]> git.sesse.net Git - x264/blob - encoder/macroblock.c
3f407d59326dea4bbcede39bd33a027e6c4c0c71
[x264] / encoder / macroblock.c
1 /*****************************************************************************
2  * macroblock.c: h264 encoder library
3  *****************************************************************************
4  * Copyright (C) 2003-2008 x264 project
5  *
6  * Authors: Laurent Aimar <fenrir@via.ecp.fr>
7  *          Loren Merritt <lorenm@u.washington.edu>
8  *          Fiona Glaser <fiona@x264.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
23  *****************************************************************************/
24
25 #include "common/common.h"
26 #include "macroblock.h"
27
28 /* These chroma DC functions don't have assembly versions and are only used here. */
29
30 #define ZIG(i,y,x) level[i] = dct[x*2+y];
31 static inline void zigzag_scan_2x2_dc( int16_t level[4], int16_t dct[4] )
32 {
33     ZIG(0,0,0)
34     ZIG(1,0,1)
35     ZIG(2,1,0)
36     ZIG(3,1,1)
37 }
38 #undef ZIG
39
40 #define IDCT_DEQUANT_START \
41     int d0 = dct[0] + dct[1]; \
42     int d1 = dct[2] + dct[3]; \
43     int d2 = dct[0] - dct[1]; \
44     int d3 = dct[2] - dct[3]; \
45     int dmf = dequant_mf[i_qp%6][0] << i_qp/6;
46
47 static inline void idct_dequant_2x2_dc( int16_t dct[4], int16_t dct4x4[4][16], int dequant_mf[6][16], int i_qp )
48 {
49     IDCT_DEQUANT_START
50     dct4x4[0][0] = (d0 + d1) * dmf >> 5;
51     dct4x4[1][0] = (d0 - d1) * dmf >> 5;
52     dct4x4[2][0] = (d2 + d3) * dmf >> 5;
53     dct4x4[3][0] = (d2 - d3) * dmf >> 5;
54 }
55
56 static inline void idct_dequant_2x2_dconly( int16_t out[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
57 {
58     IDCT_DEQUANT_START
59     out[0] = (d0 + d1) * dmf >> 5;
60     out[1] = (d0 - d1) * dmf >> 5;
61     out[2] = (d2 + d3) * dmf >> 5;
62     out[3] = (d2 - d3) * dmf >> 5;
63 }
64
65 static inline void dct2x2dc( int16_t d[4], int16_t dct4x4[4][16] )
66 {
67     int d0 = dct4x4[0][0] + dct4x4[1][0];
68     int d1 = dct4x4[2][0] + dct4x4[3][0];
69     int d2 = dct4x4[0][0] - dct4x4[1][0];
70     int d3 = dct4x4[2][0] - dct4x4[3][0];
71     d[0] = d0 + d1;
72     d[2] = d2 + d3;
73     d[1] = d0 - d1;
74     d[3] = d2 - d3;
75     dct4x4[0][0] = 0;
76     dct4x4[1][0] = 0;
77     dct4x4[2][0] = 0;
78     dct4x4[3][0] = 0;
79 }
80
81 static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, int16_t dct[16], int i_qp, int i_ctxBlockCat, int b_intra, int idx )
82 {
83     int i_quant_cat = b_intra ? CQM_4IY : CQM_4PY;
84     if( h->mb.b_trellis )
85         return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, i_ctxBlockCat, b_intra, 0, idx );
86     else
87         return h->quantf.quant_4x4( dct, h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] );
88 }
89
90 static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, int16_t dct[64], int i_qp, int b_intra, int idx )
91 {
92     int i_quant_cat = b_intra ? CQM_8IY : CQM_8PY;
93     if( h->mb.b_trellis )
94         return x264_quant_8x8_trellis( h, dct, i_quant_cat, i_qp, b_intra, idx );
95     else
96         return h->quantf.quant_8x8( dct, h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias[i_quant_cat][i_qp] );
97 }
98
99 /* All encoding functions must output the correct CBP and NNZ values.
100  * The entropy coding functions will check CBP first, then NNZ, before
101  * actually reading the DCT coefficients.  NNZ still must be correct even
102  * if CBP is zero because of the use of NNZ values for context selection.
103  * "NNZ" need only be 0 or 1 rather than the exact coefficient count because
104  * that is only needed in CAVLC, and will be calculated by CAVLC's residual
105  * coding and stored as necessary. */
106
107 /* This means that decimation can be done merely by adjusting the CBP and NNZ
108  * rather than memsetting the coefficients. */
109
110 void x264_mb_encode_i4x4( x264_t *h, int idx, int i_qp )
111 {
112     int nz;
113     uint8_t *p_src = &h->mb.pic.p_fenc[0][block_idx_xy_fenc[idx]];
114     uint8_t *p_dst = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[idx]];
115     ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
116
117     if( h->mb.b_lossless )
118     {
119         nz = h->zigzagf.sub_4x4( h->dct.luma4x4[idx], p_src, p_dst );
120         h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
121         h->mb.i_cbp_luma |= nz<<(idx>>2);
122         return;
123     }
124
125     h->dctf.sub4x4_dct( dct4x4, p_src, p_dst );
126
127     nz = x264_quant_4x4( h, dct4x4, i_qp, DCT_LUMA_4x4, 1, idx );
128     h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
129     if( nz )
130     {
131         h->mb.i_cbp_luma |= 1<<(idx>>2);
132         h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4 );
133         h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4IY], i_qp );
134         h->dctf.add4x4_idct( p_dst, dct4x4 );
135     }
136 }
137
138 #define STORE_8x8_NNZ(idx,nz)\
139 {\
140     M16( &h->mb.cache.non_zero_count[x264_scan8[idx*4+0]] ) = nz * 0x0101;\
141     M16( &h->mb.cache.non_zero_count[x264_scan8[idx*4+2]] ) = nz * 0x0101;\
142 }
143
144 #define CLEAR_16x16_NNZ \
145 {\
146     M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = 0;\
147     M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = 0;\
148     M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = 0;\
149     M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = 0;\
150 }
151
152 void x264_mb_encode_i8x8( x264_t *h, int idx, int i_qp )
153 {
154     int x = 8 * (idx&1);
155     int y = 8 * (idx>>1);
156     int nz;
157     uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE];
158     uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE];
159     ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
160
161     if( h->mb.b_lossless )
162     {
163         nz = h->zigzagf.sub_8x8( h->dct.luma8x8[idx], p_src, p_dst );
164         STORE_8x8_NNZ(idx,nz);
165         h->mb.i_cbp_luma |= nz<<idx;
166         return;
167     }
168
