1 #ifndef _MOVIT_EFFECT_CHAIN_H
2 #define _MOVIT_EFFECT_CHAIN_H 1
4 // An EffectChain is the largest basic entity in Movit; it contains everything
5 // needed to connects a series of effects, from inputs to outputs, and render
6 // them. Generally you set up your effect chain once and then call its render
7 // functions once per frame; setting one up can be relatively expensive,
8 // but rendering is fast.
10 // Threading considerations: EffectChain is “thread-compatible”; you can use
11 // different EffectChains in multiple threads at the same time (assuming the
12 // threads do not use the same OpenGL context, but this is a good idea anyway),
13 // but you may not use one EffectChain from multiple threads simultaneously.
14 // You _are_ allowed to use one EffectChain from multiple threads as long as
15 // you only use it from one at a time (possibly by doing your own locking),
16 // but if so, the threads' contexts need to be set up to share resources, since
17 // the EffectChain holds textures and other OpenGL objects that are tied to the
20 // Memory management (only relevant if you use multiple contexts):
21 // See corresponding comment in resource_pool.h. This holds even if you don't
22 // allocate your own ResourcePool, but let EffectChain hold its own.
33 #include "image_format.h"
43 // For internal use within Node.
51 // Whether you want pre- or postmultiplied alpha in the output
52 // (see effect.h for a discussion of pre- versus postmultiplied alpha).
53 enum OutputAlphaFormat {
54 OUTPUT_ALPHA_FORMAT_PREMULTIPLIED,
55 OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED,
58 // RGBA output is nearly always packed; Y'CbCr, however, is often planar
59 // due to chroma subsampling. This enum controls how add_ycbcr_output()
60 // distributes the color channels between the fragment shader outputs.
61 // Obviously, anything except YCBCR_OUTPUT_INTERLEAVED will be meaningless
62 // unless you use render_to_fbo() and have an FBO with multiple render
63 // targets attached (the other outputs will be discarded).
64 enum YCbCrOutputSplitting {
65 // Only one output: Store Y'CbCr into the first three output channels,
66 // respectively, plus alpha. This is also called “chunked” or
68 YCBCR_OUTPUT_INTERLEAVED,
70 // Store Y' and alpha into the first output (in the red and alpha
71 // channels; effect to the others is undefined), and Cb and Cr into
72 // the first two channels of the second output. This is particularly
73 // useful if you want to end up in a format like NV12, where all the
74 // Y' samples come first and then Cb and Cr come interlevaed afterwards.
75 // You will still need to do the chroma subsampling yourself to actually
76 // get down to NV12, though.
77 YCBCR_OUTPUT_SPLIT_Y_AND_CBCR,
79 // Store Y' and alpha into the first output, Cb into the first channel
80 // of the second output and Cr into the first channel of the third output.
81 // (Effect on the other channels is undefined.) Essentially gives you
82 // 4:4:4 planar, or ”yuv444p”.
86 // Where (0,0) is taken to be in the output. If you want to render to an
87 // OpenGL screen, you should keep the default of bottom-left, as that is
88 // OpenGL's natural coordinate system. However, there are cases, such as if you
89 // render to an FBO and read the pixels back into some other system, where
90 // you'd want a top-left origin; if so, an additional flip step will be added
91 // at the very end (but done in a vertex shader, so it will have zero extra
94 // Note that Movit's coordinate system in general consistently puts (0,0) in
95 // the top left for _input_, no matter what you set as output origin.
97 OUTPUT_ORIGIN_BOTTOM_LEFT,
98 OUTPUT_ORIGIN_TOP_LEFT,
101 // A node in the graph; basically an effect and some associated information.
107 // Edges in the graph (forward and backward).
108 std::vector<Node *> outgoing_links;
109 std::vector<Node *> incoming_links;
111 // For unit tests only. Do not use from other code.
112 // Will contain an arbitrary choice if the node is in multiple phases.
113 Phase *containing_phase;
116 // Logical size of the output of this effect, ie. the resolution
117 // you would get if you sampled it as a texture. If it is undefined
118 // (since the inputs differ in resolution), it will be 0x0.
119 // If both this and output_texture_{width,height} are set,
120 // they will be equal.
121 unsigned output_width, output_height;
123 // If the effect has is_single_texture(), or if the output went to RTT
124 // and that texture has been bound to a sampler, the sampler number
125 // will be stored here.
