available) {
1764 glGetQueryObjectiv(phase->timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
1766 GLuint64 time_elapsed;
1767 glGetQueryObjectui64v(phase->timer_query_object, GL_QUERY_RESULT, &time_elapsed);
1768 phase->time_elapsed_ns += time_elapsed;
1769 ++phase->num_measured_iterations;
1774 void EffectChain::enable_phase_timing(bool enable)
1777 assert(movit_timer_queries_supported);
1779 this->do_phase_timing = enable;
1782 void EffectChain::reset_phase_timing()
1784 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1785 Phase *phase = phases[phase_num];
1786 phase->time_elapsed_ns = 0;
1787 phase->num_measured_iterations = 0;
1791 void EffectChain::print_phase_timing()
1793 double total_time_ms = 0.0;
1794 for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
1795 Phase *phase = phases[phase_num];
1796 double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
1797 printf("Phase %d: %5.1f ms [", phase_num, avg_time_ms);
1798 for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
1799 if (effect_num != 0) {
1802 printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
1805 total_time_ms += avg_time_ms;
1807 printf("Total: %5.1f ms\n", total_time_ms);
1810 void EffectChain::execute_phase(Phase *phase, bool last_phase, map<Phase *, GLuint> *output_textures, set<Phase *> *generated_mipmaps)
1814 // Find a texture for this phase.
1815 inform_input_sizes(phase);
1817 find_output_size(phase);
1819 GLuint tex_num = resource_pool->create_2d_texture(GL_RGBA16F, phase->output_width, phase->output_height);
1820 output_textures->insert(make_pair(phase, tex_num));
1823 const GLuint glsl_program_num = phase->glsl_program_num;
1825 glUseProgram(glsl_program_num);
1828 // Set up RTT inputs for this phase.
1829 for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
1830 glActiveTexture(GL_TEXTURE0 + sampler);
1831 Phase *input = phase->inputs[sampler];
1832 input->output_node->bound_sampler_num = sampler;
1833 glBindTexture(GL_TEXTURE_2D, (*output_textures)[input]);
1835 if (phase->input_needs_mipmaps && generated_mipmaps->count(input) == 0) {
1836 glGenerateMipmap(GL_TEXTURE_2D);
1838 generated_mipmaps->insert(input);
1840 setup_rtt_sampler(sampler, phase->input_needs_mipmaps);
1841 phase->input_samplers[sampler] = sampler; // Bind the sampler to the right uniform.
1844 // And now the output. (Already set up for us if it is the last phase.)
1846 fbo = resource_pool->create_fbo((*output_textures)[phase]);
1847 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
1848 glViewport(0, 0, phase->output_width, phase->output_height);
1851 // Give the required parameters to all the effects.
1852 unsigned sampler_num = phase->inputs.size();
1853 for (unsigned i = 0; i < phase->effects.size(); ++i) {
1854 Node *node = phase->effects[i];
1855 unsigned old_sampler_num = sampler_num;
1856 node->effect->set_gl_state(glsl_program_num, phase->effect_ids[node], &sampler_num);
1859 if (node->effect->is_single_texture()) {
1860 assert(sampler_num - old_sampler_num == 1);
1861 node->bound_sampler_num = old_sampler_num;
1863 node->bound_sampler_num = -1;
1867 // Uniforms need to come after set_gl_state(), since they can be updated
1869 setup_uniforms(phase);
1871 glDrawArrays(GL_TRIANGLES, 0, 3);
1877 for (unsigned i = 0; i < phase->effects.size(); ++i) {
1878 Node *node = phase->effects[i];
1879 node->effect->clear_gl_state();
1883 resource_pool->release_fbo(fbo);
1887 void EffectChain::setup_uniforms(Phase *phase)
1889 // TODO: Use UBO blocks.
1890 for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
1891 const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
1892 if (uniform.location != -1) {
1893 glUniform1iv(uniform.location, uniform.num_values, uniform.value);
1896 for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
1897 const Uniform<bool> &uniform = phase->uniforms_bool[i];
1898 assert(uniform.num_values == 1);
1899 if (uniform.location != -1) {
1900 glUniform1i(uniform.location, *uniform.value);
1903 for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
1904 const Uniform<int> &uniform = phase->uniforms_int[i];
1905 if (uniform.location != -1) {
1906 glUniform1iv(uniform.location, uniform.num_values, uniform.value);
1909 for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
1910 const Uniform<float> &uniform = phase->uniforms_float[i];
1911 if (uniform.location != -1) {
1912 glUniform1fv(uniform.location, uniform.num_values, uniform.value);
1915 for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
1916 const Uniform<float> &uniform = phase->uniforms_vec2[i];
1917 if (uniform.location != -1) {
1918 glUniform2fv(uniform.location, uniform.num_values, uniform.value);
1921 for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
1922 const Uniform<float> &uniform = phase->uniforms_vec3[i];
1923 if (uniform.location != -1) {
1924 glUniform3fv(uniform.location, uniform.num_values, uniform.value);
1927 for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
1928 const Uniform<float> &uniform = phase->uniforms_vec4[i];
1929 if (uniform.location != -1) {
1930 glUniform4fv(uniform.location, uniform.num_values, uniform.value);
1933 for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
1934 const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
1935 assert(uniform.num_values == 1);
1936 if (uniform.location != -1) {
1937 // Convert to float (GLSL has no double matrices).
1939 for (unsigned y = 0; y < 3; ++y) {
1940 for (unsigned x = 0; x < 3; ++x) {
1941 matrixf[y + x * 3] = (*uniform.value)(y, x);
1944 glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
1949 void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
1951 glActiveTexture(GL_TEXTURE0 + sampler_num);
1954 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
1957 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1960 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1962 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1966 } // namespace movit