169     h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst );
170
171     nz = x264_quant_8x8( h, dct8x8, i_qp, 1, idx );
172     if( nz )
173     {
174         h->mb.i_cbp_luma |= 1<<idx;
175         h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8 );
176         h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8IY], i_qp );
177         h->dctf.add8x8_idct8( p_dst, dct8x8 );
178         STORE_8x8_NNZ(idx,1);
179     }
180     else
181         STORE_8x8_NNZ(idx,0);
182 }
183
184 static void x264_mb_encode_i16x16( x264_t *h, int i_qp )
185 {
186     uint8_t  *p_src = h->mb.pic.p_fenc[0];
187     uint8_t  *p_dst = h->mb.pic.p_fdec[0];
188
189     ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
190     ALIGNED_ARRAY_16( int16_t, dct_dc4x4,[16] );
191
192     int nz;
193     int decimate_score = h->mb.b_dct_decimate ? 0 : 9;
194
195     if( h->mb.b_lossless )
196     {
197         for( int i = 0; i < 16; i++ )
198         {
199             int oe = block_idx_xy_fenc[i];
200             int od = block_idx_xy_fdec[i];
201             nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[i], p_src+oe, p_dst+od, &dct_dc4x4[block_idx_yx_1d[i]] );
202             h->mb.cache.non_zero_count[x264_scan8[i]] = nz;
203             h->mb.i_cbp_luma |= nz;
204         }
205         h->mb.i_cbp_luma *= 0xf;
206         h->mb.cache.non_zero_count[x264_scan8[24]] = array_non_zero( dct_dc4x4 );
207         h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct_dc4x4 );
208         return;
209     }
210
211     h->dctf.sub16x16_dct( dct4x4, p_src, p_dst );
212
213     for( int i = 0; i < 16; i++ )
214     {
215         /* copy dc coeff */
216         dct_dc4x4[block_idx_xy_1d[i]] = dct4x4[i][0];
217         dct4x4[i][0] = 0;
218
219         /* quant/scan/dequant */
220         nz = x264_quant_4x4( h, dct4x4[i], i_qp, DCT_LUMA_AC, 1, i );
221         h->mb.cache.non_zero_count[x264_scan8[i]] = nz;
222         if( nz )
223         {
224             h->zigzagf.scan_4x4( h->dct.luma4x4[i], dct4x4[i] );
225             h->quantf.dequant_4x4( dct4x4[i], h->dequant4_mf[CQM_4IY], i_qp );
226             if( decimate_score < 6 ) decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[i] );
227             h->mb.i_cbp_luma = 0xf;
228         }
229     }
230
231     /* Writing the 16 CBFs in an i16x16 block is quite costly, so decimation can save many bits. */
232     /* More useful with CAVLC, but still useful with CABAC. */
233     if( decimate_score < 6 )
234     {
235         h->mb.i_cbp_luma = 0;
236         CLEAR_16x16_NNZ
237     }
238
239     h->dctf.dct4x4dc( dct_dc4x4 );
240     if( h->mb.b_trellis )
241         nz = x264_quant_dc_trellis( h, dct_dc4x4, CQM_4IY, i_qp, DCT_LUMA_DC, 1, 0 );
242     else
243         nz = h->quantf.quant_4x4_dc( dct_dc4x4, h->quant4_mf[CQM_4IY][i_qp][0]>>1, h->quant4_bias[CQM_4IY][i_qp][0]<<1 );
244
245     h->mb.cache.non_zero_count[x264_scan8[24]] = nz;
246     if( nz )
247     {
248         h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct_dc4x4 );
249
250         /* output samples to fdec */
251         h->dctf.idct4x4dc( dct_dc4x4 );
252         h->quantf.dequant_4x4_dc( dct_dc4x4, h->dequant4_mf[CQM_4IY], i_qp );  /* XXX not inversed */
253         if( h->mb.i_cbp_luma )
254             for( int i = 0; i < 16; i++ )
255                 dct4x4[i][0] = dct_dc4x4[block_idx_xy_1d[i]];
256     }
257
258     /* put pixels to fdec */
259     if( h->mb.i_cbp_luma )
260         h->dctf.add16x16_idct( p_dst, dct4x4 );
261     else if( nz )
262         h->dctf.add16x16_idct_dc( p_dst, dct_dc4x4 );
263 }
264
265 static inline int idct_dequant_round_2x2_dc( int16_t ref[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
266 {
267     int16_t out[4];
268     idct_dequant_2x2_dconly( out, dct, dequant_mf, i_qp );
269     return ((ref[0] ^ (out[0]+32))
270           | (ref[1] ^ (out[1]+32))
271           | (ref[2] ^ (out[2]+32))
272           | (ref[3] ^ (out[3]+32))) >> 6;
273 }
274
275 /* Round down coefficients losslessly in DC-only chroma blocks.
276  * Unlike luma blocks, this can't be done with a lookup table or
277  * other shortcut technique because of the interdependencies
278  * between the coefficients due to the chroma DC transform. */
279 static inline int x264_mb_optimize_chroma_dc( x264_t *h, int b_inter, int i_qp, int16_t dct2x2[4] )
280 {
281     int16_t dct2x2_orig[4];
282     int coeff, nz;
283
284     /* If the QP is too high, there's no benefit to rounding optimization. */
285     if( h->dequant4_mf[CQM_4IC + b_inter][i_qp%6][0] << (i_qp/6) > 32*64 )
286         return 1;
287
288     idct_dequant_2x2_dconly( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
289     dct2x2_orig[0] += 32;
290     dct2x2_orig[1] += 32;
291     dct2x2_orig[2] += 32;
292     dct2x2_orig[3] += 32;
293
294     /* If the DC coefficients already round to zero, terminate early. */
295     if( !((dct2x2_orig[0]|dct2x2_orig[1]|dct2x2_orig[2]|dct2x2_orig[3])>>6) )
296         return 0;
297
298     /* Start with the highest frequency coefficient... is this the best option? */
299     for( nz = 0, coeff = h->quantf.coeff_last[DCT_CHROMA_DC]( dct2x2 ); coeff >= 0; coeff-- )
300     {
301         int level = dct2x2[coeff];
302         int sign = level>>31 | 1; /* dct2x2[coeff] < 0 ? -1 : 1 */
303
304         while( level )
305         {
306             dct2x2[coeff] = level - sign;
307             if( idct_dequant_round_2x2_dc( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp ) )
308             {
309                 nz = 1;
310                 dct2x2[coeff] = level;
311                 break;
312             }
313             level -= sign;
314         }
315     }
316
317     return nz;
318 }
319
320 void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
321 {
322     int nz, nz_dc;
323     int b_decimate = b_inter && h->mb.b_dct_decimate;
324     ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
325     h->mb.i_cbp_chroma = 0;
326
327     /* Early termination: check variance of chroma residual before encoding.