127 // TODO: Can an RTT texture be used as inputs to multiple effects
128 // within the same phase? If so, we have a problem with modifying
129 // sampler state here.
130 int bound_sampler_num;
132 // Used during the building of the effect chain.
133 Colorspace output_color_space;
134 GammaCurve output_gamma_curve;
135 AlphaType output_alpha_type;
136 bool needs_mipmaps; // Directly or indirectly.
138 // Set if this effect, and all effects consuming output from this node
139 // (in the same phase) have one_to_one_sampling() set.
140 bool one_to_one_sampling;
142 friend class EffectChain;
145 // A rendering phase; a single GLSL program rendering a single quad.
149 GLuint glsl_program_num; // Owned by the resource_pool.
151 // Position and texcoord attribute indexes, although it doesn't matter
152 // which is which, because they contain the same data.
153 std::set<GLint> attribute_indexes;
155 bool input_needs_mipmaps;
157 // Inputs are only inputs from other phases (ie., those that come from RTT);
158 // input textures are counted as part of <effects>.
159 std::vector<Phase *> inputs;
160 // Bound sampler numbers for each input. Redundant in a sense
161 // (it always corresponds to the index), but we need somewhere
162 // to hold the value for the uniform.
163 std::vector<int> input_samplers;
164 std::vector<Node *> effects; // In order.
165 unsigned output_width, output_height, virtual_output_width, virtual_output_height;
167 // Identifier used to create unique variables in GLSL.
168 // Unique per-phase to increase cacheability of compiled shaders.
169 std::map<Node *, std::string> effect_ids;
171 // Uniforms for this phase; combined from all the effects.
172 std::vector<Uniform<int> > uniforms_sampler2d;
173 std::vector<Uniform<bool> > uniforms_bool;
174 std::vector<Uniform<int> > uniforms_int;
175 std::vector<Uniform<float> > uniforms_float;
176 std::vector<Uniform<float> > uniforms_vec2;
177 std::vector<Uniform<float> > uniforms_vec3;
178 std::vector<Uniform<float> > uniforms_vec4;
179 std::vector<Uniform<Eigen::Matrix3d> > uniforms_mat3;
181 // For measurement of GPU time used.
182 GLuint timer_query_object;
183 uint64_t time_elapsed_ns;
184 uint64_t num_measured_iterations;
189 // Aspect: e.g. 16.0f, 9.0f for 16:9.
190 // resource_pool is a pointer to a ResourcePool with which to share shaders
191 // and other resources (see resource_pool.h). If NULL (the default),
192 // will create its own that is not shared with anything else. Does not take
193 // ownership of the passed-in ResourcePool, but will naturally take ownership
194 // of its own internal one if created.
195 EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool = NULL);
199 // input, effects, output, finalize need to come in that specific order.
201 // EffectChain takes ownership of the given input.
202 // input is returned back for convenience.
203 Input *add_input(Input *input);
205 // EffectChain takes ownership of the given effect.
206 // effect is returned back for convenience.
207 Effect *add_effect(Effect *effect) {
208 return add_effect(effect, last_added_effect());
210 Effect *add_effect(Effect *effect, Effect *input) {
211 std::vector<Effect *> inputs;
212 inputs.push_back(input);
213 return add_effect(effect, inputs);
215 Effect *add_effect(Effect *effect, Effect *input1, Effect *input2) {
216 std::vector<Effect *> inputs;
217 inputs.push_back(input1);
218 inputs.push_back(input2);
219 return add_effect(effect, inputs);
221 Effect *add_effect(Effect *effect, Effect *input1, Effect *input2, Effect *input3) {
222 std::vector<Effect *> inputs;
223 inputs.push_back(input1);
224 inputs.push_back(input2);
225 inputs.push_back(input3);
226 return add_effect(effect, inputs);
228 Effect *add_effect(Effect *effect, Effect *input1, Effect *input2, Effect *input3, Effect *input4) {
229 std::vector<Effect *> inputs;
230 inputs.push_back(input1);
231 inputs.push_back(input2);
232 inputs.push_back(input3);
233 inputs.push_back(input4);
234 return add_effect(effect, inputs);
236 Effect *add_effect(Effect *effect, Effect *input1, Effect *input2, Effect *input3, Effect *input4, Effect *input5) {
237 std::vector<Effect *> inputs;
238 inputs.push_back(input1);
239 inputs.push_back(input2);
240 inputs.push_back(input3);
241 inputs.push_back(input4);
242 inputs.push_back(input5);
243 return add_effect(effect, inputs);
245 Effect *add_effect(Effect *effect, const std::vector<Effect *> &inputs);
247 // Adds an RGBA output. Note that you can have at most one RGBA output and one
248 // Y'CbCr output (see below for details).