328      * Don't bother trying early termination at low QPs.
329      * Values are experimentally derived. */
330     if( b_decimate && i_qp >= (h->mb.b_trellis ? 12 : 18) )
331     {
332         int thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
333         int ssd[2];
334         int score = h->pixf.var2_8x8( h->mb.pic.p_fenc[1], FENC_STRIDE, h->mb.pic.p_fdec[1], FDEC_STRIDE, &ssd[0] );
335         if( score < thresh*4 )
336             score += h->pixf.var2_8x8( h->mb.pic.p_fenc[2], FENC_STRIDE, h->mb.pic.p_fdec[2], FDEC_STRIDE, &ssd[1] );
337         if( score < thresh*4 )
338         {
339             h->mb.cache.non_zero_count[x264_scan8[16]] = 0;
340             h->mb.cache.non_zero_count[x264_scan8[17]] = 0;
341             h->mb.cache.non_zero_count[x264_scan8[18]] = 0;
342             h->mb.cache.non_zero_count[x264_scan8[19]] = 0;
343             h->mb.cache.non_zero_count[x264_scan8[20]] = 0;
344             h->mb.cache.non_zero_count[x264_scan8[21]] = 0;
345             h->mb.cache.non_zero_count[x264_scan8[22]] = 0;
346             h->mb.cache.non_zero_count[x264_scan8[23]] = 0;
347             M16( &h->mb.cache.non_zero_count[x264_scan8[25]] ) = 0;
348
349             for( int ch = 0; ch < 2; ch++ )
350             {
351                 if( ssd[ch] > thresh )
352                 {
353                     h->dctf.sub8x8_dct_dc( dct2x2, h->mb.pic.p_fenc[1+ch], h->mb.pic.p_fdec[1+ch] );
354                     if( h->mb.b_trellis )
355                         nz_dc = x264_quant_dc_trellis( h, dct2x2, CQM_4IC+b_inter, i_qp, DCT_CHROMA_DC, !b_inter, 1 );
356                     else
357                         nz_dc = h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4IC+b_inter][i_qp][0]>>1, h->quant4_bias[CQM_4IC+b_inter][i_qp][0]<<1 );
358
359                     if( nz_dc )
360                     {
361                         if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
362                             continue;
363                         h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 1;
364                         zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
365                         idct_dequant_2x2_dconly( dct2x2, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
366                         h->dctf.add8x8_idct_dc( h->mb.pic.p_fdec[1+ch], dct2x2 );
367                         h->mb.i_cbp_chroma = 1;
368                     }
369                 }
370             }
371             return;
372         }
373     }
374
375     for( int ch = 0; ch < 2; ch++ )
376     {
377         uint8_t  *p_src = h->mb.pic.p_fenc[1+ch];
378         uint8_t  *p_dst = h->mb.pic.p_fdec[1+ch];
379         int i_decimate_score = 0;
380         int nz_ac = 0;
381
382         ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
383
384         if( h->mb.b_lossless )
385         {
386             for( int i = 0; i < 4; i++ )
387             {
388                 int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE;
389                 int od = block_idx_x[i]*4 + block_idx_y[i]*4*FDEC_STRIDE;
390                 nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i+ch*4], p_src+oe, p_dst+od, &h->dct.chroma_dc[ch][i] );
391                 h->mb.cache.non_zero_count[x264_scan8[16+i+ch*4]] = nz;
392                 h->mb.i_cbp_chroma |= nz;
393             }
394             h->mb.cache.non_zero_count[x264_scan8[25]+ch] = array_non_zero( h->dct.chroma_dc[ch] );
395             continue;
396         }
397
398         h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
399         dct2x2dc( dct2x2, dct4x4 );
400         /* calculate dct coeffs */
401         for( int i = 0; i < 4; i++ )
402         {
403             if( h->mb.b_trellis )
404                 nz = x264_quant_4x4_trellis( h, dct4x4[i], CQM_4IC+b_inter, i_qp, DCT_CHROMA_AC, !b_inter, 1, 0 );
405             else
406                 nz = h->quantf.quant_4x4( dct4x4[i], h->quant4_mf[CQM_4IC+b_inter][i_qp], h->quant4_bias[CQM_4IC+b_inter][i_qp] );
407             h->mb.cache.non_zero_count[x264_scan8[16+i+ch*4]] = nz;
408             if( nz )
409             {
410                 nz_ac = 1;
411                 h->zigzagf.scan_4x4( h->dct.luma4x4[16+i+ch*4], dct4x4[i] );
412                 h->quantf.dequant_4x4( dct4x4[i], h->dequant4_mf[CQM_4IC + b_inter], i_qp );
413                 if( b_decimate )
414                     i_decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[16+i+ch*4] );
415             }
416         }
417
418         if( h->mb.b_trellis )
419             nz_dc = x264_quant_dc_trellis( h, dct2x2, CQM_4IC+b_inter, i_qp, DCT_CHROMA_DC, !b_inter, 1 );
420         else
421             nz_dc = h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4IC+b_inter][i_qp][0]>>1, h->quant4_bias[CQM_4IC+b_inter][i_qp][0]<<1 );
422
423         h->mb.cache.non_zero_count[x264_scan8[25]+ch] = nz_dc;
424
425         if( (b_decimate && i_decimate_score < 7) || !nz_ac )
426         {
427             /* Decimate the block */
428             h->mb.cache.non_zero_count[x264_scan8[16+0]+24*ch] = 0;
429             h->mb.cache.non_zero_count[x264_scan8[16+1]+24*ch] = 0;
430             h->mb.cache.non_zero_count[x264_scan8[16+2]+24*ch] = 0;
431             h->mb.cache.non_zero_count[x264_scan8[16+3]+24*ch] = 0;
432             if( !nz_dc ) /* Whole block is empty */
433                 continue;
434             if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
435             {
436                 h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 0;
437                 continue;
438             }
439             /* DC-only */
440             zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
441             idct_dequant_2x2_dconly( dct2x2, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
442             h->dctf.add8x8_idct_dc( p_dst, dct2x2 );
443         }
444         else
445         {
446             h->mb.i_cbp_chroma = 1;
447             if( nz_dc )
448             {
449                 zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
450                 idct_dequant_2x2_dc( dct2x2, dct4x4, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
451             }
452             h->dctf.add8x8_idct( p_dst, dct4x4 );
453         }
454     }
455
456     /* 0 = none, 1 = DC only, 2 = DC+AC */
457     h->mb.i_cbp_chroma = ((!!M16( &h->mb.cache.non_zero_count[x264_scan8[25]] )) | h->mb.i_cbp_chroma) + h->mb.i_cbp_chroma;
458 }
459
460 static void x264_macroblock_encode_skip( x264_t *h )
461 {
462     M32( &h->mb.cache.non_zero_count[x264_scan8[0]+0*8] ) = 0;
463     M32( &h->mb.cache.non_zero_count[x264_scan8[0]+1*8] ) = 0;
464     M32( &h->mb.cache.non_zero_count[x264_scan8[0]+2*8] ) = 0;
465     M32( &h->mb.cache.non_zero_count[x264_scan8[0]+3*8] ) = 0;
466     for( int i = 16; i < 24; i++ )
467         h->mb.cache.non_zero_count[x264_scan8[i]] = 0;
468     h->mb.i_cbp_luma = 0;
469     h->mb.i_cbp_chroma = 0;
470     h->mb.cbp[h->mb.i_mb_xy] = 0;
471 }
472
473 /*****************************************************************************
474  * x264_macroblock_encode_pskip:
475  *  Encode an already marked skip block
476  *****************************************************************************/
477 static void x264_macroblock_encode_pskip( x264_t *h )
478 {
479     /* don't do pskip motion compensation if it was already done in macroblock_analyse */
480     if( !h->mb.b_skip_mc )
481     {
482         int mvx = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][0],
483                               h->mb.mv_min[0], h->mb.mv_max[0] );
484         int mvy = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][1],
485                               h->mb.mv_min[1], h->mb.mv_max[1] );
486
487         h->mc.mc_luma( h->mb.pic.p_fdec[0],    FDEC_STRIDE,
488                        h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0],
489                        mvx, mvy, 16, 16, &h->sh.weight[0][0] );
490
491         /* Special case for mv0, which is (of course) very common in P-skip mode. */
492         if( mvx | mvy )
493         {
494             h->mc.mc_chroma( h->mb.pic.p_fdec[1],       FDEC_STRIDE,
495                              h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1],
496                              mvx, mvy, 8, 8 );
497             h->mc.mc_chroma( h->mb.pic.p_fdec[2],       FDEC_STRIDE,
498                              h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2],
499                              mvx, mvy, 8, 8 );
500         }
501         else
502         {
503             h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1], 8 );
504             h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2], 8 );
505         }
506
507         if( h->sh.weight[0][1].weightfn )
508             h->sh.weight[0][1].weightfn[8>>2]( h->mb.pic.p_fdec[1], FDEC_STRIDE,
509                                                h->mb.pic.p_fdec[1], FDEC_STRIDE,
510                                                &h->sh.weight[0][1], 8 );
511
512         if( h->sh.weight[0][2].weightfn )
513             h->sh.weight[0][2].weightfn[8>>2]( h->mb.pic.p_fdec[2], FDEC_STRIDE,
514                                                h->mb.pic.p_fdec[2], FDEC_STRIDE,
515                                                &h->sh.weight[0][2], 8 );
516     }
517
518     x264_macroblock_encode_skip( h );
519 }
520
521 /*****************************************************************************
522  * Intra prediction for predictive lossless mode.
523  *****************************************************************************/
524
525 /* Note that these functions take a shortcut (mc.copy instead of actual pixel prediction) which assumes
526  * that the edge pixels of the reconstructed frame are the same as that of the source frame.  This means
527  * they will only work correctly if the neighboring blocks are losslessly coded.  In practice, this means
528  * lossless mode cannot be mixed with lossy mode within a frame. */
529 /* This can be resolved by explicitly copying the edge pixels after doing the mc.copy, but this doesn't
530  * need to be done unless we decide to allow mixing lossless and lossy compression. */
531
532 void x264_predict_lossless_8x8_chroma( x264_t *h, int i_mode )
533 {
534     int stride = h->fenc->i_stride[1] << h->mb.b_interlaced;
535     if( i_mode == I_PRED_CHROMA_V )
536     {
537         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-stride, stride, 8 );
538         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-stride, stride, 8 );
539     }
540     else if( i_mode == I_PRED_CHROMA_H )
541     {
542         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-1, stride, 8 );
543         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-1, stride, 8 );
544     }
545     else
546     {
547         h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[1] );
548         h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[2] );
549     }
550 }
551
552 void x264_predict_lossless_4x4( x264_t *h, uint8_t *p_dst, int idx, int i_mode )
553 {
554     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
555     uint8_t *p_src = h->mb.pic.p_fenc_plane[0] + block_idx_x[idx]*4 + block_idx_y[idx]*4 * stride;
556
557     if( i_mode == I_PRED_4x4_V )
558         h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-stride, stride, 4 );
559     else if( i_mode == I_PRED_4x4_H )
560         h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-1, stride, 4 );
561     else
562         h->predict_4x4[i_mode]( p_dst );
563 }
564
565 void x264_predict_lossless_8x8( x264_t *h, uint8_t *p_dst, int idx, int i_mode, uint8_t edge[33] )
566 {
567     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
568     uint8_t *p_src = h->mb.pic.p_fenc_plane[0] + (idx&1)*8 + (idx>>1)*8*stride;
569
570     if( i_mode == I_PRED_8x8_V )
571         h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-stride, stride, 8 );
572     else if( i_mode == I_PRED_8x8_H )
573         h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-1, stride, 8 );
574     else
575         h->predict_8x8[i_mode]( p_dst, edge );
576 }
577
578 void x264_predict_lossless_16x16( x264_t *h, int i_mode )
579 {
580     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
581     if( i_mode == I_PRED_16x16_V )
582         h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc_plane[0]-stride, stride, 16 );
583     else if( i_mode == I_PRED_16x16_H )
584         h->mc.copy_16x16_unaligned( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc_plane[0]-1, stride, 16 );
585     else
586         h->predict_16x16[i_mode]( h->mb.pic.p_fdec[0] );
587 }
588
589 /*****************************************************************************
590  * x264_macroblock_encode:
591  *****************************************************************************/
592 void x264_macroblock_encode( x264_t *h )
593 {
594     int i_qp = h->mb.i_qp;
595     int b_decimate = h->mb.b_dct_decimate;
596     int b_force_no_skip = 0;
597     int nz;
598     h->mb.i_cbp_luma = 0;
599     h->mb.cache.non_zero_count[x264_scan8[24]] = 0;
600
601     if( h->mb.i_type == I_PCM )
602     {
603         /* if PCM is chosen, we need to store reconstructed frame data */
604         h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc[0], FENC_STRIDE, 16 );
605         h->mc.copy[PIXEL_8x8]  ( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc[1], FENC_STRIDE, 8 );
606         h->mc.copy[PIXEL_8x8]  ( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc[2], FENC_STRIDE, 8 );
607         return;
608     }
609
610     if( h->sh.b_mbaff
611         && h->mb.i_mb_xy == h->sh.i_first_mb + h->mb.i_mb_stride
612         && IS_SKIP(h->mb.type[h->sh.i_first_mb]) )
613     {
614         /* The first skip is predicted to be a frame mb pair.