249 void add_output(const ImageFormat &format, OutputAlphaFormat alpha_format);
251 // Adds an YCbCr output. Note that you can only have one output.
252 // Currently, only chunked packed output is supported, and only 4:4:4
253 // (so chroma_subsampling_x and chroma_subsampling_y must both be 1).
255 // If you have both RGBA and Y'CbCr output, the RGBA output will come
256 // in the last draw buffer. Also, <format> and <alpha_format> must be
257 // identical between the two.
258 void add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
259 const YCbCrFormat &ycbcr_format,
260 YCbCrOutputSplitting output_splitting = YCBCR_OUTPUT_INTERLEAVED);
262 // Set number of output bits, to scale the dither.
263 // 8 is the right value for most outputs.
264 // The default, 0, is a special value that means no dither.
265 void set_dither_bits(unsigned num_bits)
267 this->num_dither_bits = num_bits;
270 // Set where (0,0) is taken to be in the output. The default is
271 // OUTPUT_ORIGIN_BOTTOM_LEFT, which is usually what you want
272 // (see OutputOrigin above for more details).
273 void set_output_origin(OutputOrigin output_origin)
275 this->output_origin = output_origin;
280 // Measure the GPU time used for each actual phase during rendering.
281 // Note that this is only available if GL_ARB_timer_query
282 // (or, equivalently, OpenGL 3.3) is available. Also note that measurement
283 // will incur a performance cost, as we wait for the measurements to
284 // complete at the end of rendering.
285 void enable_phase_timing(bool enable);
286 void reset_phase_timing();
287 void print_phase_timing();
289 //void render(unsigned char *src, unsigned char *dst);
290 void render_to_screen()
292 render_to_fbo(0, 0, 0);
295 // Render the effect chain to the given FBO. If width=height=0, keeps
296 // the current viewport.
297 void render_to_fbo(GLuint fbo, unsigned width, unsigned height);
299 Effect *last_added_effect() {
303 return nodes.back()->effect;
307 // API for manipulating the graph directly. Intended to be used from
308 // effects and by EffectChain itself.
310 // Note that for nodes with multiple inputs, the order of calls to
311 // connect_nodes() will matter.
312 Node *add_node(Effect *effect);
313 void connect_nodes(Node *sender, Node *receiver);
314 void replace_receiver(Node *old_receiver, Node *new_receiver);
315 void replace_sender(Node *new_sender, Node *receiver);
316 void insert_node_between(Node *sender, Node *middle, Node *receiver);
317 Node *find_node_for_effect(Effect *effect) { return node_map[effect]; }
319 // Get the OpenGL sampler (GL_TEXTURE0, GL_TEXTURE1, etc.) for the
320 // input of the given node, so that one can modify the sampler state
321 // directly. Only valid to call during set_gl_state().
323 // Also, for this to be allowed, <node>'s effect must have
324 // needs_texture_bounce() set, so that it samples directly from a
325 // single-sampler input, or from an RTT texture.
326 GLenum get_input_sampler(Node *node, unsigned input_num) const;
328 // Whether input <input_num> of <node> corresponds to a single sampler
329 // (see get_input_sampler()). Normally, you should not need to call this;
330 // however, if the input Effect has set override_texture_bounce(),
331 // this will return false, and you could be flexible and check it first
333 GLenum has_input_sampler(Node *node, unsigned input_num) const;
335 // Get the current resource pool assigned to this EffectChain.
336 // Primarily to let effects allocate textures as needed.
337 // Any resources you get from the pool must be returned to the pool
338 // no later than in the Effect's destructor.
339 ResourcePool *get_resource_pool() { return resource_pool; }
342 // Make sure the output rectangle is at least large enough to hold
343 // the given input rectangle in both dimensions, and is of the
344 // current aspect ratio (aspect_nom/aspect_denom).
345 void size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height);
347 // Compute the input sizes for all inputs for all effects in a given phase,
348 // and inform the effects about the results.