615          * We don't yet support the aff part of mbaff, so force it to non-skip
616          * so that we can pick the aff flag. */
617         b_force_no_skip = 1;
618         if( IS_SKIP(h->mb.i_type) )
619         {
620             if( h->mb.i_type == P_SKIP )
621                 h->mb.i_type = P_L0;
622             else if( h->mb.i_type == B_SKIP )
623                 h->mb.i_type = B_DIRECT;
624         }
625     }
626
627     if( h->mb.i_type == P_SKIP )
628     {
629         /* A bit special */
630         x264_macroblock_encode_pskip( h );
631         return;
632     }
633     if( h->mb.i_type == B_SKIP )
634     {
635         /* don't do bskip motion compensation if it was already done in macroblock_analyse */
636         if( !h->mb.b_skip_mc )
637             x264_mb_mc( h );
638         x264_macroblock_encode_skip( h );
639         return;
640     }
641
642     if( h->mb.i_type == I_16x16 )
643     {
644         const int i_mode = h->mb.i_intra16x16_pred_mode;
645         h->mb.b_transform_8x8 = 0;
646
647         if( h->mb.b_lossless )
648             x264_predict_lossless_16x16( h, i_mode );
649         else
650             h->predict_16x16[i_mode]( h->mb.pic.p_fdec[0] );
651
652         /* encode the 16x16 macroblock */
653         x264_mb_encode_i16x16( h, i_qp );
654     }
655     else if( h->mb.i_type == I_8x8 )
656     {
657         ALIGNED_ARRAY_16( uint8_t, edge,[33] );
658         h->mb.b_transform_8x8 = 1;
659         /* If we already encoded 3 of the 4 i8x8 blocks, we don't have to do them again. */
660         if( h->mb.i_skip_intra )
661         {
662             h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i8x8_fdec_buf, 16, 16 );
663             M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i8x8_nnz_buf[0];
664             M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i8x8_nnz_buf[1];
665             M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i8x8_nnz_buf[2];
666             M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i8x8_nnz_buf[3];
667             h->mb.i_cbp_luma = h->mb.pic.i8x8_cbp;
668             /* In RD mode, restore the now-overwritten DCT data. */
669             if( h->mb.i_skip_intra == 2 )
670                 h->mc.memcpy_aligned( h->dct.luma8x8, h->mb.pic.i8x8_dct_buf, sizeof(h->mb.pic.i8x8_dct_buf) );
671         }
672         for( int i = h->mb.i_skip_intra ? 3 : 0 ; i < 4; i++ )
673         {
674             uint8_t  *p_dst = &h->mb.pic.p_fdec[0][8 * (i&1) + 8 * (i>>1) * FDEC_STRIDE];
675             int      i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[4*i]];
676             h->predict_8x8_filter( p_dst, edge, h->mb.i_neighbour8[i], x264_pred_i4x4_neighbors[i_mode] );
677
678             if( h->mb.b_lossless )
679                 x264_predict_lossless_8x8( h, p_dst, i, i_mode, edge );
680             else
681                 h->predict_8x8[i_mode]( p_dst, edge );
682
683             x264_mb_encode_i8x8( h, i, i_qp );
684         }
685     }
686     else if( h->mb.i_type == I_4x4 )
687     {
688         h->mb.b_transform_8x8 = 0;
689         /* If we already encoded 15 of the 16 i4x4 blocks, we don't have to do them again. */
690         if( h->mb.i_skip_intra )
691         {
692             h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i4x4_fdec_buf, 16, 16 );
693             M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i4x4_nnz_buf[0];
694             M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i4x4_nnz_buf[1];
695             M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i4x4_nnz_buf[2];
696             M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i4x4_nnz_buf[3];
697             h->mb.i_cbp_luma = h->mb.pic.i4x4_cbp;
698             /* In RD mode, restore the now-overwritten DCT data. */
699             if( h->mb.i_skip_intra == 2 )
700                 h->mc.memcpy_aligned( h->dct.luma4x4, h->mb.pic.i4x4_dct_buf, sizeof(h->mb.pic.i4x4_dct_buf) );
701         }
702         for( int i = h->mb.i_skip_intra ? 15 : 0 ; i < 16; i++ )
703         {
704             uint8_t  *p_dst = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i]];
705             int      i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[i]];
706
707             if( (h->mb.i_neighbour4[i] & (MB_TOPRIGHT|MB_TOP)) == MB_TOP )
708                 /* emulate missing topright samples */
709                 M32( &p_dst[4-FDEC_STRIDE] ) = p_dst[3-FDEC_STRIDE] * 0x01010101U;
710
711             if( h->mb.b_lossless )
712                 x264_predict_lossless_4x4( h, p_dst, i, i_mode );
713             else
714                 h->predict_4x4[i_mode]( p_dst );
715             x264_mb_encode_i4x4( h, i, i_qp );
716         }
717     }
718     else    /* Inter MB */
719     {
720         int i_decimate_mb = 0;
721
722         /* Don't repeat motion compensation if it was already done in non-RD transform analysis */
723         if( !h->mb.b_skip_mc )
724             x264_mb_mc( h );
725
726         if( h->mb.b_lossless )
727         {
728             if( h->mb.b_transform_8x8 )
729                 for( int i8x8 = 0; i8x8 < 4; i8x8++ )
730                 {
731                     int x = 8*(i8x8&1);
732                     int y = 8*(i8x8>>1);
733                     nz = h->zigzagf.sub_8x8( h->dct.luma8x8[i8x8],
734                                         h->mb.pic.p_fenc[0]+x+y*FENC_STRIDE,
735                                         h->mb.pic.p_fdec[0]+x+y*FDEC_STRIDE );
736                     STORE_8x8_NNZ(i8x8,nz);
737                     h->mb.i_cbp_luma |= nz << i8x8;
738                 }
739             else
740                 for( int i4x4 = 0; i4x4 < 16; i4x4++ )
741                 {
742                     nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4x4],
743                                         h->mb.pic.p_fenc[0]+block_idx_xy_fenc[i4x4],
744                                         h->mb.pic.p_fdec[0]+block_idx_xy_fdec[i4x4] );
745                     h->mb.cache.non_zero_count[x264_scan8[i4x4]] = nz;
746                     h->mb.i_cbp_luma |= nz << (i4x4>>2);
747                 }
748         }
749         else if( h->mb.b_transform_8x8 )
750         {
751             ALIGNED_ARRAY_16( int16_t, dct8x8,[4],[64] );
752             b_decimate &= !h->mb.b_trellis; // 8x8 trellis is inherently optimal decimation
753             h->dctf.sub16x16_dct8( dct8x8, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
754             h->nr_count[1] += h->mb.b_noise_reduction * 4;
755
756             for( int idx = 0; idx < 4; idx++ )
757             {
758                 if( h->mb.b_noise_reduction )
759                     h->quantf.denoise_dct( dct8x8[idx], h->nr_residual_sum[1], h->nr_offset[1], 64 );
760                 nz = x264_quant_8x8( h, dct8x8[idx], i_qp, 0, idx );
761
762                 if( nz )
763                 {
764                     h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8[idx] );
765                     if( b_decimate )
766                     {
767                         int i_decimate_8x8 = h->quantf.decimate_score64( h->dct.luma8x8[idx] );
768                         i_decimate_mb += i_decimate_8x8;
769                         if( i_decimate_8x8 >= 4 )
770                             h->mb.i_cbp_luma |= 1<<idx;
771                     }
772                     else
773                         h->mb.i_cbp_luma |= 1<<idx;
774                 }
775             }
776
777             if( i_decimate_mb < 6 && b_decimate )
778             {
779                 h->mb.i_cbp_luma = 0;
780                 CLEAR_16x16_NNZ
781             }
782             else
783             {
784                 for( int idx = 0; idx < 4; idx++ )
785                 {
786                     if( h->mb.i_cbp_luma&(1<<idx) )
787                     {
788                         h->quantf.dequant_8x8( dct8x8[idx], h->dequant8_mf[CQM_8PY], i_qp );
789                         h->dctf.add8x8_idct8( &h->mb.pic.p_fdec[0][(idx&1)*8 + (idx>>1)*8*FDEC_STRIDE], dct8x8[idx] );
790                         STORE_8x8_NNZ(idx,1);
791                     }
792                     else
793                         STORE_8x8_NNZ(idx,0);
794                 }
795             }
796         }
797         else
798         {
799             ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
800             h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
801             h->nr_count[0] += h->mb.b_noise_reduction * 16;
802
803             for( int i8x8 = 0; i8x8 < 4; i8x8++ )
804             {
805                 int i_decimate_8x8 = 0;
806                 int cbp = 0;
807
808                 /* encode one 4x4 block */
809                 for( int i4x4 = 0; i4x4 < 4; i4x4++ )
810                 {
811                     int idx = i8x8 * 4 + i4x4;
812
813                     if( h->mb.b_noise_reduction )
814                         h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0], h->nr_offset[0], 16 );
815                     nz = x264_quant_4x4( h, dct4x4[idx], i_qp, DCT_LUMA_4x4, 0, idx );
816                     h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
817
818                     if( nz )
819                     {
820                         h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4[idx] );
821                         h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[CQM_4PY], i_qp );
822                         if( b_decimate && i_decimate_8x8 < 6 )
823                             i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[idx] );
824                         cbp = 1;
825                     }
826                 }
827
828                 /* decimate this 8x8 block */
829                 i_decimate_mb += i_decimate_8x8;
830                 if( b_decimate )
831                 {
832                     if( i_decimate_8x8 < 4 )
833                         STORE_8x8_NNZ(i8x8,0)
834                     else
835                         h->mb.i_cbp_luma |= 1<<i8x8;
836                 }
837                 else if( cbp )
838                 {
839                     h->dctf.add8x8_idct( &h->mb.pic.p_fdec[0][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] );
840                     h->mb.i_cbp_luma |= 1<<i8x8;
841                 }
842             }
843
844             if( b_decimate )
845             {
846                 if( i_decimate_mb < 6 )
847                 {
848                     h->mb.i_cbp_luma = 0;
849                     CLEAR_16x16_NNZ
850                 }
851                 else
852                 {
853                     for( int i8x8 = 0; i8x8 < 4; i8x8++ )
854                         if( h->mb.i_cbp_luma&(1<<i8x8) )
855                             h->dctf.add8x8_idct( &h->mb.pic.p_fdec[0][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] );
856                 }
857             }
858         }
859     }
860
861     /* encode chroma */
862     if( IS_INTRA( h->mb.i_type ) )
863     {
864         const int i_mode = h->mb.i_chroma_pred_mode;
865         if( h->mb.b_lossless )
866             x264_predict_lossless_8x8_chroma( h, i_mode );
867         else
868         {
869             h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[1] );
870             h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[2] );
871         }
872     }
873
874     /* encode the 8x8 blocks */
875     x264_mb_encode_8x8_chroma( h, !IS_INTRA( h->mb.i_type ), h->mb.i_chroma_qp );
876
877     /* store cbp */
878     int cbp = h->mb.i_cbp_chroma << 4 | h->mb.i_cbp_luma;
879     if( h->param.b_cabac )
880         cbp |= h->mb.cache.non_zero_count[x264_scan8[24]] << 8
881             |  h->mb.cache.non_zero_count[x264_scan8[25]] << 9
882             |  h->mb.cache.non_zero_count[x264_scan8[26]] << 10;
883     h->mb.cbp[h->mb.i_mb_xy] = cbp;
884
885     /* Check for P_SKIP
886      * XXX: in the me perhaps we should take x264_mb_predict_mv_pskip into account
887      *      (if multiple mv give same result)*/
888     if( !b_force_no_skip )
889     {
890         if( h->mb.i_type == P_L0 && h->mb.i_partition == D_16x16 &&
891             !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) &&
892             M32( h->mb.cache.mv[0][x264_scan8[0]] ) == M32( h->mb.cache.pskip_mv )
893             && h->mb.cache.ref[0][x264_scan8[0]] == 0 )
894         {
895             h->mb.i_type = P_SKIP;
896         }
897
898         /* Check for B_SKIP */