349 void inform_input_sizes(Phase *phase);
351 // Determine the preferred output size of a given phase.
352 // Requires that all input phases (if any) already have output sizes set.
353 void find_output_size(Phase *phase);
355 // Find all inputs eventually feeding into this effect that have
356 // output gamma different from GAMMA_LINEAR.
357 void find_all_nonlinear_inputs(Node *effect, std::vector<Node *> *nonlinear_inputs);
359 // Create a GLSL program computing the effects for this phase in order.
360 void compile_glsl_program(Phase *phase);
362 // Create all GLSL programs needed to compute the given effect, and all outputs
363 // that depend on it (whenever possible). Returns the phase that has <output>
364 // as the last effect. Also pushes all phases in order onto <phases>.
365 Phase *construct_phase(Node *output, std::map<Node *, Phase *> *completed_effects);
367 // Execute one phase, ie. set up all inputs, effects and outputs, and render the quad.
368 void execute_phase(Phase *phase, bool last_phase,
369 std::set<GLint> *bound__attribute_indices,
370 std::map<Phase *, GLuint> *output_textures,
371 std::set<Phase *> *generated_mipmaps);
373 // Set up uniforms for one phase. The program must already be bound.
374 void setup_uniforms(Phase *phase);
376 // Set up the given sampler number for sampling from an RTT texture.
377 void setup_rtt_sampler(int sampler_num, bool use_mipmaps);
379 // Output the current graph to the given file in a Graphviz-compatible format;
380 // only useful for debugging.
381 void output_dot(const char *filename);
382 std::vector<std::string> get_labels_for_edge(const Node *from, const Node *to);
383 void output_dot_edge(FILE *fp,
384 const std::string &from_node_id,
385 const std::string &to_node_id,
386 const std::vector<std::string> &labels);
388 // Some of the graph algorithms assume that the nodes array is sorted
389 // topologically (inputs are always before outputs), but some operations
390 // (like graph rewriting) can change that. This function restores that order.
391 void sort_all_nodes_topologically();
393 // Do the actual topological sort. <nodes> must be a connected, acyclic subgraph;
394 // links that go to nodes not in the set will be ignored.
395 std::vector<Node *> topological_sort(const std::vector<Node *> &nodes);
397 // Utility function used by topological_sort() to do a depth-first search.
398 // The reason why we store nodes left to visit instead of a more conventional
399 // list of nodes to visit is that we want to be able to limit ourselves to
400 // a subgraph instead of all nodes. The set thus serves a dual purpose.
401 void topological_sort_visit_node(Node *node, std::set<Node *> *nodes_left_to_visit, std::vector<Node *> *sorted_list);
403 // Used during finalize().
404 void find_color_spaces_for_inputs();
405 void propagate_alpha();
406 void propagate_gamma_and_color_space();
407 Node *find_output_node();
409 bool node_needs_colorspace_fix(Node *node);
410 void fix_internal_color_spaces();
411 void fix_output_color_space();
413 bool node_needs_alpha_fix(Node *node);
414 void fix_internal_alpha(unsigned step);
415 void fix_output_alpha();
417 bool node_needs_gamma_fix(Node *node);
418 void fix_internal_gamma_by_asking_inputs(unsigned step);
419 void fix_internal_gamma_by_inserting_nodes(unsigned step);
420 void fix_output_gamma();
421 void add_ycbcr_conversion_if_needed();
422 void add_dither_if_needed();
424 float aspect_nom, aspect_denom;
425 ImageFormat output_format;
426 OutputAlphaFormat output_alpha_format;
428 bool output_color_rgba, output_color_ycbcr;
429 YCbCrFormat output_ycbcr_format; // If output_color_ycbcr is true.
430 YCbCrOutputSplitting output_ycbcr_splitting; // If output_color_ycbcr is true.
432 std::vector<Node *> nodes;
433 std::map<Effect *, Node *> node_map;
434 Effect *dither_effect;
436 std::vector<Input *> inputs; // Also contained in nodes.
437 std::vector<Phase *> phases;
439 unsigned num_dither_bits;
440 OutputOrigin output_origin;
442 GLuint vbo; // Contains vertex and texture coordinate data.
444 ResourcePool *resource_pool;
445 bool owns_resource_pool;
447 bool do_phase_timing;
452 #endif // !defined(_MOVIT_EFFECT_CHAIN_H)