899         if( h->mb.i_type == B_DIRECT && !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) )
900         {
901             h->mb.i_type = B_SKIP;
902         }
903     }
904 }
905
906 /*****************************************************************************
907  * x264_macroblock_probe_skip:
908  *  Check if the current MB could be encoded as a [PB]_SKIP
909  *****************************************************************************/
910 int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
911 {
912     ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
913     ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
914     ALIGNED_ARRAY_16( int16_t, dctscan,[16] );
915     ALIGNED_4( int16_t mvp[2] );
916
917     int i_qp = h->mb.i_qp;
918     int thresh, ssd;
919
920     if( !b_bidir )
921     {
922         /* Get the MV */
923         mvp[0] = x264_clip3( h->mb.cache.pskip_mv[0], h->mb.mv_min[0], h->mb.mv_max[0] );
924         mvp[1] = x264_clip3( h->mb.cache.pskip_mv[1], h->mb.mv_min[1], h->mb.mv_max[1] );
925
926         /* Motion compensation */
927         h->mc.mc_luma( h->mb.pic.p_fdec[0],    FDEC_STRIDE,
928                        h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0],
929                        mvp[0], mvp[1], 16, 16, &h->sh.weight[0][0] );
930     }
931
932     for( int i8x8 = 0, i_decimate_mb = 0; i8x8 < 4; i8x8++ )
933     {
934         int fenc_offset = (i8x8&1) * 8 + (i8x8>>1) * FENC_STRIDE * 8;
935         int fdec_offset = (i8x8&1) * 8 + (i8x8>>1) * FDEC_STRIDE * 8;
936         /* get luma diff */
937         h->dctf.sub8x8_dct( dct4x4, h->mb.pic.p_fenc[0] + fenc_offset,
938                                     h->mb.pic.p_fdec[0] + fdec_offset );
939         /* encode one 4x4 block */
940         for( int i4x4 = 0; i4x4 < 4; i4x4++ )
941         {
942             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ) )
943                 continue;
944             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
945             i_decimate_mb += h->quantf.decimate_score16( dctscan );
946             if( i_decimate_mb >= 6 )
947                 return 0;
948         }
949     }
950
951     /* encode chroma */
952     i_qp = h->mb.i_chroma_qp;
953     thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
954
955     for( int ch = 0; ch < 2; ch++ )
956     {
957         uint8_t  *p_src = h->mb.pic.p_fenc[1+ch];
958         uint8_t  *p_dst = h->mb.pic.p_fdec[1+ch];
959
960         if( !b_bidir )
961         {
962             /* Special case for mv0, which is (of course) very common in P-skip mode. */
963             if( M32( mvp ) )
964             {
965                 h->mc.mc_chroma( h->mb.pic.p_fdec[1+ch],       FDEC_STRIDE,
966                                  h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch],
967                                  mvp[0], mvp[1], 8, 8 );
968             }
969             else
970                 h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE, h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch], 8 );
971
972             if( h->sh.weight[0][1+ch].weightfn )
973                 h->sh.weight[0][1+ch].weightfn[8>>2]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
974                                                       h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
975                                                       &h->sh.weight[0][1+ch], 8 );
976         }
977
978         /* there is almost never a termination during chroma, but we can't avoid the check entirely */
979         /* so instead we check SSD and skip the actual check if the score is low enough. */
980         ssd = h->pixf.ssd[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src, FENC_STRIDE );
981         if( ssd < thresh )
982             continue;
983
984         /* The vast majority of chroma checks will terminate during the DC check or the higher
985          * threshold check, so we can save time by doing a DC-only DCT. */
986         h->dctf.sub8x8_dct_dc( dct2x2, p_src, p_dst );
987
988         if( h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4PC][i_qp][0]>>1, h->quant4_bias[CQM_4PC][i_qp][0]<<1 ) )
989             return 0;
990
991         /* If there wasn't a termination in DC, we can check against a much higher threshold. */
992         if( ssd < thresh*4 )
993             continue;
994
995         h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
996
997         /* calculate dct coeffs */
998         for( int i4x4 = 0, i_decimate_mb = 0; i4x4 < 4; i4x4++ )
999         {
1000             dct4x4[i4x4][0] = 0;
1001             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ) )
1002                 continue;
1003             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
1004             i_decimate_mb += h->quantf.decimate_score15( dctscan );
1005             if( i_decimate_mb >= 7 )
1006                 return 0;
1007         }
1008     }
1009
1010     h->mb.b_skip_mc = 1;
1011     return 1;
1012 }
1013
1014 /****************************************************************************
1015  * DCT-domain noise reduction / adaptive deadzone
1016  * from libavcodec
1017  ****************************************************************************/
1018
1019 void x264_noise_reduction_update( x264_t *h )
1020 {
1021     for( int cat = 0; cat < 2; cat++ )
1022     {
1023         int size = cat ? 64 : 16;
1024         const uint16_t *weight = cat ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
1025
1026         if( h->nr_count[cat] > (cat ? (1<<16) : (1<<18)) )
1027         {
1028             for( int i = 0; i < size; i++ )
1029                 h->nr_residual_sum[cat][i] >>= 1;
1030             h->nr_count[cat] >>= 1;
1031         }
1032
1033         for( int i = 0; i < size; i++ )
1034             h->nr_offset[cat][i] =
1035                 ((uint64_t)h->param.analyse.i_noise_reduction * h->nr_count[cat]
1036                  + h->nr_residual_sum[cat][i]/2)
1037               / ((uint64_t)h->nr_residual_sum[cat][i] * weight[i]/256 + 1);
1038     }
1039 }
1040
1041 /*****************************************************************************
1042  * RD only; 4 calls to this do not make up for one macroblock_encode.
1043  * doesn't transform chroma dc.
1044  *****************************************************************************/
1045 void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
1046 {
1047     int i_qp = h->mb.i_qp;
1048     uint8_t *p_fenc = h->mb.pic.p_fenc[0] + (i8&1)*8 + (i8>>1)*8*FENC_STRIDE;
1049     uint8_t *p_fdec = h->mb.pic.p_fdec[0] + (i8&1)*8 + (i8>>1)*8*FDEC_STRIDE;
1050     int b_decimate = h->mb.b_dct_decimate;
1051     int nnz8x8 = 0;
1052     int nz;
1053
1054     if( !h->mb.b_skip_mc )
1055         x264_mb_mc_8x8( h, i8 );
1056
1057     if( h->mb.b_lossless )
1058     {
1059         if( h->mb.b_transform_8x8 )
1060         {
1061             nnz8x8 = h->zigzagf.sub_8x8( h->dct.luma8x8[i8], p_fenc, p_fdec );
1062             STORE_8x8_NNZ(i8,nnz8x8);
1063         }
1064         else
1065         {
1066             for( int i4 = i8*4; i4 < i8*4+4; i4++ )
1067             {
1068                 nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4],
1069                                     h->mb.pic.p_fenc[0]+block_idx_xy_fenc[i4],
1070                                     h->mb.pic.p_fdec[0]+block_idx_xy_fdec[i4] );
1071                 h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1072                 nnz8x8 |= nz;
1073             }
1074         }
1075         for( int ch = 0; ch < 2; ch++ )
1076         {
1077             int16_t dc;
1078             p_fenc = h->mb.pic.p_fenc[1+ch] + (i8&1)*4 + (i8>>1)*4*FENC_STRIDE;
1079             p_fdec = h->mb.pic.p_fdec[1+ch] + (i8&1)*4 + (i8>>1)*4*FDEC_STRIDE;
1080             nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i8+ch*4], p_fenc, p_fdec, &dc );
1081             h->mb.cache.non_zero_count[x264_scan8[16+i8+ch*4]] = nz;
1082         }
1083     }
1084     else
1085     {
1086         if( h->mb.b_transform_8x8 )
1087         {
1088             ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
1089             h->dctf.sub8x8_dct8( dct8x8, p_fenc, p_fdec );
1090             nnz8x8 = x264_quant_8x8( h, dct8x8, i_qp, 0, i8 );
1091             if( nnz8x8 )
1092             {
1093                 h->zigzagf.scan_8x8( h->dct.luma8x8[i8], dct8x8 );
1094
1095                 if( b_decimate && !h->mb.b_trellis )
1096                     nnz8x8 = 4 <= h->quantf.decimate_score64( h->dct.luma8x8[i8] );
1097
1098                 if( nnz8x8 )
1099                 {
1100                     h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8PY], i_qp );
1101                     h->dctf.add8x8_idct8( p_fdec, dct8x8 );
1102                     STORE_8x8_NNZ(i8,1);
1103                 }
1104                 else
1105                     STORE_8x8_NNZ(i8,0);
1106             }
1107             else
1108                 STORE_8x8_NNZ(i8,0);
1109         }
1110         else
1111         {
1112             int i_decimate_8x8 = 0;
1113             ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
1114             h->dctf.sub8x8_dct( dct4x4, p_fenc, p_fdec );
1115             for( int i4 = 0; i4 < 4; i4++ )
1116             {
1117                 nz = x264_quant_4x4( h, dct4x4[i4], i_qp, DCT_LUMA_4x4, 0, i8*4+i4 );
1118                 h->mb.cache.non_zero_count[x264_scan8[i8*4+i4]] = nz;
1119                 if( nz )
1120                 {
1121                     h->zigzagf.scan_4x4( h->dct.luma4x4[i8*4+i4], dct4x4[i4] );
1122                     h->quantf.dequant_4x4( dct4x4[i4], h->dequant4_mf[CQM_4PY], i_qp );
1123                     if( b_decimate )
1124                         i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[i8*4+i4] );
1125                     nnz8x8 = 1;
1126                 }
1127             }
1128
1129             if( b_decimate && i_decimate_8x8 < 4 )
1130                 nnz8x8 = 0;
1131
1132             if( nnz8x8 )
1133                 h->dctf.add8x8_idct( p_fdec, dct4x4 );
1134             else
1135                 STORE_8x8_NNZ(i8,0);
1136         }
1137
1138         i_qp = h->mb.i_chroma_qp;
1139
1140         for( int ch = 0; ch < 2; ch++ )
1141         {
1142             ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
1143             p_fenc = h->mb.pic.p_fenc[1+ch] + (i8&1)*4 + (i8>>1)*4*FENC_STRIDE;
1144             p_fdec = h->mb.pic.p_fdec[1+ch] + (i8&1)*4 + (i8>>1)*4*FDEC_STRIDE;
1145
1146             h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
1147             dct4x4[0] = 0;
1148
1149             if( h->mb.b_trellis )
1150                 nz = x264_quant_4x4_trellis( h, dct4x4, CQM_4PC, i_qp, DCT_CHROMA_AC, 0, 1, 0 );
1151             else
1152                 nz = h->quantf.quant_4x4( dct4x4, h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] );
1153
1154             h->mb.cache.non_zero_count[x264_scan8[16+i8+ch*4]] = nz;
1155             if( nz )
1156             {
1157                 h->zigzagf.scan_4x4( h->dct.luma4x4[16+i8+ch*4], dct4x4 );
1158                 h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4PC], i_qp );
1159                 h->dctf.add4x4_idct( p_fdec, dct4x4 );
1160             }
1161         }
1162     }
1163     h->mb.i_cbp_luma &= ~(1 << i8);
1164     h->mb.i_cbp_luma |= nnz8x8 << i8;
1165     h->mb.i_cbp_chroma = 0x02;
1166 }
1167
1168 /*****************************************************************************
1169  * RD only, luma only
1170  *****************************************************************************/
1171 void x264_macroblock_encode_p4x4( x264_t *h, int i4 )
1172 {
1173     int i_qp = h->mb.i_qp;
1174     uint8_t *p_fenc = &h->mb.pic.p_fenc[0][block_idx_xy_fenc[i4]];
1175     uint8_t *p_fdec = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
1176     int nz;
1177
1178     /* Don't need motion compensation as this function is only used in qpel-RD, which caches pixel data. */
1179
1180     if( h->mb.b_lossless )
1181     {
1182         nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4], p_fenc, p_fdec );
1183         h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1184     }
1185     else
1186     {
1187         ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
1188         h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
1189         nz = x264_quant_4x4( h, dct4x4, i_qp, DCT_LUMA_4x4, 0, i4 );
1190         h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1191         if( nz )
1192         {
1193             h->zigzagf.scan_4x4( h->dct.luma4x4[i4], dct4x4 );
1194             h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4PY], i_qp );
1195             h->dctf.add4x4_idct( p_fdec, dct4x4 );
1196         }
1197     }
1198 }